触发ASD重复刻板行为的三大原因分析
Analysis of the Three Main Causes that Trigger the Repetitive Stereotyped Behavior in ASD
DOI: 10.12677/ap.2024.1411784, PDF, HTML, XML,   
作者: 陶朝阳, 邓伟科*, 朱晓敏:上海诺礼医药科技有限公司功能医学实验室,上海;苏 振:上海医佰康康复科技有限公司,上海
关键词: ASD、突触修剪、重复刻板行为、皮层下中枢、因果分析ASD Synaptic Pruning Repetitive Stereotyped Behavior Subcortical Center Causal Analysis
摘要: ASD儿童具有高度异质性,各种症状的明确定义及机理尚未得到完全解析,以至于主次矛盾不突出、研究方向不明晰。文章以19世纪60年代罗马尼亚孤儿院案例开始,分析刺激不足对突触修剪的影响,并进一步把刺激分类为外源性和内源性两种,最终得到皮层下中枢“熵增”的三大原因:发育不良、功能紊乱和器质性病变,解析了ASD核心症状之一重复刻板行为异质性的原因。
Abstract: Children with ASD are highly heterogeneous, and the clear definition and mechanism of various symptoms have not been fully resolved, so that the primary and secondary contradictions are not prominent, and the research direction is also not clear. This paper starts with the case of the Romania orphanage in the 1960s, analyzes the effect of insufficient stimulation on synaptic pruning, further classifies the stimulation into exogenous and endogenous two, and finally obtains the three major causes of “entropy increase” in the subcortical center: dysplasia, dysfunction and organic lesions, and analyzes the reasons for the heterogeneity of the repetitive stereotyped behavior.
文章引用:陶朝阳, 苏振, 邓伟科, 朱晓敏 (2024). 触发ASD重复刻板行为的三大原因分析. 心理学进展, 14(11), 214-220. https://doi.org/10.12677/ap.2024.1411784

1. 引言

1966年,罗马尼亚为促进国家的人口增长,颁布了反堕胎法。法案实施的23年时间中,罗马尼亚的生育率一度从1.9飙升到3.6,比以往多出生了200万个婴儿,同时由于各种原因,近17万婴幼儿被遗弃。这些生命早期的儿童被收容到约200所官方福利机构,由于人手和资源限制,幼儿与“照顾者”的比例约为15:1,幼儿被“产品流水线”看护。“照顾者”用机械呆板、无情绪、无交流的方式为“孤儿们”提供服务,孩子们每天与人接触的时间,只有匆忙的几分钟的喂食和换尿布时间。其他时间里,他们就躺在自己的小床上,安静地盯着天花板或墙面。

一直到1989年,齐奥塞斯库(Nicolai Ceausescu)政权垮台后,外界才终于发现了这些名为“孤儿院”的残忍机构,但是“孤儿们”大范围地出现生理和心理方面的障碍。Charles团队(Nelson et al., 2007; Nelson et al., 2009; Nelson, 2010)发现这些机构养育的孩子智商(IQ)只有74分,处于正常智商区间(70~130分)的下限,而正常家庭的儿童是109分,孤儿院的孩子比正常家庭孩子落后36分。“孤儿们”较为普遍的特征是:不仅智力低下,而且情感发育不良。他们不会和人交流,无法形成对视和对话,独自坐在角落,不停地前后摇晃或不断重复某种刻板行为。

相似的案例是威斯康星大学的哈里·哈洛在1950年代进行的“恒河猴实验”(Harlow, 1958),该研究表明,在没有母亲的情况下抚养的幼猴会遭受严重的神经发育障碍。这种神经发育障碍的典型特征是社交沟通障碍、重复刻板行为,符合《精神障碍诊断与统计手册》(DSM-5, https://www.psychiatry.org/dsm5)第五版的孤独症谱系障碍(Autism Spectrum Disorder,以下简称ASD)症状表现。

