[1]
|
Norwood, D.A., Montalvan-Sanchez, E., Dominguez, R.L. and Morgan, D.R. (2022) Gastric Cancer. Gastroenterology Clinics of North America, 51, 501-518. https://doi.org/10.1016/j.gtc.2022.05.001
|
[2]
|
Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R. and Sitarz, R. (2020) Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. International Journal of Molecular Sciences, 21, Article 4012. https://doi.org/10.3390/ijms21114012
|
[3]
|
Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279. https://doi.org/10.3322/caac.21657
|
[4]
|
Zou, S., Wu, Y., Wen, M., Liu, J., Chen, M., Yuan, J., et al. (2024) Potential Molecular Mechanism of Illicium simonsii Maxim Petroleum Ether Fraction in the Treatment of Hepatocellular Carcinoma. Pharmaceuticals, 17, Article 806. https://doi.org/10.3390/ph17060806
|
[5]
|
刘瑞, 陈金玥, 文婷婷, 等. 胃癌中自噬与铁死亡的相互作用[J]. 生命的化学, 2024, 44(4): 630-638.
|
[6]
|
霍瑶, 吴寒, 马娇, 等. 蒲公英提取物治疗对胃癌细胞的抑制作用及机制分析[J]. 肿瘤学杂志, 2024, 30(8): 637-645.
|
[7]
|
于琼, 宋雅雅, 危志强, 等. 西南民族药用植物野坝子抗胃癌的作用机制[J]. 中华中医药杂志, 2024, 39(7): 3696-3704.
|
[8]
|
亓立廷, 黄冬梅, 王健, 等. CircNFATC3通过miR-183-5p/THBS1轴调节胃癌细胞的增殖、凋亡、迁移和侵袭[J]. 中国老年学杂志, 2024, 44(14): 3519-3525.
|
[9]
|
周立群, 李哲, 翁秋燕. 胃癌中tsRNA-Glu-5-0048的表达及对胃癌细胞生物学行为的影响[J]. 现代实用医学, 2024, 36(7): 871-875.
|
[10]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
|
[11]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[12]
|
Winter, W.E., Bazydlo, L.A.L. and Harris, N.S. (2014) The Molecular Biology of Human Iron Metabolism. Laboratory Medicine, 45, 92-102. https://doi.org/10.1309/lmf28s2gimxnwhmm
|
[13]
|
Zuo, Y., Zhang, Y., Zhang, R., Tian, J., Lv, X., Li, R., et al. (2022) Ferroptosis in Cancer Progression: Role of Noncoding RNAs. International Journal of Biological Sciences, 18, 1829-1843. https://doi.org/10.7150/ijbs.66917
|
[14]
|
Yamaguchi, S., Hamano, T., Oka, T., Doi, Y., Kajimoto, S., Shimada, K., et al. (2021) Mean Corpuscular Hemoglobin Concentration: An Anemia Parameter Predicting Cardiovascular Disease in Incident Dialysis Patients. Journal of Nephrology, 35, 535-544. https://doi.org/10.1007/s40620-021-01107-w
|
[15]
|
Rochette, L., Dogon, G., Rigal, E., Zeller, M., Cottin, Y. and Vergely, C. (2022) Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences, 24, Article 449. https://doi.org/10.3390/ijms24010449
|
[16]
|
Huang, J., Pan, H., Sun, J., Wu, J., Xuan, Q., Wang, J., et al. (2023) TMEM147 Aggravates the Progression of HCC by Modulating Cholesterol Homeostasis, Suppressing Ferroptosis, and Promoting the M2 Polarization of Tumor-Associated Macrophages. Journal of Experimental & Clinical Cancer Research, 42, Article No. 286. https://doi.org/10.1186/s13046-023-02865-0
|
[17]
|
Gu, R., Xia, Y., Li, P., Zou, D., Lu, K., Ren, L., et al. (2022) Ferroptosis and Its Role in Gastric Cancer. Frontiers in Cell and Developmental Biology, 10, Article 860344. https://doi.org/10.3389/fcell.2022.860344
|
[18]
|
Zou, Y. and Schreiber, S.L. (2020) Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit. Cell Chemical Biology, 27, 463-471. https://doi.org/10.1016/j.chembiol.2020.03.015
|
[19]
|
Liu, M., Kong, X., Yao, Y., Wang, X., Yang, W., Wu, H., et al. (2022) The Critical Role and Molecular Mechanisms of Ferroptosis in Antioxidant Systems: A Narrative Review. Annals of Translational Medicine, 10, 368-368. https://doi.org/10.21037/atm-21-6942
