|
[1]
|
Widmer, R.J., Flammer, A.J., Lerman, L.O. and Lerman, A. (2015) The Mediterranean Diet, Its Components, and Cardiovascular Disease. The American Journal of Medicine, 128, 229-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nyárády, B.B., Kiss, L.Z., Bagyura, Z., Merkely, B., Dósa, E., Láng, O., et al. (2024) Growth and Differentiation Factor-15: A Link between Inflammaging and Cardiovascular Disease. Biomedicine & Pharmacotherapy, 174, Article ID: 116475. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Eddy, A.C. and Trask, A.J. (2021) Growth Differentiation Factor-15 and Its Role in Diabetes and Cardiovascular Disease. Cytokine & Growth Factor Reviews, 57, 11-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Smith, S.C. (2011) Reducing the Global Burden of Ischemic Heart Disease and Stroke: A Challenge for the Cardiovascular Community and the United Nations. Circulation, 124, 278-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Teo, K.K. and Rafiq, T. (2021) Cardiovascular Risk Factors and Prevention: A Perspective from Developing Countries. Canadian Journal of Cardiology, 37, 733-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nyárády, B.B., Kiss, L.Z., Bagyura, Z., Merkely, B., Dósa, E., Láng, O., et al. (2024) Growth and Differentiation Factor-15: A Link between Inflammaging and Cardiovascular Disease. Biomedicine & Pharmacotherapy, 174, Article ID: 116475. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rohatgi, A., Patel, P., Das, S.R., Ayers, C.R., Khera, A., Martinez-Rumayor, A., et al. (2012) Association of Growth Differentiation Factor-15 with Coronary Atherosclerosis and Mortality in a Young, Multiethnic Population: Observations from the Dallas Heart Study. Clinical Chemistry, 58, 172-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
May, B.M., Pimentel, M., Zimerman, L.I. and Rohde, L.E. (2021) GDF-15 como Biomarcador em Doenças Cardiovasculares. Arquivos Brasileiros de Cardiologia, 116, 494-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Corre, J., Hébraud, B. and Bourin, P. (2013) Concise Review: Growth Differentiation Factor 15 in Pathology: A Clinical Role? Stem Cells Translational Medicine, 2, 946-952. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rochette, L., Dogon, G., Zeller, M., Cottin, Y. and Vergely, C. (2021) GDF15 and Cardiac Cells: Current Concepts and New Insights. International Journal of Molecular Sciences, 22, Article 8889. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gerstein, H.C., Pare, G., Hess, S., Ford, R.J., Sjaarda, J., Raman, K., et al. (2016) Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care, 40, 280-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Adela, R. and Banerjee, S.K. (2015) GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. Journal of Diabetes Research, 2015, Article ID: 490842. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xu, J., Kimball, T.R., Lorenz, J.N., Brown, D.A., Bauskin, A.R., Klevitsky, R., et al. (2006) GDF15/MIC-1 Functions as a Protective and Antihypertrophic Factor Released from the Myocardium in Association with SMAD Protein Activation. Circulation Research, 98, 342-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jung, S., Choi, M.J., Ryu, D., Yi, H., Lee, S.E., Chang, J.Y., et al. (2018) Reduced Oxidative Capacity in Macrophages Results in Systemic Insulin Resistance. Nature Communications, 9, Article No. 1551. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Artz, A., Butz, S. and Vestweber, D. (2016) GDF-15 Inhibits Integrin Activation and Mouse Neutrophil Recruitment through the Alk-5/TGF-βRII Heterodimer. Blood, 128, 529-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hu, H., Chen, D., Wang, Y., Feng, Y., Cao, G., Vaziri, N.D., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kim, K.H., Han, J.W., Jung, S., Park, B., Han, C.W. and Joo, M. (2017) Kaurenoic Acid Activates TGF-β Signaling. Phytomedicine, 32, 8-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Park, S., Cho, H., Jeong, Y., Shin, J., Kang, J., Park, K., et al. (2014) Melittin Inhibits TGF-β-Induced Pro-Fibrotic Gene Expression through the Suppression of the TGFβRII-Smad, ERK1/2 and JNK-Mediated Signaling Pathway. The American Journal of Chinese Medicine, 42, 1139-1152. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhu, X., Lu, J., Rao, J., Ru, D., Gao, M., Shi, D., et al. (2023) Crosstalk between Interleukin-1 Receptor-Like 1 and Transforming Growth Factor-β Receptor Signaling Promotes Renal Fibrosis. The American Journal of Pathology, 193, 1029-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Strowitzki, M.J., Ritter, A.S., Kimmer, G. and Schneider, M. (2019) Hypoxia-Adaptive Pathways: A Pharmacological Target in Fibrotic Disease? Pharmacological Research, 147, Article ID: 104364. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Watson, W.H., Ritzenthaler, J.D. and Roman, J. (2016) Lung Extracellular Matrix and Redox Regulation. Redox Biology, 8, 305-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, J., Wei, L., Yang, X. and Zhong, J. (2019) Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. Journal of the American Heart Association, 8, e012826. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zheng, D., Huo, M., Li, B., Wang, W., Piao, H., Wang, Y., et al. (2021) The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 8, Article 616161. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pirillo, A., Norata, G.D. and Catapano, A.L. (2013) LOX-1, OxLDL, and Atherosclerosis. Mediators of Inflammation, 2013, Article ID: 152786. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liuizė (Abramavičiūtė), A. and Mongirdienė, A. (2024) TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. International Journal of Molecular Sciences, 25, Article 2104. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Huang, H., Chen, Z., Li, Y., Gong, K., Xiao, L., Fu, H., et al. (2021) GDF-15 Suppresses Atherosclerosis by Inhibiting OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6497568. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Aguilar-Recarte, D., Barroso, E., Gumà, A., Pizarro-Delgado, J., Peña, L., Ruart, M., et al. (2021) GDF15 Mediates the Metabolic Effects of PPARβ/δ by activating AMPK. Cell Reports, 36, Article ID: 109501. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sawalha, K., Norgard, N.B., Drees, B.M. and López-Candales, A. (2023) Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Current Heart Failure Reports, 20, 287-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Echouffo-Tcheugui, J.B., Daya, N., Ndumele, C.E., Matsushita, K., Hoogeveen, R.C., Ballantyne, C.M., et al. (2022) Diabetes, GDF-15 and Incident Heart Failure: The Atherosclerosis Risk in Communities Study. Diabetologia, 65, 955-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Rathnayake, N., Buhlin, K., Kjellström, B., Klinge, B., Löwbeer, C., Norhammar, A., et al. (2017) Saliva and Plasma Levels of Cardiac‐Related Biomarkers in Post‐myocardial Infarction Patients. Journal of Clinical Periodontology, 44, 692-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kempf, T., Eden, M., Strelau, J., Naguib, M., Willenbockel, C., Tongers, J., et al. (2006) The Transforming Growth Factor-Β Superfamily Member Growth-Differentiation Factor-15 Protects the Heart from Ischemia/Reperfusion Injury. Circulation Research, 98, 351-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Unsicker, K., Spittau, B. and Krieglstein, K. (2013) The Multiple Facets of the TGF-β Family Cytokine Growth/Differentiation Factor-15/Macrophage Inhibitory Cytokine-1. Cytokine & Growth Factor Reviews, 24, 373-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kempf, T., Zarbock, A., Widera, C., Butz, S., Stadtmann, A., Rossaint, J., et al. (2011) GDF-15 Is an Inhibitor of Leukocyte Integrin Activation Required for Survival after Myocardial Infarction in Mice. Nature Medicine, 17, 581-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lorell, B.H. and Carabello, B.A. (2000) Left Ventricular Hypertrophy. Circulation, 102, 470-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Weintraub, R.G., Semsarian, C. and Macdonald, P. (2017) Dilated Cardiomyopathy. The Lancet, 390, 400-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hauser, J.A., Demyanets, S., Rusai, K., Goritschan, C., Weber, M., Panesar, D., et al. (2016) Diagnostic Performance and Reference Values of Novel Biomarkers of Paediatric Heart Failure. Heart, 102, 1633-1639. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kou, H., Jin, X., Gao, D., Ma, R., Dong, X., Wei, J., et al. (2017) Association between Growth Differentiation Factor 15 and Left Ventricular Hypertrophy in Hypertensive Patients and Healthy Adults. Clinical and Experimental Hypertension, 40, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xue, H., Fu, Z., Chen, Y., Xing, Y., Liu, J., Zhu, H., et al. (2012) The Association of Growth Differentiation Factor-15 with Left Ventricular Hypertrophy in Hypertensive Patients. PLOS ONE, 7, e46534. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Stahrenberg, R., Edelmann, F., Mende, M., Kockskämper, A., Düngen, H., Lüers, C., et al. (2010) The Novel Biomarker Growth Differentiation Factor 15 in Heart Failure with Normal Ejection Fraction. European Journal of Heart Failure, 12, 1309-1316. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Xu, X., Nie, Y., Wang, F., Bai, Y., Lv, Z., Zhang, Y., et al. (2014) Growth Differentiation Factor (GDF)-15 Blocks Norepinephrine-Induced Myocardial Hypertrophy via a Novel Pathway Involving Inhibition of Epidermal Growth Factor Receptor Transactivation. Journal of Biological Chemistry, 289, 10084-10094. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Piek, A., Du, W., de Boer, R.A. and Silljé, H.H.W. (2018) Novel Heart Failure Biomarkers: Why Do We Fail to Exploit Their Potential? Critical Reviews in Clinical Laboratory Sciences, 55, 246-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sharma, A., Stevens, S.R., Lucas, J., Fiuzat, M., Adams, K.F., Whellan, D.J., et al. (2017) Utility of Growth Differentiation Factor-15, a Marker of Oxidative Stress and Inflammation, in Chronic Heart Failure: Insights from the HF-ACTION Study. JACC: Heart Failure, 5, 724-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 37, 2129-2200. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Meijers, W.C., Bayes‐Genis, A., Mebazaa, A., Bauersachs, J., Cleland, J.G.F., Coats, A.J.S., et al. (2021) Circulating Heart Failure Biomarkers Beyond Natriuretic Peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). European Journal of Heart Failure, 23, 1610-1632. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Santhanakrishnan, R., Chong, J.P.C., Ng, T.P., Ling, L.H., Sim, D., Toh G. Leong, K., et al. (2012) Growth Differentiation Factor 15, ST2, High‐Sensitivity Troponin T, and N‐Terminal Pro Brain Natriuretic Peptide in Heart Failure with Preserved vs. Reduced Ejection Fraction. European Journal of Heart Failure, 14, 1338-1347. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Maisel, A. (2007) Biomarkers in Heart Failure. Does Prognostic Utility Translate to Clinical Futility? Journal of the American College of Cardiology, 50, 1061-1063. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kempf, T., von Haehling, S., Peter, T., Allhoff, T., Cicoira, M., Doehner, W., et al. (2007) Prognostic Utility of Growth Differentiation Factor-15 in Patients with Chronic Heart Failure. Journal of the American College of Cardiology, 50, 1054-1060. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ye, B., Fan, X., Fang, Z., Mao, C., Lin, L., Wu, J., et al. (2024) Macrophage-Derived GSDMD Promotes Abdominal Aortic Aneurysm and Aortic Smooth Muscle Cells Pyroptosis. International Immunopharmacology, 128, Article ID: 111554. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Nordon, I.M., Hinchliffe, R.J., Loftus, I.M. and Thompson, M.M. (2010) Pathophysiology and Epidemiology of Abdominal Aortic Aneurysms. Nature Reviews Cardiology, 8, 92-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, K., Zhou, Z., Huang, L., Kan, Q., Wang, Z., Wu, W., et al. (2024) PINK1 Dominated Mitochondria Associated Genes Signature Predicts Abdominal Aortic Aneurysm with Metabolic Syndrome. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1870, Article ID: 166919. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Golledge, J. (2018) Abdominal Aortic Aneurysm: Update on Pathogenesis and Medical Treatments. Nature Reviews Cardiology, 16, 225-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Yuan, Z., Lu, Y., Wei, J., Wu, J., Yang, J. and Cai, Z. (2021) Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Frontiers in Immunology, 11, Article 609161. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Song, H., Yang, Y., Sun, Y., Wei, G., Zheng, H., Chen, Y., et al. (2022) Circular RNA Cdyl Promotes Abdominal Aortic Aneurysm Formation by Inducing M1 Macrophage Polarization and M1-Type Inflammation. Molecular Therapy, 30, 915-931. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Raffort, J., Lareyre, F., Clément, M., Hassen-Khodja, R., Chinetti, G. and Mallat, Z. (2017) Monocytes and Macrophages in Abdominal Aortic Aneurysm. Nature Reviews Cardiology, 14, 457-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J.L., Cerletti, M., Jang, Y., et al. (2013) A Special Population of Regulatory T Cells Potentiates Muscle Repair. Cell, 155, 1282-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Juvonen, J., Surcel, H., Satta, J., Teppo, A., Bloigu, A., Syrjälä, H., et al. (1997) Elevated Circulating Levels of Inflammatory Cytokines in Patients with Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2843-2847. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Cai, D., Sun, C., Murashita, T., Que, X. and Chen, S. (2023) ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circulation Research, 132, e78-e93. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Qin, Z., Bagley, J., Sukhova, G., Baur, W.E., Park, H., Beasley, D., et al. (2015) Angiotensin II-Induced TLR4 Mediated Abdominal Aortic Aneurysm in Apolipoprotein E Knockout Mice Is Dependent on STAT3. Journal of Molecular and Cellular Cardiology, 87, 160-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Dale, M.A., Xiong, W., Carson, J.S., Suh, M.K., Karpisek, A.D., Meisinger, T.M., et al. (2016) Elastin-derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization. The Journal of Immunology, 196, 4536-4543. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sánchez-Infantes, D., Nus, M., Navas-Madroñal, M., Fité, J., Pérez, B., Barros-Membrilla, A.J., et al. (2021) Oxidative Stress and Inflammatory Markers in Abdominal Aortic Aneurysm. Antioxidants, 10, Article 602. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wang, D., Day, E.A., Townsend, L.K., Djordjevic, D., Jørgensen, S.B. and Steinberg, G.R. (2021) GDF15: Emerging Biology and Therapeutic Applications for Obesity and Cardiometabolic Disease. Nature Reviews Endocrinology, 17, 592-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ferreira, J.P., Packer, M., Butler, J., Filippatos, G., Pocock, S.J., Januzzi, J.L., et al. (2023) Growth Differentiation Factor‐15 and the Effect of Empagliflozin in Heart Failure: Findings from the emperor Program. European Journal of Heart Failure, 26, 155-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Itoga, N.K., Rothenberg, K.A., Suarez, P., Ho, T., Mell, M.W., Xu, B., et al. (2019) Metformin Prescription Status and Abdominal Aortic Aneurysm Disease Progression in the U.S. Veteran Population. Journal of Vascular Surgery, 69, 710-716.E3. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Raffort, J., Hassen-Khodja, R., Jean-Baptiste, E. and Lareyre, F. (2020) Relationship between Metformin and Abdominal Aortic Aneurysm. Journal of Vascular Surgery, 71, 1056-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Hinchliffe, R.J. (2017) Metformin and Abdominal Aortic Aneurysm. European Journal of Vascular and Endovascular Surgery, 54, 679-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zhang, S., Danaei, Z., Bruce, K., Chiu, J.F.M. and Lam, T.K.T. (2023) Acute Activation of GFRAL in the Area Postrema Contributes to Glucose Regulation Independent of Weight. Diabetes, 73, 426-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Kaneto, H., Kimura, T., Obata, A., Shimoda, M. and Kaku, K. (2021) Multifaceted Mechanisms of Action of Metformin Which Have Been Unraveled One after Another in the Long History. International Journal of Molecular Sciences, 22, Article 2596. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Natali, A., Nesti, L., Venturi, E., Shore, A.C., Khan, F., Gooding, K., et al. (2018) Metformin Is the Key Factor in Elevated Plasma Growth Differentiation Factor‐15 Levels in Type 2 Diabetes: A Nested, Case-Control Study. Diabetes, Obesity and Metabolism, 21, 412-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Li, H., Tang, D., Chen, J., Hu, Y., Cai, X. and Zhang, P. (2021) The Clinical Value of GDF15 and Its Prospective Mechanism in Sepsis. Frontiers in Immunology, 12, Article 710977. [Google Scholar] [CrossRef] [PubMed]
|