生长分化因子15在心血管疾病中的诊疗作用及其研究进展
The Diagnostic and Therapeutic Roles of Growth Differentiation Factor 15 in Cardiovascular Diseases and Its Research Progress
DOI: 10.12677/acm.2024.14112973, PDF, HTML, XML,   
作者: 吴婉莹, 杨 超*:华中科技大学同济医学院附属协和医院血管外科,湖北 武汉
关键词: 生长分化因子15心血管疾病诊断预后治疗Growth Differentiation Factor 15 Cardiovascular Diseases Diagnosis Prognosis Treatment
摘要: 目前,心血管疾病如动脉粥样硬化、心肌梗死、心脏肥大和心力衰竭等是全球主要的死亡原因,严重危害人类的生命安全,因此,心血管疾病的早期诊断、预后监测及治疗至关重要。近年来,生物标志物在心血管疾病患者的诊断和预后评估中具有越来越重要的临床价值。其中,生长分化因子15 (growth differentiation factor 15, GDF15)是一种新兴的心血管疾病生物标志物,是死亡率和不良预后的独立预测因子。许多基础研究还表明,GDF15在心血管疾病中发挥保护作用,可能具有潜在的治疗价值。本文就GDF15在心血管疾病中的诊疗作用及相关研究进展做一综述,旨在探索GDF15在心血管疾病诊断、预后监测和治疗中的应用前景。
Abstract: Currently, cardiovascular diseases (CVDs) such as atherosclerosis, myocardial infarction, cardiac hypertrophy, and heart failure are the leading causes of death globally, posing a serious threat to human life safety. Therefore, early diagnosis, prognosis monitoring, and treatment of CVDs are crucial. In recent years, biomarkers have become increasingly important in the diagnosis and prognosis assessment of patients with CVDs. Among them, growth differentiation factor 15 (GDF15) is an emerging biomarker for CVDs and an independent predictor of mortality and poor prognosis. Many basic research studies have also indicated that GDF15 plays a protective role in CVDs and may have potential therapeutic value. This article reviews the diagnostic and therapeutic roles of GDF15 in CVDs and related research progress, aiming to explore the application prospects of GDF15 in the diagnosis, prognosis monitoring, and treatment of CVDs.
文章引用:吴婉莹, 杨超. 生长分化因子15在心血管疾病中的诊疗作用及其研究进展[J]. 临床医学进展, 2024, 14(11): 985-994. https://doi.org/10.12677/acm.2024.14112973

1. 引言

心血管疾病(Cardiovascular disease, CVD)是目前世界范围内主要的死亡原因[1]-[3],其高发病率和致死率对人类的生命健康、经济和社会安全造成了严重威胁,已经成为全球重大的公共卫生问题,其中,80%的心血管疾病来自欠发达的中、低收入国家,这与社会和经济发展相一致[4] [5],其危险因素包括吸烟、高血压、糖尿病和血脂异常。因此,心血管疾病的早期识别诊断、预后监测及治疗显得尤为重要。

近年来,生物标志物在心血管疾病患者的诊断和预后评估中展现出了越来越重要的临床价值。尽管过去的几十年里,我们在心血管疾病生物标志物的研究方面取得了显著进展,但仅有少数生物标志物如肌钙蛋白I、肌钙蛋白T、B型利钠肽(BNP)和NT-proBNP等得到了临床应用[6]。在众多生物标志物中,生长分化因子15 (growth differentiation factor 15, GDF15)作为一种新兴的心血管疾病生物标志物,其水平与一系列心血管疾病包括急性冠脉综合征、心力衰竭、心肌梗死和扩张型心肌病等[7]的进展和预后密切相关,是死亡率和不良预后的独立预测因子[8]

GDF15,作为TGF-β超家族的远亲成员之一,起初被称为巨噬细胞抑制因子(macrophage inhibitory cytokine-1, MIC-1),是一种应激性蛋白。在组织损伤、缺氧、炎症及氧化应激等病理状态下,GDF15可由多种细胞产生,并在相应组织的表达量显著上调,作为对细胞应激或损伤的保护性反应[9],起到抗氧化、抗炎、抗凋亡、保护心脏的作用[10] [11]

综上所述,GDF15不仅可作为心血管疾病诊断及预后监测的生物标志物,大多数研究结果还表明,GDF15在心血管疾病中起保护作用,很少有报告表明GDF15的缺乏对血管损伤和炎症有益[3] [12]。因此了解GDF15的生物学特性及其在心血管疾病中的作用机制,对于心血管疾病的诊断、预后及治疗具有重要意义。本文就GDF15在心血管疾病中的诊疗作用及研究进展做一综述。

2. GDF15的生物学特性及其作用机制

TGF-β超家族的成员主要通过与由I型和II型丝氨酸/苏氨酸受体激酶受体组成的异二聚体细胞表面受体结合发挥作用[13]-[15]。具体过程为,与TGF-β受体II (TGF-βRII)结合后,再结合于TGF-βRI,形成具有催化活性的TGF-βR。然后TGF-βRI的胞内段募集并磷酸化受体调节的SMAD2/3。磷酸化的SMAD2/3结合共激活剂SMAD4形成多亚基复合物,该复合物转移到细胞核内并占据同源启动子中的SMAD结合元件(SBE),发挥抗肥大、抗炎和促纤维化的作用[10] [12] [13] [16] [17]。这一机制在肾纤维化等病理过程中尤为关键,其中,诱导TGF-βR激活下游的SMAD2和SMAD3可促进促纤维化基因的转录,进而促进肾成纤维细胞以及肾上皮细胞的细胞外基质(ECM)合成和胶原蛋白沉积[18] [19],这与伤口愈合反应以及损伤后的组织修复密切相关[20] [21]

