虚拟现实技术对亚急性脑卒中患者上肢功能及活动能力影响的Meta分析
Meta-Analysis of the Effect of Virtual Reality Technology on Upper Limb Function and Mobility in Subacute Stroke Patients
DOI: 10.12677/acm.2024.14112982, PDF, HTML, XML,    科研立项经费支持
作者: 聂 瑶:南京体育学院,运动健康学院,江苏 南京;张家瑜:吉林体育学院运动人体科学学院,吉林 长春
关键词: 脑卒中亚急性期虚拟现实Stroke Subacute Phase Virtual Reality
摘要: 目的:已有研究表明,VR技术能够改善脑卒中后运动功能,但针对亚急性期脑卒中患者的系统证据相对较少。因此,本研究旨在系统评价VR技术对亚急性期脑卒中患者上肢功能、平衡能力、独立性、日常生活活动及行走能力的应用效果。方法:检索PubMed、Web of Science、The Cochrane Library、Embase数据库,检索从建库至2024年1月关于VR治疗脑卒中的随机对照试验,以FMA-UE、ARAT、WMFT、BBT、TUGT、BBS、BI及FIM为观察指标,使用Review Manager 5.4软件和StataSE15.0软件进行Meta分析。结果:共纳入31项研究,总样本量1319例。与常规康复相比,VR能显著改善FMA-UE、TUGT及BI指标。两种方式在ARAT、BBS、FIM、WMFT及BBT指标上并无显著性差异。亚组分析结果显示,训练次数 > 15次,干预周期 ≥ 4周时,VR训练对FMA-UE、BBT及TUGT指标改善效果更加显著。结论:VR训练能够显著提升亚急性期脑卒中患者的上肢运动功能、步行能力及日常生活活动能力,尤其在高频次(>15次)和长周期(≥4周)干预下效果更为显著。然而,在平衡能力、手部精细运动和功能独立性方面,VR训练的改善有限,需进一步优化训练方案与设备设计,以提升全面康复效果。
Abstract: Objective: Previous studies have shown that virtual reality (VR) technology can improve motor function after stroke, but the evidence specific to patients in the subacute phase of stroke remains limited. Therefore, this study aims to systematically evaluate the effects of VR technology on upper limb function, balance, independence, activities of daily living, and walking ability in subacute stroke patients. Methods: We searched PubMed, Web of Science, The Cochrane Library, and Embase databases for randomized controlled trials (RCTs) on VR therapy for stroke, published from database inception to January 2024. FMA-UE, ARAT, WMFT, BBT, TUGT, BBS, BI, and FIM were used as outcome measures. Meta-analysis was performed using Review Manager 5.4 and StataSE15.0 software. Results: A total of 31 studies with 1319 participants were included. Compared with conventional rehabilitation, VR significantly improved FMA-UE, TUGT, and BI. However, no significant differences were observed between VR and conventional rehabilitation in ARAT, BBS, FIM, WMFT, and BBT. Subgroup analysis showed that VR interventions with more than 15 sessions and intervention periods of at least 4 weeks achieved better improvements in FMA-UE, BBT, and TUGT scores. Conclusion: VR training can significantly improve upper limb function, walking ability, and activities of daily living in subacute stroke patients, especially with high-frequency (>15 sessions) and long-duration (≥4 weeks) interventions. However, the improvements in balance, fine motor skills, and functional independence remain limited, suggesting that further optimization of VR programs and equipment design is needed to enhance comprehensive rehabilitation outcomes.
文章引用:聂瑶, 张家瑜. 虚拟现实技术对亚急性脑卒中患者上肢功能及活动能力影响的Meta分析[J]. 临床医学进展, 2024, 14(11): 1044-1055. https://doi.org/10.12677/acm.2024.14112982

1. 引言

脑卒中是导致死亡和残疾综合负担的主要原因之一,全球疾病负担研究显示,2019年卒中发病人数为1220万例,伤残调整寿命年为1.43亿例[1]。脑卒中后的高致残率不仅给患者和家属造成了极大的心理和经济负担,而且给国家和社会的经济资源带来巨大压力[2]。运动功能障碍是脑卒中后最常见的损害,其中约有80%的患者上肢活动受限,这不仅对他们的日常生活造成了巨大挑战,也大大增加了康复训练的难度[3]。传统康复训练方案虽然在改善脑卒中后功能障碍中取得了一定效果,但受限于治疗师经验和冗长的训练周期,患者的主动参与性会逐渐降低[4]

