[1]
|
Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., Bettio, M., et al. (2018) Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. European Journal of Cancer, 103, 356-387. https://doi.org/10.1016/j.ejca.2018.07.005
|
[2]
|
谢文博. 影像AI诊断系统赋能精准诊疗[N]. 健康报, 2024-10-11(006).
|
[3]
|
谢凯, 孙鸿飞, 林涛, 等. 影像组学中特征提取研究进展[J]. 中国医学影像技术, 2017, 33(12): 1792-1796.
|
[4]
|
Lee, K. and Park, H. (2022) Machine Learning on Thyroid Disease: A Review. Frontiers in Bioscience-Landmark, 27, Article 101. https://doi.org/10.31083/j.fbl2703101
|
[5]
|
Zhang, Y., Cheng, C., Liu, Z., Wang, L., Pan, G., Sun, G., et al. (2019) Radiomics Analysis for the Differentiation of Autoimmune Pancreatitis and Pancreatic Ductal Adenocarcinoma in 18F-FDG PET/CT. Medical Physics, 46, 4520-4530. https://doi.org/10.1002/mp.13733
|
[6]
|
Ren, S., Zhao, R., Zhang, J., Guo, K., Gu, X., Duan, S., et al. (2020) Diagnostic Accuracy of Unenhanced CT Texture Analysis to Differentiate Mass-Forming Pancreatitis from Pancreatic Ductal Adenocarcinoma. Abdominal Radiology, 45, 1524-1533. https://doi.org/10.1007/s00261-020-02506-6
|
[7]
|
Qiu, J., Yin, J., Qian, W., Liu, J., Huang, Z., Yu, H., et al. (2021) A Novel Multiresolution-Statistical Texture Analysis Architecture: Radiomics-Aided Diagnosis of PDAC Based on Plain CT Images. IEEE Transactions on Medical Imaging, 40, 12-25. https://doi.org/10.1109/tmi.2020.3021254
|
[8]
|
Li, K., Yao, Q., Xiao, J., Li, M., Yang, J., Hou, W., et al. (2020) Contrast-Enhanced CT Radiomics for Predicting Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma: A Pilot Study. Cancer Imaging, 20, Article No. 12. https://doi.org/10.1186/s40644-020-0288-3
|
[9]
|
Gao, J., Han, F., Jin, Y., Wang, X. and Zhang, J. (2020) A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 10, 1654. https://doi.org/10.3389/fonc.2020.01654
|
[10]
|
Chen, F., Zhou, Y., Qi, X., Zhang, R., Gao, X., Xia, W., et al. (2020) Radiomics-Assisted Presurgical Prediction for Surgical Portal Vein-Superior Mesenteric Vein Invasion in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 10, Article 523543. https://doi.org/10.3389/fonc.2020.523543
|
[11]
|
Zhang, W., Cai, W., He, B., Xiang, N., Fang, C. and Jia, F. (2018) A Radiomics-Based Formula for the Preoperative Prediction of Postoperative Pancreatic Fistula in Patients with Pancreaticoduodenectomy. Cancer Management and Research, 10, 6469-6478. https://doi.org/10.2147/cmar.s185865
|
[12]
|
Xie, T., Wang, X., Li, M., Tong, T., Yu, X. and Zhou, Z. (2020) Pancreatic Ductal Adenocarcinoma: A Radiomics Nomogram Outperforms Clinical Model and TNM Staging for Survival Estimation after Curative Resection. European Radiology, 30, 2513-2524. https://doi.org/10.1007/s00330-019-06600-2
|
[13]
|
Mori, M., Passoni, P., Incerti, E., Bettinardi, V., Broggi, S., Reni, M., et al. (2020) Training and Validation of a Robust PET Radiomic-Based Index to Predict Distant-Relapse-Free-Survival after Radio-Chemotherapy for Locally Advanced Pancreatic Cancer. Radiotherapy and Oncology, 153, 258-264. https://doi.org/10.1016/j.radonc.2020.07.003
|
[14]
|
Li, X.W., Wan, Y.D., et al. (2022) Preoperative Recurrence Prediction in Pancreatic Ductal Adenocarcinoma after Radical Resection Using Radiomics of Diagnostic Computed Tomography. E Clinical Medicine, 43, Article 101215.
|