“罗马尼亚孤儿院”及“恒河猴实验”的共同触发因素可以总结为“感觉剥夺”事件,包括“触觉剥夺”和“社交剥夺”。案例中的“触觉剥夺”只是感觉中的一个类别,合并如视觉、听觉、嗅觉等其他感觉的剥夺,广义定义为感官刺激缺失。然而,案例中对“罗马尼亚孤儿”的冷落,以及对“恒河猴”的单独隔离,属于心理层面的社交信息剥夺,合并如自幼父母过分保护或自幼生活环境过分孤立等与人群隔离,广义定义为社交刺激缺失。

传统的研究普遍认为,ASD起源于大脑而不是行为,这是一种微妙但重要的区别。梭形面部区域的发育不全在“脑中心论”里,归因于非语言电路发育不全;但“行为中心论”观点认为梭形面部区域的发育不全继发于缺乏眼神交流,如上文阐述的社交刺激缺失。本综述从“感觉剥夺”引起的刺激不足角度解释ASD发病机理,是传统大脑机制研究的有效补充。

2. ASD的核心问题不是大脑结构性病变,是感觉运动连接异常

我们注意到DSM-5新增了“对感觉刺激反应过度或反应低下”作为ASD诊断的一个标准,这部分新增的内容对应的术语是感觉处理障碍。感觉处理是一个较为宽泛的概念,包括对传入感觉刺激的接收、调节、整合和组织,以及对感觉信息的行为反应(Miller & Lane, 2000)。高达95%的ASD病例触觉反应超敏(Baker et al., 2008; Brandwein et al., 2015; Kern et al., 2007),高功能ASD儿童的压力和机械敏感性增加(Duerden et al., 2015),ASD青少年热敏感性降低(Kern et al., 2007)。并且,多达44%的ASD患者会做出自残行为(Baranek et al., 2010),例如撞头、拉扯头发、抠皮肤和抓挠。事实证明,对感觉处理障碍的过往研究,没有发现ASD具有脑瘫等疾病的脑部生理结构性规模病变,更多的结果指向神经递质、突触连接等感觉运动连接的异常。

ASD的神经解剖和表型研究存在异质性,ASD丘脑、苍白球和纹状体的神经影像学研究产生了不一致和矛盾的结果。与正常发育的个体相比,ASD个体的丘脑体积更大(Lin et al., 2015),体积更小(Sussman et al., 2016; Gráinne et al., 2008; Tsatsanis et al., 2003),并且没有显著差异(Schuetze et al., 2016; Turner et al., 2016; Estes et al., 2011; Zhang et al., 2018; Haar et al., 2014)。同样,据报道纹状体更大(Turner et al., 2016; Hollander et al., 2005; Langen et al., 2007),体积更小(Gráinne et al., 2008; van Rooij et al., 2018),并且没有显著差异(Sussman et al., 2016; Schuetze et al., 2016; Estes et al., 2011; Zhang et al., 2018; Haar et al., 2014)。苍白球的发现也各不相同(Sussman et al., 2016; Gráinne et al., 2008; Schuetze et al., 2016; Turner et al., 2016; Estes et al., 2011; Zhang et al., 2018; Haar et al., 2014; van Rooij et al., 2018)。但是一项大样本(n = 3145)研究证明(MacDonald et al., 2023):与正常对照组相比,ASD的丘脑、苍白球和纹状体没有体积差异,仅发现了几个表面积和凸度改变的区域。

Minshew和Williams总结了4条ASD的感觉运动连接特征(Minshew et al., 2007):① 基本信息获取能力完好无损;② 受损能力共同依赖于对处理信息或集成的高要求;③ 完整能力共同依赖低信息处理需求;④ 在领域内和跨领域,技能或能力受到的影响与信息整合的需求成正比。简单理解为:无论严重程度如何,ASD的共同主题是感觉运动连接发育障碍。高功能ASD个体的神经元组织事件存在发育障碍,局部回路保留或过度发育,皮质系统内部和皮层系统之间的连接发育不足。在低功能自闭症个体中,初级感觉皮层和关联皮层之间的功能联系没有得到较好的发展。