虚拟现实(VR)作为一种非侵入性技术治疗方法,允许患者与计算机创建的环境互动,其有效性得到了越来越多的研究支持,特别是在脑卒中康复中,它通过提供定制化的虚拟任务和环境,训练患者的步态、姿势平衡和运动功能,同时增强参与度和治疗的个性化[5]。第一届国际卒中恢复与康复圆桌会议将卒中康复分为4个时期,超急性期(<24 h)、急性期(1~7 d)、亚急性期(7 d~6 m)及慢性期(>6 m) [6],其中亚急性期是功能恢复的关键阶段,这一时期的康复措施对改善患者生活质量和减轻长期残疾的影响至关重要。因此,深入研究亚急性期的康复策略和效果对促进患者的功能恢复,降低社会经济负担具有重要意义。因此,本研究旨在评估VR训练在亚急性期脑卒中患者中的康复效果,特别是在上肢功能、平衡、日常生活和行走能力方面的影响,以提供更具针对性和效率的康复方案,降低脑卒中的社会经济负担并促进患者的功能恢复。

2. 资料与方法

本研究根据PRISMA声明的要求完成,研究方案已在PROSPERO注册平台注册(NO: CRD42024519769)。

2.1. 检索策略

计算机检索PubMed、Web of science、The Cochrane Library、Embase数据库,检索从建库至2024年1月关于虚拟现实治疗脑卒中的随机对照试验,对纳入文献的参考文献进行引文检索,以补充获取相关文献。使用“stroke”和“virtual reality”的主题词和自由词进行检索,检索式为(“Stroke” OR “cerebrovascular accident” OR “cva” OR “cerebrovascular apoplexy” OR “vascular accident brain” OR “brain vascular accidents” OR “blood vessels” OR “Vascular”) AND (“Virtual Reality” OR “Virtual Environment”) AND (“RCT” OR “randomized controlled trial”)。

2.2. 文献的纳入和排除标准

纳入标准:① 研究类型:纳入文献均为随机对照试验;② 研究对象:脑卒中伴肢体功能障碍者,年龄、性别、种族和国籍不限。③ 病程为在1周到6个月之间;④ 对照组为常规康复治疗,试验组为常规康复治疗加上虚拟现实治疗。

排除标准:① 非英文文献;② 重复发表的文献;③ 无法提取数据、数据资料有误或信息不完整的原始文献;④ 会议、综述、指南、meta分析等;⑤ 无法获取全文的文献。

2.3. 结局指标

主要结局指标:Fugl-Meyer评定量表上肢部分(Fugl-Meyer assessment-upper extremities, FMA-UE)。

次要结局指标:(1) 采用上肢动作研究测试(action research arm test, ARAT),Wolf运动功能测试量表(Wolf Motor Function Test, WMFT),盒子积木测试(Box and Block Test, BBT)评估上肢和手部的运动功能恢复情况;(2) 使用计时起立行走测试(Timed up and go test, TUGT),Berg平衡量表(Berg balance scale, BBS)评估平衡和步行能力;(3) 使用Barthel指数(BI)、功能性独立测量(Functional In dependence Measure, FIM)评估日常生活能力。

2.4. 文献筛选与质量评价

由两名研究员按照检索策略在数据库中进行文献检索,剔除重复文献后,根据纳排标准对剩余文献进行独立筛选。阅读标题及摘要排除无关文献,再通过全文阅读进一步筛选。对筛选出的文献信息进行提取,内容包括文献作者,发表国家、发表年份、样本量、干预措施、干预时间等。采用Review Manager 5.4风险偏倚评估软件进行方法学质量评价,文献筛选、信息提取和质量评价由2名研究员独立进行,结果不一致时双方商讨确定。

2.5. 统计学分析

采用StataSE15.0进行Meta分析。首先对纳入的文献进行异质性检验,异质性较小时(I2 ≤ 50%, P ≥ 0.1)采用固定效应模型,若异质性较大(I2 > 50%, P < 0.1)则采用随机效应模型。对每项结局指标进行敏感性分析,逐一剔除单个研究以评估结果的稳健性。采用Egger检验分析发表偏倚,并通过漏斗图进一步验证分析结果。所有结局指标均为连续性变量,若研究中使用不同评估工具或数据的单位和量级差异较大,采用标准化均数差(standard mean difference, SMD)进行分析;其余情况采用加权均数差(weighted mean difference, WMD)分析。本研究所有分析均计算95%置信区间(CI),并以P < 0.05作为判断统计学显著性的标准。为进一步探究异质性的来源,根据训练次数和训练周数进行亚组分析。