此外,GDF15还可通过其他受体进行信号传递。例如,GDF15可通过Src的磷酸化及其下游途径的AKT、MAPK和NF-κB信号通路诱导促血管生成作用[22]。此外,Adela等人的研究表明,GDF15还可通过抑制NF-κB/JNK/caspase-3通路(JNK,即c-Jun N末端激酶)、Bad (Bcl-2相关死亡促进子)和EGFR (表皮生长因子受体),并激活PI3K/AKT/eNOS/NO通路来保护心脏、脂肪组织和内皮细胞[12]

3. GDF15与心血管疾病

3.1. GDF15与动脉粥样硬化

动脉粥样硬化是一种与脂质代谢相关的慢性炎症性血管疾病,其特征是动脉壁上脂质斑块积聚导致血流减少、心血管事件风险增加[2],是最常见的心血管疾病之一,也是心肌梗死和中风的根本原因[23]。动脉粥样硬化斑块的发生和进展是由内皮功能障碍、氧化的低密度脂蛋白(oxLDL)沉积在内皮下间隙、炎性单核细胞募集到动脉血管壁、分化为活化的巨噬细胞以及随后在内皮下间隙转化为富含胆固醇的泡沫细胞驱动的[12] [24]。既往研究表明,动脉粥样硬化患者及小鼠模型中GDF15水平升高,表明GDF15可能是与动脉粥样硬化的疾病标志物,其已被证明可参与调节动脉粥样硬化的血管重塑,如调节内皮细胞(EC)、巨噬细胞、血管平滑肌细胞(VSMC)的存活以及增殖、分化,并可减轻炎症反应[25]。内皮细胞被层流激活后增加对脂蛋白的通透性,使其沉积在动脉壁中产生炎症反应,诱导单核细胞粘附于内皮细胞后,迁移至动脉内膜层分化成巨噬细胞,并吞噬脂蛋白(主要是氧化的低密度脂蛋白[ox-LDL])而形成泡沫细胞。ox-LDL可诱导巨噬细胞产生GDF15,而GDF15则又可抑制ox-LDL所诱导的同一细胞内的脂质沉积,从而减少动脉粥样硬化斑块进展的关键细胞——泡沫细胞的形成。此外,GDF15还可抑制巨噬细胞表达促炎细胞因子IL-1β、IL-6、单核细胞趋化蛋白-1 (MCP-1)和基质金属蛋白酶-9 (MMP-9),从而减轻血管壁的炎症反应[26]。因脂质代谢是动脉粥样硬化的关键过程,GDF15还可激活腺苷单磷酸活化蛋白激酶(AMPK)来介导过氧化物酶体增殖物激活受体β/δ (PPARβ/δ)的代谢作用,其中,PPARβ/δ是脂质代谢的关键调节因子[27]。这些研究结果表明GDF15在动脉粥样硬化斑块的形成和进展中具有重要的病理生理作用,不仅可作为动脉粥样硬化患者的临床诊断标志物[25],心血管事件和死亡率的预测指标[22],还可能在动脉粥样硬化中具有保护作用[28]。但也有一些研究表明,GDF15还可能通过促进心肌纤维化和内皮功能障碍促动脉粥样硬化[29]

3.2. GDF15与心肌梗死和缺血/再灌注

心肌梗死(MI)通常是由冠状动脉的血栓性闭塞引起的,如果长期闭塞会导致心肌细胞损伤,受损的心肌细胞将各种蛋白质和激素释放到血液循环中,这些标志物的水平升高可以作为心肌损伤的证明,支持诊断并反映心肌损伤的严重程度,并有助于评估预后。目前,研究发现了许多与心肌损伤相关的生物标志物,如利钠肽(BNP)、胱抑素C和生长分化因子15 (GDF15)。其中,GDF15是最近新发现的一种生物标志物,可以预测冠状动脉疾病患者的心血管疾病事件和死亡率[30]。急性心肌梗死(AMI)患者的主要治疗目标是进行冠状动脉再灌注,但尽管再灌注对于心肌挽救至关重要,它最初却可能会加重缺血期造成的细胞损伤,这种现象称为缺血/再灌注损伤[31]。Kempf等人发现,GDF15可在小鼠和人类的梗死心脏中被诱导表达增加,与心肌缺血/再灌注损伤模型的野生型小鼠相比,GDF15基因缺陷小鼠的心肌细胞凋亡增加,心肌梗死区域面积变大,而外源性补充重组GDF15则可通过激活磷酸肌醇3-OH激酶(PI3K)和Akt依赖性信号通路发挥抗凋亡的作用从而保护心脏免受缺血再灌注(I/R)损伤,发挥心脏保护作用[22] [31] [32]。此外,在梗死的心脏中,GDF15还可通过干扰趋化因子触发的白细胞整合素激活从而抑制病变组织中的白细胞募集发挥抗炎作用,降低心脏破裂的发生率[15] [33]