|
[20]
|
Agmon, E. and Stockwell, B.R. (2017) Lipid Homeostasis and Regulated Cell Death. Current Opinion in Chemical Biology, 39, 83-89. https://doi.org/10.1016/j.cbpa.2017.06.002
|
[21]
|
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239
|
[22]
|
Yao, Y., Chen, Z., Zhang, H., Chen, C., Zeng, M., Yunis, J., et al. (2021) Selenium-GPX4 Axis Protects Follicular Helper T Cells from Ferroptosis. Nature Immunology, 22, 1127-1139. https://doi.org/10.1038/s41590-021-00996-0
|
[23]
|
Lupica-Tondo, G.L., Arner, E.N., Mogilenko, D.A. and Voss, K. (2024) Immunometabolism of Ferroptosis in the Tumor Microenvironment. Frontiers in Oncology, 14, Article 1441338. https://doi.org/10.3389/fonc.2024.1441338
|
[24]
|
Huang, Z., et al. (2023) Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 11, 207-218.
|
[25]
|
Guo, K., Lu, M., Bi, J., Yao, T., Gao, J., Ren, F., et al. (2024) Ferroptosis: Mechanism, Immunotherapy and Role in Ovarian Cancer. Frontiers in Immunology, 15, Article 1410018. https://doi.org/10.3389/fimmu.2024.1410018
|
[26]
|
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2
|
[27]
|
Wang, L. and Wang, H. (2023) The Putative Role of Ferroptosis in Gastric Cancer: A Review. European Journal of Cancer Prevention, 32, 575-583. https://doi.org/10.1097/cej.0000000000000817
|
[28]
|
Chen, Y., Zhu, Z., Chen, J., Zheng, Y., Limsila, B., Lu, M., et al. (2021) Terpenoids from Curcumae Rhizoma: Their Anticancer Effects and Clinical Uses on Combination and versus Drug Therapies. Biomedicine & Pharmacotherapy, 138, Article ID: 111350. https://doi.org/10.1016/j.biopha.2021.111350
|
[29]
|
Shen, C., Liu, H., Chen, Y., Liu, M., Wang, Q., Liu, J., et al. (2024) Helicobacter Pylori Induces GBA1 Demethylation to Inhibit Ferroptosis in Gastric Cancer. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-024-05105-x
|
[30]
|
Ni, H., Qin, H., Sun, C., Liu, Y., Ruan, G., Guo, Q., et al. (2021) MiR-375 Reduces the Stemness of Gastric Cancer Cells through Triggering Ferroptosis. Stem Cell Research & Therapy, 12, Article No. 325. https://doi.org/10.1186/s13287-021-02394-7
|
[31]
|
Shao, Y., Jia, H., Li, S., Huang, L., Aikemu, B., Yang, G., et al. (2021) Comprehensive Analysis of Ferroptosis‐Related Markers for the Clinical and Biological Value in Gastric Cancer. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 7007933. https://doi.org/10.1155/2021/7007933
|
[32]
|
Wei, J., Zeng, Y., Gao, X. and Liu, T. (2021) A Novel Ferroptosis-Related LncRNA Signature for Prognosis Prediction in Gastric Cancer. BMC Cancer, 21, Article No. 1221. https://doi.org/10.1186/s12885-021-08975-2
|
[33]
|
Zhang, H., Deng, T., Liu, R., Ning, T., Yang, H., Liu, D., et al. (2020) CAF Secreted MiR-522 Suppresses Ferroptosis and Promotes Acquired Chemo-Resistance in Gastric Cancer. Molecular Cancer, 19, Article No. 43. https://doi.org/10.1186/s12943-020-01168-8
|
[34]
|
Fu, D., Wang, C., Yu, L. and Yu, R. (2021) Induction of Ferroptosis by ATF3 Elevation Alleviates Cisplatin Resistance in Gastric Cancer by Restraining Nrf2/Keap1/xCT Signaling. Cellular & Molecular Biology Letters, 26, Article No. 26. https://doi.org/10.1186/s11658-021-00271-y
|
[35]
|
Gao, Q., et al. (2022) The Regulatory Effects of Traditional Chinese Medicine on Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4578381.