一项关于ASD从童年到中年的姿势控制的大型研究强化了这一结论,该研究揭示了姿势控制的成熟开始延迟,未能达到成人的功能水平(Minshew et al., 2004)。姿势不稳是多模式感觉统合(视觉、前庭和位置觉)能力降低的结果。

对皮层的研究也证实ASD的感觉运动连接存在发育障碍。对ASD儿童的尸检报告分析显示,与典型发育对照组相比,额叶、颞叶和顶叶的突触密度增加,表明ASD儿童的修剪不足(Tang et al., 2014; Hutsler & Zhang, 2009)。

1949年,唐纳德·赫布(Donald Olding Hebb, 1904~1985)提出著名的“Hebbian Rule”模型(Hebb, 1949),即突触前神经元向突触后神经元的持续重复的刺激,可以导致突触传递效能的增加,如果突触两侧的两个神经元被异步激活,则该突触被选择性地削弱或消除。因此,神经元的活动是突触修剪的关键因素。

3. 三大原因导致皮层下中枢“熵增”,从而导致皮层高级中枢功能或结构受损,并呈现重复刻板行为的临床症状

目前对ASD的研究,并未发现明显的、共性的结构性病变,这也是研究者无法找到明确生理标志物的原因所在。人们疑惑于大脑结构并未发生共性病变,为什么会引起较为统一的ASD临床症状?本文认为这可能是神经信息传导的特性所导致的。

如果把大脑比喻成一座城市,神经冲动是“车流量”,则神经连接为“城市内部公路网”,那么造成ASD这种“交通障碍”必然有“车流量”与“公路网”双方面的原因。

首先,神经冲动的来源分为内源性和外源性,内源性的神经冲动主要是内脏、肠道菌群等身体内部器官(生物)引发的;外源性的神经冲动是人们通过听觉、视觉、触觉、温度觉等对外界环境刺激产生的神经反应。

其次,内脏、肠道菌群等内源性神经冲动主要是“车流量”变化,但是“迷走神经”等通路较为固定。外源性神经冲动如同外部车辆进入城市,其“车流量”和“行驶路径”是动态变化的。这种动态变化体现了神经连接的两个方面,其一,“主干道”的神经束——白质需要经历一个发育成熟的过程,2022年一项最大的神经影像学数据集,描绘了白质的发育规律,报告显示:总白质体积从妊娠中期到儿童早期迅速增加,在28.7岁时达到峰值(Bethlehem et al., 2022)。其二,“车流量”的大小及方向决定了突触的产生或削弱,刺激不足严重影响突触的修剪。

最后,神经冲动具有2级调度的机制。外源性神经冲动首先经过位于皮层的中枢调度,而后信息传递至位于皮层下中枢进行第二次调度。皮层中枢包括视觉中枢、听觉中枢、嗅觉中枢、躯体运动中枢和躯体感觉中枢等,皮层下中枢包括丘脑、下丘脑、纹状体等。皮层中枢是条件反射的基础,而皮层下中枢是非条件反射的基础。条件反射是在非条件反射的基础上通过学习和训练建立的。非条件反射为条件反射的形成提供了平台,而条件反射的建立和维持也需要非条件刺激的强化。例如,狗听到铃声分泌唾液的条件反射,是基于它原本对食物的非条件反射。

Figure 1. Three major reasons for the “entropy increase” in the subcortical center

1. 皮层下中枢“熵增”的三大原因

因此,外源性刺激不足导致皮层下中枢的发育不良,内源性刺激的紊乱导致皮层下中枢的功能紊乱,或者因炎症、物理化学、基因突变等多种因素造成皮层下中枢的器质性病变,这三大原因都会导致皮层下中枢不能履行“信息调度”的功能(如图1所示)。最终导致皮层中枢的功能及结构障碍,应用热力学概念可归纳为皮层中枢“熵增”。