3.3. GDF15与心肌肥大和扩张型心肌病

心肌肥大主要表现为心肌细胞在出生后的发育过程中因各种生理刺激(如妊娠、运动等)以及病理刺激(如高血压、主动脉瓣狭窄、二尖瓣关闭不全、感染等)体积增加[34]。心肌的病理性肥大是心律失常、扩张型心肌病以及心力衰竭的主要预测因素[13]。扩张型心肌病(DCM)是指左心室扩张和收缩功能障碍,其病因包括心肌炎、酒精、药物和毒素暴露,以及代谢和内分泌紊乱,患病率约为40例/每10万人,是心力衰竭最常见的原因之一。其检查方法包括心电图、超声心动图、胸片、心脏MRI以及生物标志物。其中,临床上最常见的生物标志物是B型利钠肽(BNP)和N末端B型利钠肽前体(NT-proBNP),这些指标与心力衰竭的严重程度呈正相关,当BNP浓度大于300 pg/mL时,心力衰竭导致的死亡、移植或住院风险增加[35]。大量研究发现,GDF15在心脏肥大时增加。Hauser等人关于25例扩张型心肌病患者的研究表明,GDF15与扩张型心肌病患者的左心室射血分数(LVEF)显著相关[36]。Kou等人的研究表明,左心室肥厚患者的GDF15比健康对照组升高[37]。同样,Xue等人发现,合并左心室肥厚的高血压患者血清GDF15水平相较于不伴左心室肥厚的高血压患者明显升高,且GDF15水平与疾病严重程度呈正相关[38]。表明GDF15可能是扩张型心肌病诊断的新型生物标志物。

然而,GDF15在动物模型中被鉴定为心脏保护性细胞因子,心脏中的抗肥大调节因子[39]。Xu等人的研究表明,与野生型小鼠相比,心脏特异性过表达GDF15的转基因小鼠在压力超负荷刺激后肥大较轻。相反,靶向敲除GDF15基因的小鼠心脏肥大加重,很快出现心室功能受损,进一步表明GDF15可能拮抗心力衰竭的发作或严重程度,表明GDF15是一种参与心脏肥大过程的心脏保护性细胞因子。GDF15作为一种自分泌/旁分泌因子,通过SMAD和激酶PI3K和ERK信号通路产生抗肥大的心脏保护作用[13]。因此,可以推测 GDF15可能是一种反调节肥大的内源性保护机制。同样,另一项研究也表明,去甲肾上腺素(NE)诱导心肌肥大可上调GDF15的表达,而上调的GDF15又可通过抑制NE刺激后表皮生长因子受体(EGFR)的反式激活负向调节NE诱导的心肌肥大[40]

3.4. GDF15与心力衰竭

心力衰竭(HF)是由各种原因引起的心肌收缩功能障碍,是大多数心血管疾病如高血压、主动脉瓣狭窄、瓣膜关闭不全、心律失常和心肌梗死的终末期综合征。这些疾病会使心脏压力增加,而为了应对这一压力并维持心脏功能,心脏就会发生形态、结构和功能方面的变化,即心脏重塑,表现为成纤维细胞和肌成纤维细胞的细胞外基质产生过多(纤维化)、心肌细胞体积增大(肥大)以及免疫细胞浸润。最初,这些改变可以被认为是有益的代偿机制,但随着压力的持续存在,以及持续的心脏纤维化导致心肌壁变硬,从而影响心脏的舒张和收缩,这一重塑机制最终会演变成病理性并降低心脏功能,转变为失代偿性,最终导致心力衰竭。其特征是心功能下降,导致心输出量不足,无法满足外周组织的代谢需求;其次,液体在肺和其他组织中积聚,导致呼吸困难、外周水肿和疲劳[23] [41]。心力衰竭是全球的主要公共卫生问题,在发达国家,其患病率约为成年人的1%~2%,在年龄 > 70岁的人群中≥10%。心力衰竭与死亡率和住院率增加有关,尽管其治疗近年来取得了进展,但该疾病的总体预后仍然很差,5年死亡率超过50% [42] [43]。超声心动图因其准确性、便捷性、安全性和低成本成为疑似HF患者的首选检查方法[43]。此外,生物标志物在HF的早期诊断以及预后评估和治疗反应监测方面起着重要作用,目前已知的生物标志物,如B型利钠肽(BNP)、N末端B型利钠肽前体(NT-proBNP)和高敏心肌肌钙蛋白(hs-cTn)已被列入欧洲心脏病学会(ESC)和美国心脏病学会/美国心脏协会(ACC/AHA)的指南中。然而,关于HF生物标志物的相关研究大多数报告了它们的诊断和预后价值,而不一定能够用于治疗[44] [45]

目前,利钠肽是诊断和预后最常用的生物标志物,此外,外源性施用BNP (奈西立肽)还是治疗失代偿性慢性HF的有效方法[46],但是其在治疗监测中的作用仍存在争议[28]。在心力衰竭中,HF患者的循环GDF15水平升高,作为心力衰竭的一种新型生物标志物,其诊断准确性不亚于NT-proBNP,两种标志物结合可以提高诊断精确度,且可预测不良结局,HF患者的GDF15血浆浓度与其全因死亡率独立相关[39]。在一项关于455例慢性HF患者的队列研究中,Kempf等人证明GDF15的水平与疾病的严重程度密切相关(通过NYHA功能分级和NT-proBNP水平进行衡量),并且与疾病的预后独立相关[47]。对GDF15基因靶向小鼠的研究表明,GDF15可促进心脏的抗凋亡、抗肥大和抗重塑作用。