|
[36]
|
汪显超, 李娜, 黄静, 等. 胃癌患者中医证型与发病节气的相关性研究[J]. 世界科学技术-中医药现代化, 2023, 25(10): 3384-3393.
|
[37]
|
Guan, Z., Chen, J., Li, X. and Dong, N. (2020) Tanshinone IIA Induces Ferroptosis in Gastric Cancer Cells through P53-Mediated SLC7A11 Down-Regulation. Bioscience Reports, 40, BSR20201807. https://doi.org/10.1042/bsr20201807
|
[38]
|
Ni, H., Ruan, G., Sun, C., Yang, X., Miao, Z., Li, J., et al. (2021) Tanshinone IIA Inhibits Gastric Cancer Cell Stemness through Inducing Ferroptosis. Environmental Toxicology, 37, 192-200. https://doi.org/10.1002/tox.23388
|
[39]
|
苑小龙, 魏征, 张俊萍, 等. 黄芩苷通过p53介导的SLC7A11下调诱导胃癌细胞铁死亡[J]. 中国实验方剂学杂志, 2023, 29(6): 71-78.
|
[40]
|
Zhang, L., Li, C., Zhang, Y., Zhang, J. and Yang, X. (2022) Ophiopogonin B Induces Gastric Cancer Cell Death by Blocking the GPX4/xCT-Dependent Ferroptosis Pathway. Oncology Letters, 23, Article No. 104. https://doi.org/10.3892/ol.2022.13224
|
[41]
|
Liu, Y., Song, Z., Liu, Y., Ma, X., Wang, W., Ke, Y., et al. (2021) Identification of Ferroptosis as a Novel Mechanism for Antitumor Activity of Natural Product Derivative A2 in Gastric Cancer. Acta Pharmaceutica Sinica B, 11, 1513-1525. https://doi.org/10.1016/j.apsb.2021.05.006
|
[42]
|
Gao, Z., Deng, G., Li, Y., Huang, H., Sun, X., Shi, H., et al. (2020) Actinidia Chinensis Planch Prevents Proliferation and Migration of Gastric Cancer Associated with Apoptosis, Ferroptosis Activation and Mesenchymal Phenotype Suppression. Biomedicine & Pharmacotherapy, 126, Article ID: 110092. https://doi.org/10.1016/j.biopha.2020.110092
|
[43]
|
Song, S., Wen, F., Gu, S., Gu, P., Huang, W., Ruan, S., et al. (2022) Network Pharmacology Study and Experimental Validation of Yiqi Huayu Decoction Inducing Ferroptosis in Gastric Cancer. Frontiers in Oncology, 12, Article 820059. https://doi.org/10.3389/fonc.2022.820059
|
[44]
|
李鑫, 杨金祖, 钱建新, 等. 胃肠安方含药血清诱导胃癌MKN-45细胞铁死亡及其机制[J/OL]. 中国实验方剂学杂志: 1-9. https://doi.org/10.13422/j.cnki.syfjx.20241425, 2024-11-07.
|
[45]
|
张晴朗, 莫雪妮, 王婷, 等. 加味七方胃痛颗粒含药血清抑制人胃癌AGS细胞铁死亡的机制研究[J]. 中国医药导报, 2023, 20(34): 16-20.
|