以上因果关系的梳理,对ASD的成因研究具有借鉴意义。因为多数研究认为:重复刻板行为症状的“病灶”在皮层下中枢,但如果不进行功能紊乱、发育不良、器质性病变的区分,势必将导致诸多不同的结论。如内源性刺激的紊乱包括肠道菌群和自主神经紊乱的研究;器质性病变包括基因、炎症、重金属等的研究;发育不良包括感统、感觉器官损伤、社会家庭环境研究等。

总之,重复刻板行为只是一种现象,并不是ASD (Tsai et al., 2012)的专属,同样体现在强迫症(Welch et al., 2007; Shmelkov et al., 2010)、RETT综合征(Chao et al., 2010)、Tourette综合征(Baldan et al., 2014)、拔毛癖(Bohne et al., 2005)、抽动秽语综合征(Ferrão et al., 2009)等神经精神类疾病,是因皮层下中枢病理性或功能性障碍导致的临床症状。该病理性或功能性障碍并不能明确诊断为一个部位,可能涉及皮层下中枢的多个核团,如纹状体(Yu et al., 2018; Peça et al., 2011; Mei et al., 2016; Mahgoub et al., 2016)、下丘脑(Mangieri et al., 2018)、海马体(Mu et al., 2020)、杏仁核(Ullrich et al., 2018; Hong et al., 2014; Folkes et al., 2019)、甚至脊髓(Xie et al., 2021)。诊断ASD的重复刻板行为发病机制,需要综合考虑本体器质性病变及连接障碍的双重因素。

4. 总结和不足

ASD个体之间具有很高的异质性,每个ASD孩子的发展轨迹都是高度个性化的,因此造成ASD的研究困难重重。其原因是对ASD各种症状背后的生理学机制尚未得到证实。

ASD的“重复刻板行为”是一种共性的临床症状,该现象的机理研究也共同指向皮层下中枢的病理性或功能性障碍,但是导致该结果的原因却是多样的,本文总结为发育不良、器质性病变、功能紊乱三大原因。本文的分析能初步解释“重复刻板行为”异质性的困扰,同时为ASD临床生理诊断提供了明确的方向,该定性研究对未来的定量研究也有一定的借鉴意义。