3.5. GDF15与腹主动脉瘤

腹主动脉瘤(AAA)是动脉的一种慢性退行性病变,其主要特征为腹主动脉永久性、不可逆的局部扩张,表现为直径 ≥ 3 cm或超过正常血管直径的50%。AAA最常见于肾下腹主动脉,常隐匿起病,可能在破裂前都是没有临床症状的,大多数是在腹部检查时意外发现[48],但一旦破裂其死亡率可高达80% [49] [50]。其危险因素主要包括吸烟、高龄和男性。目前,AAA的诊断主要涉及主动脉直径的监测,如主动脉CTA和主动脉造影。目前临床上针对极度扩张(直径 ≥ 5.5 cm)或有明显症状的AAA通常采用外科手术进行治疗,主要包括传统的开放手术(OSR)和腔内修复术(EVAR) [51],但对于较小的、无明显症状的AAA仍无有效药物治疗。因此,探索 AAA 形成和进展的病理生理机制可能是抑制AAA进展或破裂的新目标。

AAA的主要病理特征包括慢性炎症、细胞外基质降解和平滑肌细胞凋亡等。目前研究认为,炎症反应在AAA进程中起着至关重要的作用,并显著影响主动脉壁重塑的许多决定因素[52]。局部炎症细胞浸润、炎症因子表达,一方面可促使平滑肌细胞(SMC)凋亡,另一方面又可诱导蛋白水解酶如基质金属蛋白酶(MMPs)表达导致细胞外基质(ECM,如弹性蛋白、胶原蛋白等)的降解,最终使血管壁重构、动脉瘤形成。其中,巨噬细胞作为AAA炎症反应的关键参与者,在不同的病理生理条件下分化为两个不同的亚群,即经典活化巨噬细胞(M1型)和选择活化巨噬细胞(M2型) [53]。M1型巨噬细胞通常被认为是促炎的,其特征在于产生蛋白水解酶和高水平的促炎细胞因子,如白细胞介素-1β (IL-1β)、IL-6、TNF-α和诱导型一氧化氮合酶(iNOS),在主动脉瘤的发病机制中起着关键作用;而M2型巨噬细胞则通过分泌IL-10或转化生长因子-β (TGF-β)等因子具有抗炎作用和促再生功能,从而参与ECM重塑、血管生成和组织修复[54] [55]。Juvonen等人发现人类AAA病变组织和动物模型中M1型巨噬细胞(促炎表型)明显增多[56] [57],而研究表明M1型巨噬细胞增多,M1/M2比例上调会加重AAA病变,M2型巨噬细胞(抗炎、修复表型)增多,M1/M2比例下调则减轻AAA病变[58] [59],因此,促进巨噬细胞向M2型极化,可以减少ECM降解、促进组织再生修复、减轻血管扩张,从而减轻AAA病变。然而,尽管人们普遍认识到动脉瘤是一种炎症相关的疾病且可通过介导巨噬细胞极化来调节其形成,但在AAA中调节巨噬细胞极化的机制尚未得到充分阐明。

最近研究发现,与正常对照组相比,腹主动脉瘤患者的瘤体组织及血清中GDF15的表达水平均显著升高[60],可作为AAA新的生物标志物并具有潜在的诊断价值。人类和小鼠研究表明,GDF15可因二甲双胍治疗而升高,二甲双胍直接作用于调节GDF15表达的启动子,因此,GDF15已被提议作为二甲双胍使用的生物标志物[61] [62]。作为世界上最常用的口服降糖药,流行病学研究指出,二甲双胍与AAA的形成和进展呈负相关[63]-[65]。这种关系值得注意,因为二甲双胍对AAA的这种有益作用可能是由于二甲双胍诱导了有益内分泌因子的表达,其中GDF15的增加幅度高于任何其他蛋白质[61]。在糖尿病患者中,二甲双胍的治疗可使GDF15水平升高40% [11] [66] [67],升高的GDF15可能部分解释了二甲双胍的心血管保护作用[61] [68]。基于GDF15本身的生物学特性以及已有的研究结果,对于AAA患者瘤体组织及血清中升高的GDF15更倾向于是机体对应激损伤的一种代偿性保护机制,可能是机体防止AAA扩张和破裂的代偿作用引起的,通过抗炎、抗凋亡、抑制基质降解等作用阻止AAA的进一步发展。在脂肪组织中,GDF15通过激活TGF-βR/SMAD2/3通路可上调巨噬细胞的氧化功能,导致M2型极化,改善脂肪炎症[14];在脓毒症中,GDF15也可通过抑制巨噬细胞M1型极化、促进巨噬细胞向M2型极化发挥抗炎作用[69]。这表明GDF15可能是调控巨噬细胞极化的关键因子,巨噬细胞极化在腹主动脉瘤形成与进展中的作用可能部分由GDF15介导。这些研究进一步表明,GDF15可能部分介导二甲双胍保护AAA的作用[61] [68],即二甲双胍可能是通过上调GDF15的表达调控巨噬细胞极化从而保护AAA的,此关键问题仍需进一步的基础研究进行探索说明。

4. 总结与展望

通过研究GDF15与心血管疾病的关系,发现GDF15作为新兴心血管疾病生物标志物,与健康患者相比,动脉粥样硬化、心肌梗死、心脏肥大和心力衰竭等患者水平较高,与这些心血管疾病的诊断和严重程度密切相关,广泛参与心血管疾病的发生和发展,表明GDF15可能最终在临床实践中发挥诊断心血管疾病、监测心血管风险和指导预防策略的作用。在治疗方面,GDF15作为公认的心脏保护因子以及其具有的潜在抗炎作用,可以起到抗氧化、抗炎、抗凋亡、改善心室重塑和心功能、保护心脏的作用,大多数基础研究都表明了GDF15在心血管疾病方面的有益作用,但也有一些研究表示GDF15会加重心血管疾病的进展,因此,其治疗作用仍有待进一步研究。综上所述,GDF15在心血管疾病诊断和预后检测中的应用前景广阔,但其治疗价值仍需要进一步深入探索。相信随着科学研究的不断发展,GDF15有望发展成为心血管疾病诊治领域的新靶点和新方法。