3. 结果

3.1. 文献检索流程及结果

初步检索后共获取文献4645篇,使用EndNote X9软件去除重复文献,经逐层筛选后最终纳入31篇文献。共纳入1319名患者,其中VR组673例,对照组645例,实验组平均年龄为62.05 ± 4.71岁,对照组平均年龄为62.42 ± 4.80岁,单个研究样本量10~120例,平均(43 ± 23.84例)。详细文献筛选流程见图1。纳入文献特征见表1

Figure 1. Flow chart of literature screening

1. 文献筛选流程图

Table 1. Basic characteristics of included literature

1. 纳入文献的基本特征

纳入研究

(年份)

国家

样本量/例

性别

(m/f)

干预措施

周期

频率

结局 指标

EG

CG

EG

CG

Mañas (2020)

西班牙

23

25

23/25

VR + 常规康复

常规康复

8周

3次/周

Dąbrowská (2023)

捷克

25

25

26/24

VR + 常规康复

常规康复

4~5周

3次/周

①②

Hsieh (2019)

中国

27

27

33/21

VR + 常规康复

常规康复

12周

3次/周

②③

Hyun (2021)

韩国

15

15

13/17

VR +常规康复

常规康复

6周

5次/周

②③

Laffont (2020)

法国

25

26

31/20

VR + 常规康复

常规康复

6周

5次/周

①④⑤⑥

Lam (2022)

中国

47

46

55/38

VR + 常规康复

常规康复

8周

2次/周

④⑦

Hernández (2023)

西班牙

23

20

35/8

VR + 常规康复

常规康复

3周

5次/周

④⑦

Sip (2023)

波兰

10

10

/

VR + 常规康复

常规康复

3周

6次/周

Adomavičienė (2019)

立陶宛

25

17

28/14

VR + 常规康复

常规康复

2周

5次/周

④⑤⑧

Bian (2022)

中国

18

16

27/7

VR + 常规康复

常规康复

3周

5次/周

Brunner (2017)

挪威

62

58

77/43

VR + 常规康复

常规康复

4周

4-5次/周

⑤⑦⑧

Cannell (2018)

澳大利亚

39

40

41/38

VR + 常规康复

常规康复

8周

5次/周

③⑤

Chen (2022)

中国

18

18

20/16

VR + 常规康复

常规康复

2周

5次/周

④⑦

Choi (2021)

韩国

12

12

11/13

VR + 常规康复

常规康复

4周

3次/周

Choi (2014)

韩国

10

10

10/10

VR + 常规康复

常规康复

4周

5次/周

①④⑤

Rooij (2021)

荷兰

28

24

36/16

VR + 常规康复

常规康复

6周

2次/周

Huang (2024)

中国

20

20

24/16

VR + 常规康复

常规康复

3周

5次/周

①④

Afsar (2018)

土耳其

19

16

20/15

VR + 常规康复

常规康复

4周

5次/周

④⑤⑧

Kim (2018)

韩国

11

8

14/5

VR + 常规康复

常规康复

2周

5次/周

①④⑤

Kiper (2022)

意大利

30

30

30/30

VR

常规康复

6周

5次/周

Lee (2016)

韩国

5

5

5/5

VR + 常规康复

常规康复

6周

3次/周

②③④

Lee (2014)

韩国

20

19

22/17

tDCS + VR

tDCS

3周

5次/周

①④⑤

Malik (2021)

巴基斯坦

21

22

36/16

VR + 常规康复

常规康复

8周

3次/周

③⑤

McEwen (2014)

加拿大

30

29

32/27

VR + 常规康复

常规康复

3周

10~12次/周

Rogers (2019)

澳大利亚

10

11

9/12

VR + 常规康复

常规康复

4周

12次/周

Sana (2023)

巴基斯坦

15

15

13/17

VR + 常规康复

常规康复

8周

3次/周

Saposnik (2010)

加拿大

9

7

14/8

VR + 常规康复

常规康复

2周

4次/周

⑤⑥

Sheehy (2020)