本文局限于因果关系分析,较难实现覆盖三种原因、多个核团的实验设计,因此缺乏定量的数据,有待进一步的验证。

NOTES

*通讯作者。

参考文献

[1] Baker, A. E. Z., Lane, A., Angley, M. T., & Young, R. L. (2008). The Relationship between Sensory Processing Patterns and Behavioural Responsiveness in Autistic Disorder: A Pilot Study. Journal of Autism and Developmental Disorders, 38, 867-875.
https://doi.org/10.1007/s10803-007-0459-0
[2] Baldan, L. C., Williams, K. A., Gallezot, J., Pogorelov, V., Rapanelli, M., Crowley, M. et al. (2014). Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice. Neuron, 81, 77-90.
https://doi.org/10.1016/j.neuron.2013.10.052
[3] Baranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2010). Sensory Experiences Questionnaire: Discriminating Sensory Features in Young Children with Autism, Developmental Delays, and Typical Development. Journal of Child Psychology and Psychiatry, 47, 591-601.
https://doi.org/10.1111/j.1469-7610.2005.01546.x
[4] Bethlehem, R. A. I., Seidlitz, J., White, S.R. et al. (2022). Brain Charts for the Human Lifespan. Nature, 604, 525-533.
[5] Bohne, A., Keuthen, N., & Wilhelm, S. (2005). Pathologic Hairpulling, Skin Picking, and Nail Biting. Annals of Clinical Psychiatry, 17, 227-232.
https://doi.org/10.1080/10401230500295354
[6] Brandwein, A. B., Foxe, J. J., Butler, J. S., Frey, H., Bates, J. C., Shulman, L. H. et al. (2015). Neurophysiological Indices of Atypical Auditory Processing and Multisensory Integration Are Associated with Symptom Severity in Autism. Journal of Autism and Developmental Disorders, 45, 230-244.
https://doi.org/10.1007/s10803-014-2212-9
[7] Chao, H., Chen, H., Samaco, R. C., Xue, M., Chahrour, M., Yoo, J. et al. (2010). Dysfunction in GABA Signalling Mediates Autism-Like Stereotypies and Rett Syndrome Phenotypes. Nature, 468, 263-269.
https://doi.org/10.1038/nature09582
[8] Duerden, E. G., Taylor, M. J., Lee, M., McGrath, P. A., Davis, K. D., & Roberts, S. W. (2015). Decreased Sensitivity to Thermal Stimuli in Adolescents with Autism Spectrum Disorder: Relation to Symptomatology and Cognitive Ability. The Journal of Pain, 16, 463-471.
https://doi.org/10.1016/j.jpain.2015.02.001
[9] Estes, A., Shaw, D. W. W., Sparks, B. F., Friedman, S., Giedd, J. N., Dawson, G. et al. (2011). Basal Ganglia Morphometry and Repetitive Behavior in Young Children with Autism Spectrum Disorder. Autism Research, 4, 212-220.
https://doi.org/10.1002/aur.193
[10] Ferrão, Y. A., Miguel, E., & Stein, D. J. (2009). Tourette’s Syndrome, Trichotillomania, and Obsessive-Compulsive Disorder: How Closely Are They Related? Psychiatry Research, 170, 32-42.
https://doi.org/10.1016/j.psychres.2008.06.008
[11] Folkes, O. M., Báldi, R., Kondev, V., Marcus, D. J., Hartley, N. D., Turner, B. D. et al. (2019). An Endocannabinoid-Regulated Basolateral Amygdala-Nucleus Accumbens Circuit Modulates Sociability. Journal of Clinical Investigation, 130, 1728-1742.
https://doi.org/10.1172/jci131752
[12] Gráinne, M. M., Suckling, J., Wong, N. et al. (2008). Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger’s Syndrome. Journal of Child Psychology and Psychiatry, 49, 1287-1295.
https://doi.org/10.1111/j.1469-7610.2008.01933.x
[13] Haar, S., Berman, S., Behrmann, M., & Dinstein, I. (2014). Anatomical Abnormalities in Autism? Cerebral Cortex, 26, 1440-1452.
https://doi.org/10.1093/cercor/bhu242
[14] Harlow, H. F. (1958). The Nature of Love. American Psychologist, 13, 673-685.
https://doi.org/10.1037/h0047884
[15] Hebb, D. O., Martinez, J. L., & Glickman, S. E. (1949). The Organization of Behaviora Neuropsychological Theory. Psychology Press.