NOTES

*通讯作者。

参考文献

[1] Widmer, R.J., Flammer, A.J., Lerman, L.O. and Lerman, A. (2015) The Mediterranean Diet, Its Components, and Cardiovascular Disease. The American Journal of Medicine, 128, 229-238.
https://doi.org/10.1016/j.amjmed.2014.10.014
[2] Nyárády, B.B., Kiss, L.Z., Bagyura, Z., Merkely, B., Dósa, E., Láng, O., et al. (2024) Growth and Differentiation Factor-15: A Link between Inflammaging and Cardiovascular Disease. Biomedicine & Pharmacotherapy, 174, Article ID: 116475.
https://doi.org/10.1016/j.biopha.2024.116475
[3] Eddy, A.C. and Trask, A.J. (2021) Growth Differentiation Factor-15 and Its Role in Diabetes and Cardiovascular Disease. Cytokine & Growth Factor Reviews, 57, 11-18.
https://doi.org/10.1016/j.cytogfr.2020.11.002
[4] Smith, S.C. (2011) Reducing the Global Burden of Ischemic Heart Disease and Stroke: A Challenge for the Cardiovascular Community and the United Nations. Circulation, 124, 278-279.
https://doi.org/10.1161/circulationaha.111.040170
[5] Teo, K.K. and Rafiq, T. (2021) Cardiovascular Risk Factors and Prevention: A Perspective from Developing Countries. Canadian Journal of Cardiology, 37, 733-743.
https://doi.org/10.1016/j.cjca.2021.02.009
[6] Nyárády, B.B., Kiss, L.Z., Bagyura, Z., Merkely, B., Dósa, E., Láng, O., et al. (2024) Growth and Differentiation Factor-15: A Link between Inflammaging and Cardiovascular Disease. Biomedicine & Pharmacotherapy, 174, Article ID: 116475.
https://doi.org/10.1016/j.biopha.2024.116475
[7] Rohatgi, A., Patel, P., Das, S.R., Ayers, C.R., Khera, A., Martinez-Rumayor, A., et al. (2012) Association of Growth Differentiation Factor-15 with Coronary Atherosclerosis and Mortality in a Young, Multiethnic Population: Observations from the Dallas Heart Study. Clinical Chemistry, 58, 172-182.
https://doi.org/10.1373/clinchem.2011.171926
[8] May, B.M., Pimentel, M., Zimerman, L.I. and Rohde, L.E. (2021) GDF-15 como Biomarcador em Doenças Cardiovasculares. Arquivos Brasileiros de Cardiologia, 116, 494-500.
https://doi.org/10.36660/abc.20200426
[9] Corre, J., Hébraud, B. and Bourin, P. (2013) Concise Review: Growth Differentiation Factor 15 in Pathology: A Clinical Role? Stem Cells Translational Medicine, 2, 946-952.
https://doi.org/10.5966/sctm.2013-0055
[10] Rochette, L., Dogon, G., Zeller, M., Cottin, Y. and Vergely, C. (2021) GDF15 and Cardiac Cells: Current Concepts and New Insights. International Journal of Molecular Sciences, 22, Article 8889.
https://doi.org/10.3390/ijms22168889
[11] Gerstein, H.C., Pare, G., Hess, S., Ford, R.J., Sjaarda, J., Raman, K., et al. (2016) Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care, 40, 280-283.
https://doi.org/10.2337/dc16-1682
[12] Adela, R. and Banerjee, S.K. (2015) GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. Journal of Diabetes Research, 2015, Article ID: 490842.
https://doi.org/10.1155/2015/490842
[13] Xu, J., Kimball, T.R., Lorenz, J.N., Brown, D.A., Bauskin, A.R., Klevitsky, R., et al. (2006) GDF15/MIC-1 Functions as a Protective and Antihypertrophic Factor Released from the Myocardium in Association with SMAD Protein Activation. Circulation Research, 98, 342-350.
https://doi.org/10.1161/01.res.0000202804.84885.d0
[14] Jung, S., Choi, M.J., Ryu, D., Yi, H., Lee, S.E., Chang, J.Y., et al. (2018) Reduced Oxidative Capacity in Macrophages Results in Systemic Insulin Resistance. Nature Communications, 9, Article No. 1551.
https://doi.org/10.1038/s41467-018-03998-z
[15] Artz, A., Butz, S. and Vestweber, D. (2016) GDF-15 Inhibits Integrin Activation and Mouse Neutrophil Recruitment through the Alk-5/TGF-βRII Heterodimer. Blood, 128, 529-541.
https://doi.org/10.1182/blood-2016-01-696617
[16] Hu, H., Chen, D., Wang, Y., Feng, Y., Cao, G., Vaziri, N.D., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83.
https://doi.org/10.1016/j.cbi.2018.07.008
[17] Kim, K.H., Han, J.W., Jung, S., Park, B., Han, C.W. and Joo, M. (2017) Kaurenoic Acid Activates TGF-β Signaling. Phytomedicine, 32, 8-14.
https://doi.org/10.1016/j.phymed.2017.04.008
[18] Park, S., Cho, H., Jeong, Y., Shin, J., Kang, J., Park, K., et al. (2014) Melittin Inhibits TGF-β-Induced Pro-Fibrotic Gene Expression through the Suppression of the TGFβRII-Smad, ERK1/2 and JNK-Mediated Signaling Pathway. The American Journal of Chinese Medicine, 42, 1139-1152.