加拿大

33

36

42/27

VR + 常规康复

常规康复

2~3周

5次/周

Shin (2022)

韩国

20

16

17/19

VR + 常规康复

常规康复

4周

5次/周

TÜRKBEY (2017)

土耳其

10

9

14/5

VR + 常规康复

常规康复

4周

5次/周

⑤⑥⑧

Wang (2017)

中国

13

13

22/4

VR + 常规康复

常规康复

4周

5次/周

3.2. 纳入文献的质量评价及偏倚风险

纳入的31篇文献均提及随机分组,其中21篇[7]-[27]提及随机序列的产生方式;17篇[7] [9]-[14] [16] [17] [20] [21] [24]-[26] [28]-[30]文献进行了分配隐藏;1篇[16]文章对受试者或干预者使用盲法,23篇[8]-[13] [15]-[20] [22]-[32]文献对结局评估者施盲;27篇[7]-[9] [11]-[15] [18]-[22] [24]-[37]文献数据结果完整;所有文献无选择性报道;所有文献其他偏倚情况均不清楚。研究总体风险评估见图2,研究偏倚风险见图3

Figure 2. Risk of bias assessment of included literature

2. 纳入文献偏倚风险评估

Figure 3. Percentage of bias risk of included literature

3. 纳入文献偏倚风险百分比图

3.3. Meta分析结果

表2

Table 2. Meta-analysis results

2. Meta分析结果

指标

文献数

MD值(95%CI)

P值

I2

P值异质性

效应模型

FMA-UE

13

3.33 (1.40, 5.26)

<0.01

73%

<0.01

随机

ARAT

4

5.90 (−1.18, 12.97)

0.10

87%

<0.01

随机

WMFT

4

0.46 (−0.07, 0.99)

0.09

59%

0.06

随机

BBT

12

2.06 (−0.35, 4.47)

0.09

69%

<0.01

随机

TUGT

8

−1.08 (−2.63, −1.09)

<0.01

2%

0.41

固定

BBS

5

2.04 (−1.53, 5.61)

0.26

84%

<0.01

随机

BI

9

0.25 (0.04, 0.47)

0.02

0%

0.57

固定

FIM

4

2.04 (−0.26, 4.33)

0.08

42%

0.16

固定

3.4. 亚组分析结果

对纳入的随机对照试验根据训练次数(训练次数 ≤ 15次与训练次数 > 15次)及训练周数(训练周数 < 4周与训练周数 ≥ 4周)进行亚组分析,分析结果见表3。由于部分亚组文献数量仅为1篇,故未能进行分析。结果显示与常规康复相比,FMA-UE (训练次数 > 15次:WMD = 3.64,95%CI:1.16~6.12,P < 0.01;训练周数 ≥ 4周:WMD = 3.03,95%CI:1.68~4.38,P < 0.01)、BBT (训练次数 > 15次:WMD = 2.22,95%CI:0.63~3.81,P < 0.01)以及TUGT (训练次数 > 15次:WMD = −2.54,95%CI:−3.60~−1.49,P < 0.01;训练周数 ≥ 4周:WMD = −2.00,95%CI:−3.69~−0.70,P < 0.01)均显示显著改善,且异质性较低。在训练次数较少(≤15次)和训练周期较短(<4周)的组别中,部分指标的改善效果未达到显著性水平。总体来看,与常规康复方法相比,增加训练次数和训练周期有助于提高VR训练的有效性,尤其在FMA-UE、BBT和TUGT等功能性指标上表现显著。

Table 3. Subgroup analysis results

3. 亚组分析结果

指标

影响

因素

分组

文献数

样本量

WMD (SMD)值

(95%CI)

P值

I2

P值异质性

FMA-UE

训练

次数

≤15次

7

229

3.01 (0.50, 5.52)

0.02

84%

<0.01

>15次

6

255

3.64 (1.16, 6.12)

<0.01

5%

0.38

训练

周数

<4周

7

239

2.91 (−0.34, 6.16)

0.08

82%

<0.01

≥4周

6

245

3.03 (1.68, 4.38)

<0.01

5%

0.39

ARAT

训练

次数

≤15次

2

79

7.61 (−6.14, 21.36)

0.28

95%

<0.01

>15次

2

213

4.30 (−5.90, 14.50)

0.41

74%

0.049

训练

周数

<4周

2

79

7.61 (−6.14, 21.36)