[16] Hollander, E., Anagnostou, E., Chaplin, W., Esposito, K., Haznedar, M. M., Licalzi, E. et al. (2005). Striatal Volume on Magnetic Resonance Imaging and Repetitive Behaviors in Autism. Biological Psychiatry, 58, 226-232.
https://doi.org/10.1016/j.biopsych.2005.03.040
[17] Hong, W., Kim, D., & Anderson, D. J. (2014). Antagonistic Control of Social versus Repetitive Self-Grooming Behaviors by Separable Amygdala Neuronal Subsets. Cell, 158, 1348-1361.
https://doi.org/10.1016/j.cell.2014.07.049
[18] Hutsler, J. J., & Zhang, H. (2009). Increased Dendritic Spine Densities on Cortical Projection Neurons in Autism Spectrum Disorders. Brain Research, 1309, 83-94.
https://doi.org/10.1016/j.brainres.2009.09.120
[19] Kern, J. K., Trivedi, M. H., Grannemann, B. D., Garver, C. R., Johnson, D. G., Andrews, A. A. et al. (2007). Sensory Correlations in Autism. Autism, 11, 123-134.
https://doi.org/10.1177/1362361307075702
[20] Langen, M., Durston, S., Staal, W. G., Palmen, S. J. M. C., & van Engeland, H. (2007). Caudate Nucleus Is Enlarged in High-Functioning Medication-Naive Subjects with Autism. Biological Psychiatry, 62, 262-266.
https://doi.org/10.1016/j.biopsych.2006.09.040
[21] Lin, H., Ni, H., Lai, M., Tseng, W. I., & Gau, S. S. (2015). Regional Brain Volume Differences between Males with and without Autism Spectrum Disorder Are Highly Age-Dependent. Molecular Autism, 6, Article No. 29.
https://doi.org/10.1186/s13229-015-0022-3
[22] MacDonald, D. N., Bedford, S. A., Olafson, E. et al. (2023). Characterizing Subcortical Structural Heterogeneity in Autism.
https://pubmed.ncbi.nlm.nih.gov/37693556/
[23] Mahgoub, M., Adachi, M., Suzuki, K., Liu, X., Kavalali, E. T., Chahrour, M. H. et al. (2016). Mecp2 and Histone Deacetylases 1 and 2 in Dorsal Striatum Collectively Suppress Repetitive Behaviors. Nature Neuroscience, 19, 1506-1512.
https://doi.org/10.1038/nn.4395
[24] Mangieri, L. R., Lu, Y., Xu, Y., Cassidy, R. M., Xu, Y., Arenkiel, B. R. et al. (2018). A Neural Basis for Antagonistic Control of Feeding and Compulsive Behaviors. Nature Communications, 9, Article No. 52.
https://doi.org/10.1038/s41467-017-02534-9
[25] Mei, Y., Monteiro, P., Zhou, Y., Kim, J., Gao, X., Fu, Z. et al. (2016). Adult Restoration of Shank3 Expression Rescues Selective Autistic-Like Phenotypes. Nature, 530, 481-484.
https://doi.org/10.1038/nature16971
[26] Miller, L. J., & Lane, S. J. (2000). Toward a Consensus in Terminology in Sensory Integration Theory and Practice: Part 1: Taxonomy of Neurophysiological Processes.
https://www.researchgate.net/publication/286785128_Toward_a_consensus_in_terminology_in_sensory_integration_theory_and_practice_Part_1_Taxonomy_of_neurophysiological_processes
[27] Minshew, N. J., & Williams, D. L. (2007). The New Neurobiology of Autism: Cortex, Connectivity, and Neuronal Organization. Archives of Neurology, 64, 945-950.
[28] Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the Postural Control System in Autism. Neurology, 63, 2056-2061.
https://doi.org/10.1212/01.wnl.0000145771.98657.62
[29] Mu, M., Geng, H., Rong, K., Peng, R., Wang, S., Geng, L. et al. (2020). A Limbic Circuitry Involved in Emotional Stress-Induced Grooming. Nature Communications, 11, Article No. 2261.
https://doi.org/10.1038/s41467-020-16203-x
[30] Nelson, C. A. (2010). A Neurobiological Perspective on Early Human Deprivation. Child Development Perspectives, 1, 13-18.
https://doi.org/10.1111/j.1750-8606.2007.00004.x
[31] Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive Recovery in Socially Deprived Young Children: The Bucharest Early Intervention Project. Science, 318, 1937-1940.
https://doi.org/10.1126/science.1143921
[32] Nelson, C., Furtado, E., Fox, N., & Zeanah, C. (2009). The Deprived Human Brain. American Scientist, 97, 222.