https://doi.org/10.1142/s0192415x14500712
[19] Zhu, X., Lu, J., Rao, J., Ru, D., Gao, M., Shi, D., et al. (2023) Crosstalk between Interleukin-1 Receptor-Like 1 and Transforming Growth Factor-β Receptor Signaling Promotes Renal Fibrosis. The American Journal of Pathology, 193, 1029-1045.
https://doi.org/10.1016/j.ajpath.2023.05.002
[20] Strowitzki, M.J., Ritter, A.S., Kimmer, G. and Schneider, M. (2019) Hypoxia-Adaptive Pathways: A Pharmacological Target in Fibrotic Disease? Pharmacological Research, 147, Article ID: 104364.
https://doi.org/10.1016/j.phrs.2019.104364
[21] Watson, W.H., Ritzenthaler, J.D. and Roman, J. (2016) Lung Extracellular Matrix and Redox Regulation. Redox Biology, 8, 305-315.
https://doi.org/10.1016/j.redox.2016.02.005
[22] Wang, J., Wei, L., Yang, X. and Zhong, J. (2019) Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. Journal of the American Heart Association, 8, e012826.
https://doi.org/10.1161/jaha.119.012826
[23] Zheng, D., Huo, M., Li, B., Wang, W., Piao, H., Wang, Y., et al. (2021) The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 8, Article 616161.
https://doi.org/10.3389/fcell.2020.616161
[24] Pirillo, A., Norata, G.D. and Catapano, A.L. (2013) LOX-1, OxLDL, and Atherosclerosis. Mediators of Inflammation, 2013, Article ID: 152786.
https://doi.org/10.1155/2013/152786
[25] Liuizė (Abramavičiūtė), A. and Mongirdienė, A. (2024) TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. International Journal of Molecular Sciences, 25, Article 2104.
https://doi.org/10.3390/ijms25042104
[26] Huang, H., Chen, Z., Li, Y., Gong, K., Xiao, L., Fu, H., et al. (2021) GDF-15 Suppresses Atherosclerosis by Inhibiting OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6497568.
https://doi.org/10.1155/2021/6497568
[27] Aguilar-Recarte, D., Barroso, E., Gumà, A., Pizarro-Delgado, J., Peña, L., Ruart, M., et al. (2021) GDF15 Mediates the Metabolic Effects of PPARβ/δ by activating AMPK. Cell Reports, 36, Article ID: 109501.
https://doi.org/10.1016/j.celrep.2021.109501
[28] Sawalha, K., Norgard, N.B., Drees, B.M. and López-Candales, A. (2023) Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Current Heart Failure Reports, 20, 287-299.
https://doi.org/10.1007/s11897-023-00610-4
[29] Echouffo-Tcheugui, J.B., Daya, N., Ndumele, C.E., Matsushita, K., Hoogeveen, R.C., Ballantyne, C.M., et al. (2022) Diabetes, GDF-15 and Incident Heart Failure: The Atherosclerosis Risk in Communities Study. Diabetologia, 65, 955-963.
https://doi.org/10.1007/s00125-022-05678-6
[30] Rathnayake, N., Buhlin, K., Kjellström, B., Klinge, B., Löwbeer, C., Norhammar, A., et al. (2017) Saliva and Plasma Levels of Cardiac‐Related Biomarkers in Post‐myocardial Infarction Patients. Journal of Clinical Periodontology, 44, 692-699.
https://doi.org/10.1111/jcpe.12740
[31] Kempf, T., Eden, M., Strelau, J., Naguib, M., Willenbockel, C., Tongers, J., et al. (2006) The Transforming Growth Factor-Β Superfamily Member Growth-Differentiation Factor-15 Protects the Heart from Ischemia/Reperfusion Injury. Circulation Research, 98, 351-360.
https://doi.org/10.1161/01.res.0000202805.73038.48
[32] Unsicker, K., Spittau, B. and Krieglstein, K. (2013) The Multiple Facets of the TGF-β Family Cytokine Growth/Differentiation Factor-15/Macrophage Inhibitory Cytokine-1. Cytokine & Growth Factor Reviews, 24, 373-384.
https://doi.org/10.1016/j.cytogfr.2013.05.003
[33] Kempf, T., Zarbock, A., Widera, C., Butz, S., Stadtmann, A., Rossaint, J., et al. (2011) GDF-15 Is an Inhibitor of Leukocyte Integrin Activation Required for Survival after Myocardial Infarction in Mice. Nature Medicine, 17, 581-588.
https://doi.org/10.1038/nm.2354
[34] Lorell, B.H. and Carabello, B.A. (2000) Left Ventricular Hypertrophy. Circulation, 102, 470-479.
https://doi.org/10.1161/01.cir.102.4.470
[35] Weintraub, R.G., Semsarian, C. and Macdonald, P. (2017) Dilated Cardiomyopathy. The Lancet, 390, 400-414.
https://doi.org/10.1016/s0140-6736(16)31713-5
[36] Hauser, J.A., Demyanets, S., Rusai, K., Goritschan, C., Weber, M., Panesar, D., et al. (2016) Diagnostic Performance and Reference Values of Novel Biomarkers of Paediatric Heart Failure. Heart, 102, 1633-1639.
https://doi.org/10.1136/heartjnl-2016-309460
[37] Kou, H., Jin, X., Gao, D., Ma, R., Dong, X., Wei, J., et al. (2017) Association between Growth Differentiation Factor 15 and Left Ventricular Hypertrophy in Hypertensive Patients and Healthy Adults. Clinical and Experimental Hypertension, 40, 8-15.
https://doi.org/10.1080/10641963.2016.1273948
[38] Xue, H., Fu, Z., Chen, Y., Xing, Y., Liu, J., Zhu, H., et al. (2012) The Association of Growth Differentiation Factor-15 with Left Ventricular Hypertrophy in Hypertensive Patients. PLOS ONE, 7, e46534.
https://doi.org/10.1371/journal.pone.0046534
[39] Stahrenberg, R., Edelmann, F., Mende, M., Kockskämper, A., Düngen, H., Lüers, C., et al. (2010) The Novel Biomarker Growth Differentiation Factor 15 in Heart Failure with Normal Ejection Fraction. European Journal of Heart Failure, 12, 1309-1316.
https://doi.org/10.1093/eurjhf/hfq151
[40] Xu, X., Nie, Y., Wang, F., Bai, Y., Lv, Z., Zhang, Y., et al. (2014) Growth Differentiation Factor (GDF)-15 Blocks Norepinephrine-Induced Myocardial Hypertrophy via a Novel Pathway Involving Inhibition of Epidermal Growth Factor Receptor Transactivation. Journal of Biological Chemistry, 289, 10084-10094.
https://doi.org/10.1074/jbc.m113.516278
[41] Piek, A., Du, W., de Boer, R.A. and Silljé, H.H.W. (2018) Novel Heart Failure Biomarkers: Why Do We Fail to Exploit Their Potential? Critical Reviews in Clinical Laboratory Sciences, 55, 246-263.
https://doi.org/10.1080/10408363.2018.1460576
[42] Sharma, A., Stevens, S.R., Lucas, J., Fiuzat, M., Adams, K.F., Whellan, D.J., et al. (2017) Utility of Growth Differentiation Factor-15, a Marker of Oxidative Stress and Inflammation, in Chronic Heart Failure: Insights from the HF-ACTION Study. JACC: Heart Failure, 5, 724-734.
https://doi.org/10.1016/j.jchf.2017.07.013
[43] Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 37, 2129-2200.
https://doi.org/10.1093/eurheartj/ehw128
[44] Meijers, W.C., Bayes‐Genis, A., Mebazaa, A., Bauersachs, J., Cleland, J.G.F., Coats, A.J.S., et al. (2021) Circulating Heart Failure Biomarkers Beyond Natriuretic Peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). European Journal of Heart Failure, 23, 1610-1632.
https://doi.org/10.1002/ejhf.2346
[45] Santhanakrishnan, R., Chong, J.P.C., Ng, T.P., Ling, L.H., Sim, D., Toh G. Leong, K., et al. (2012) Growth Differentiation Factor 15, ST2, High‐Sensitivity Troponin T, and N‐Terminal Pro Brain Natriuretic Peptide in Heart Failure with Preserved vs. Reduced Ejection Fraction. European Journal of Heart Failure, 14, 1338-1347.
https://doi.org/10.1093/eurjhf/hfs130
[46] Maisel, A. (2007) Biomarkers in Heart Failure. Does Prognostic Utility Translate to Clinical Futility? Journal of the American College of Cardiology, 50, 1061-1063.
https://doi.org/10.1016/j.jacc.2007.05.032
[47] Kempf, T., von Haehling, S., Peter, T., Allhoff, T., Cicoira, M., Doehner, W., et al. (2007) Prognostic Utility of Growth Differentiation Factor-15 in Patients with Chronic Heart Failure. Journal of the American College of Cardiology, 50, 1054-1060.
https://doi.org/10.1016/j.jacc.2007.04.091
[48] Ye, B., Fan, X., Fang, Z., Mao, C., Lin, L., Wu, J., et al. (2024) Macrophage-Derived GSDMD Promotes Abdominal Aortic Aneurysm and Aortic Smooth Muscle Cells Pyroptosis. International Immunopharmacology, 128, Article ID: 111554.
https://doi.org/10.1016/j.intimp.2024.111554
[49] Nordon, I.M., Hinchliffe, R.J., Loftus, I.M. and Thompson, M.M. (2010) Pathophysiology and Epidemiology of Abdominal Aortic Aneurysms. Nature Reviews Cardiology, 8, 92-102.
https://doi.org/10.1038/nrcardio.2010.180
[50] Wang, K., Zhou, Z., Huang, L., Kan, Q., Wang, Z., Wu, W., et al. (2024) PINK1 Dominated Mitochondria Associated Genes Signature Predicts Abdominal Aortic Aneurysm with Metabolic Syndrome. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1870, Article ID: 166919.
https://doi.org/10.1016/j.bbadis.2023.166919
[51] Golledge, J. (2018) Abdominal Aortic Aneurysm: Update on Pathogenesis and Medical Treatments. Nature Reviews Cardiology, 16, 225-242.
https://doi.org/10.1038/s41569-018-0114-9
[52] Yuan, Z., Lu, Y., Wei, J., Wu, J., Yang, J. and Cai, Z. (2021) Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Frontiers in Immunology, 11, Article 609161.
https://doi.org/10.3389/fimmu.2020.609161