https://doi.org/10.1511/2009.78.222
[33] Peça, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N. et al. (2011). Shank3 Mutant Mice Display Autistic-Like Behaviours and Striatal Dysfunction. Nature, 472, 437-442.
https://doi.org/10.1038/nature09965
[34] Schuetze, M., Park, M. T. M., Cho, I. Y., MacMaster, F. P., Chakravarty, M. M., & Bray, S. L. (2016). Morphological Alterations in the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder. Neuropsychopharmacology, 41, 2627-2637.
https://doi.org/10.1038/npp.2016.64
[35] Shmelkov, S. V., Hormigo, A., Jing, D., Proenca, C. C., Bath, K. G., Milde, T. et al. (2010). Slitrk5 Deficiency Impairs Corticostriatal Circuitry and Leads to Obsessive-Compulsive-Like Behaviors in Mice. Nature Medicine, 16, 598-602.
https://doi.org/10.1038/nm.2125
[36] Sussman, D., Leung, R. C., Chakravarty, M. M., Lerch, J. P., & Taylor, M. J. (2016). The Developing Human Brain: Age-Related Changes in Cortical, Subcortical, and Cerebellar Anatomy. Brain and Behavior, 6, e00457.
https://doi.org/10.1002/brb3.457
[37] Tang, G., Gudsnuk, K., Kuo, S., Cotrina, M. L., Rosoklija, G., Sosunov, A. et al. (2014). Loss of mTOR-Dependent Macroautophagy Causes Autistic-Like Synaptic Pruning Deficits. Neuron, 83, 1131-1143.
https://doi.org/10.1016/j.neuron.2014.07.040
[38] Tsai, P. T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M. et al. (2012). Autistic-Like Behaviour and Cerebellar Dysfunction in Purkinje Cell Tsc1 Mutant Mice. Nature, 488, 647-651.
https://doi.org/10.1038/nature11310
[39] Tsatsanis, K. D., Rourke, B. P., Klin, A., Volkmar, F. R., Cicchetti, D., & Schultz, R. T. (2003). Reduced Thalamic Volume in High-Functioning Individuals with Autism. Biological Psychiatry, 53, 121-129.
https://doi.org/10.1016/s0006-3223(02)01530-5
[40] Turner, A. H., Greenspan, K. S., & van Erp, T. G. M. (2016). Pallidum and Lateral Ventricle Volume Enlargement in Autism Spectrum Disorder. Psychiatry Research: Neuroimaging, 252, 40-45.
https://doi.org/10.1016/j.pscychresns.2016.04.003
[41] Ullrich, M., Weber, M., Post, A. M., Popp, S., Grein, J., Zechner, M. et al. (2018). OCD-Like Behavior Is Caused by Dysfunction of Thalamo-Amygdala Circuits and Upregulated Trkb/Erk-Mapk Signaling as a Result of SPRED2 Deficiency. Molecular Psychiatry, 23, 444-458.
https://doi.org/10.1038/mp.2016.232
[42] van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto, G. F. et al. (2018). Cortical and Subcortical Brain Morphometry Differences between Patients with Autism Spectrum Disorder and Healthy Individuals across the Lifespan: Results from the ENIGMA ASD Working Group. American Journal of Psychiatry, 175, 359-369.
https://doi.org/10.1176/appi.ajp.2017.17010100
[43] Welch, J. M., Lu, J., Rodriguiz, R. M., Trotta, N. C., Peca, J., Ding, J. et al. (2007). Cortico-Striatal Synaptic Defects and OCD-Like Behaviours in Sapap3-Mutant Mice. Nature, 448, 894-900.
https://doi.org/10.1038/nature06104
[44] Xie, Z., Li, D., Cheng, X. et al. (2021). A Brain-to-Spinal Sensorimotor Loop for Repetitive Self-Grooming.
https://www.sciencedirect.com/science/article/pii/S0896627321009892
[45] Yu, X., Taylor, A. M. W., Nagai, J., Golshani, P., Evans, C. J., Coppola, G. et al. (2018). Reducing Astrocyte Calcium Signaling in Vivo Alters Striatal Microcircuits and Causes Repetitive Behavior. Neuron, 99, 1170-1187.e9.
https://doi.org/10.1016/j.neuron.2018.08.015
[46] Zhang, W., Groen, W., Mennes, M., Greven, C., Buitelaar, J., & Rommelse, N. (2018). Revisiting Subcortical Brain Volume Correlates of Autism in the ABIDE Dataset: Effects of Age and Sex. Psychological Medicine, 48, 654-668.
https://doi.org/10.1017/s003329171700201x