[53] Song, H., Yang, Y., Sun, Y., Wei, G., Zheng, H., Chen, Y., et al. (2022) Circular RNA Cdyl Promotes Abdominal Aortic Aneurysm Formation by Inducing M1 Macrophage Polarization and M1-Type Inflammation. Molecular Therapy, 30, 915-931.
https://doi.org/10.1016/j.ymthe.2021.09.017
[54] Raffort, J., Lareyre, F., Clément, M., Hassen-Khodja, R., Chinetti, G. and Mallat, Z. (2017) Monocytes and Macrophages in Abdominal Aortic Aneurysm. Nature Reviews Cardiology, 14, 457-471.
https://doi.org/10.1038/nrcardio.2017.52
[55] Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J.L., Cerletti, M., Jang, Y., et al. (2013) A Special Population of Regulatory T Cells Potentiates Muscle Repair. Cell, 155, 1282-1295.
https://doi.org/10.1016/j.cell.2013.10.054
[56] Juvonen, J., Surcel, H., Satta, J., Teppo, A., Bloigu, A., Syrjälä, H., et al. (1997) Elevated Circulating Levels of Inflammatory Cytokines in Patients with Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2843-2847.
https://doi.org/10.1161/01.atv.17.11.2843
[57] Cai, D., Sun, C., Murashita, T., Que, X. and Chen, S. (2023) ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circulation Research, 132, e78-e93.
https://doi.org/10.1161/circresaha.122.321722
[58] Qin, Z., Bagley, J., Sukhova, G., Baur, W.E., Park, H., Beasley, D., et al. (2015) Angiotensin II-Induced TLR4 Mediated Abdominal Aortic Aneurysm in Apolipoprotein E Knockout Mice Is Dependent on STAT3. Journal of Molecular and Cellular Cardiology, 87, 160-170.
https://doi.org/10.1016/j.yjmcc.2015.08.014
[59] Dale, M.A., Xiong, W., Carson, J.S., Suh, M.K., Karpisek, A.D., Meisinger, T.M., et al. (2016) Elastin-derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization. The Journal of Immunology, 196, 4536-4543.
https://doi.org/10.4049/jimmunol.1502454
[60] Sánchez-Infantes, D., Nus, M., Navas-Madroñal, M., Fité, J., Pérez, B., Barros-Membrilla, A.J., et al. (2021) Oxidative Stress and Inflammatory Markers in Abdominal Aortic Aneurysm. Antioxidants, 10, Article 602.
https://doi.org/10.3390/antiox10040602
[61] Wang, D., Day, E.A., Townsend, L.K., Djordjevic, D., Jørgensen, S.B. and Steinberg, G.R. (2021) GDF15: Emerging Biology and Therapeutic Applications for Obesity and Cardiometabolic Disease. Nature Reviews Endocrinology, 17, 592-607.
https://doi.org/10.1038/s41574-021-00529-7
[62] Ferreira, J.P., Packer, M., Butler, J., Filippatos, G., Pocock, S.J., Januzzi, J.L., et al. (2023) Growth Differentiation Factor‐15 and the Effect of Empagliflozin in Heart Failure: Findings from the emperor Program. European Journal of Heart Failure, 26, 155-164.
https://doi.org/10.1002/ejhf.3078
[63] Itoga, N.K., Rothenberg, K.A., Suarez, P., Ho, T., Mell, M.W., Xu, B., et al. (2019) Metformin Prescription Status and Abdominal Aortic Aneurysm Disease Progression in the U.S. Veteran Population. Journal of Vascular Surgery, 69, 710-716.E3.
https://doi.org/10.1016/j.jvs.2018.06.194
[64] Raffort, J., Hassen-Khodja, R., Jean-Baptiste, E. and Lareyre, F. (2020) Relationship between Metformin and Abdominal Aortic Aneurysm. Journal of Vascular Surgery, 71, 1056-1062.
https://doi.org/10.1016/j.jvs.2019.08.270
[65] Hinchliffe, R.J. (2017) Metformin and Abdominal Aortic Aneurysm. European Journal of Vascular and Endovascular Surgery, 54, 679-680.
https://doi.org/10.1016/j.ejvs.2017.08.016
[66] Zhang, S., Danaei, Z., Bruce, K., Chiu, J.F.M. and Lam, T.K.T. (2023) Acute Activation of GFRAL in the Area Postrema Contributes to Glucose Regulation Independent of Weight. Diabetes, 73, 426-433.
https://doi.org/10.2337/db23-0705
[67] Kaneto, H., Kimura, T., Obata, A., Shimoda, M. and Kaku, K. (2021) Multifaceted Mechanisms of Action of Metformin Which Have Been Unraveled One after Another in the Long History. International Journal of Molecular Sciences, 22, Article 2596.
https://doi.org/10.3390/ijms22052596
[68] Natali, A., Nesti, L., Venturi, E., Shore, A.C., Khan, F., Gooding, K., et al. (2018) Metformin Is the Key Factor in Elevated Plasma Growth Differentiation Factor‐15 Levels in Type 2 Diabetes: A Nested, Case-Control Study. Diabetes, Obesity and Metabolism, 21, 412-416.
https://doi.org/10.1111/dom.13519
[69] Li, H., Tang, D., Chen, J., Hu, Y., Cai, X. and Zhang, P. (2021) The Clinical Value of GDF15 and Its Prospective Mechanism in Sepsis. Frontiers in Immunology, 12, Article 710977.
https://doi.org/10.3389/fimmu.2021.710977