0.28

95%

<0.01

≥4周

2

213

4.30 (−5.90, 14.50)

0.41

74%

0.049

WMFT

训练

次数

≤15次

1

69

−3.70 (−7.45, 0.05)

/

/

/

>15次

3

96

0.35 (0.18, 0.52)

<0.01

29%

0.25

训练

周数

<4周

1

69

−3.70 (−7.45, 0.05)

/

/

/

≥4周

3

96

0.35 (0.18, 0.52)

<0.01

29%

0.25

BBT

训练

次数

≤15次

5

137

1.92 (−3.07, 6.92)

0.45

73%

<0.01

>15次

7

367

2.22 (0.63, 3.81)

<0.01

45%

0.09

训练

周数

<4周

4

116

−0.94 (−1.85, −0.03)

0.04

0%

0.71

≥4周

8

388

3.75 (0.30, 7.20)

0.03

64%

<0.01

TUGT

训练

次数

≤15次

2

62

−1.08 (−2.21, 0.04)

0.06

45%

0.18

>15次

6

289

−2.54 (−3.60, −1.49)

<0.01

0%

0.86

训练

周数

<4周

2

69

−1.58 (−2.82, −0.34)

0.01

0%

0.80

≥4周

6

282

−2.00 (−3.69, −0.70)

<0.01

26%

0.24

BBS

训练

次数

≤15次

3

84

−1.62 (−2.77, −0.47)

<0.01

36%

0.21

>15次

2

94

4.50 (2.09, 6.91)

<0.01

27%

0.24

训练

周数

<4周

1

34

3.86 (−4.19, 11.91)

/

/

/

≥4周

4

144

1.82 (−2.05, 5.69)

0.36

87%

<0.01

BI

训练

次数

≤15次

5

172

0.35 (0.05, 0.65)

0.02

0%

0.50

>15次

4

179

0.16 (−0.13, 0.46)

0.28

0%

0.46

训练

周数

<4周

3

98

0.15 (−0.25, 0.55)

0.45

0%

0.83

≥4周

6

253

0.29 (0.04, 0.54)

0.02

16%

0.31

FIM

训练

次数

≤15次

1

42

10.19 (2.63, 17.75)

/

/

/

>15次

3

174

1.21 (−1.20, 3.61)

0.32

0%

0.89

训练

周数

<4周

1

42

10.19 (2.63, 17.75)

/

/

/

≥4周

3

174

1.21 (−1.20, 3.61)

0.32

0%

0.89

3.5. 发表偏倚结果

受限于技术条件,虚拟现实技术很难做到实验人员和受试者盲法,因此仅有1篇文章对受试者实施了盲法,因此可能存在偏倚风险。由于BBS、WMFT、ARAT、FIM等指标纳入文献数量较少,因此对FMA-UE、BI、BBT及TUGT指标使用漏斗图进行发表偏倚检测,见图4。FMA-UE和BI的漏斗图表明研究结果稳健具有较高的可靠性。BBT和TUGT的漏斗图存在一些较大的偏离点,未呈现理想的对称性。因此可能存在一定的发表偏倚。Egger检验对每项Meta分析结果分析发表偏倚,检验结果如表4所示,每项指标的P > 0.05,表明所纳入的文献均不存在发表偏倚。

Table 4. Egger test results

4. Egger检验结果

结局指标

FMA-UE

BI

BBS

TUGT

BBT

WMFT

ARAT

FIM

t

1.86

−1.02

2.20

0.09

1.98

−0.12

1.41

1.26

P值

0.09

0.32

0.11

0.93

0.07

0.92

0.29

0.34

图注:(A):FMA-UE发表偏倚漏斗图;(B):BI发表偏倚漏斗图;(C):TUGT发表偏倚漏斗图;(D):BBT发表偏倚漏斗图。

Figure 4. Funnel plot of publication bias

4. 发表偏倚漏斗图

3.6. 敏感性分析结果

采用逐一剔除单个研究方法来进行敏感性分析,每项指标结果均未发生明显改变,提示分析结果较为稳定。

4. 讨论

本meta分析包括31篇符合纳入标准的RCT,以评估VR对亚急性期脑卒中患者上肢和手部运动功能、平衡、步行能力及日常生活能力的影响。分析结果表明,VR能显著改善FMA-UE、TUGT、BI的评分,但是在ARAT、WMFT、BBS、BBT、FIM评分上无显著性效果。

在上肢和手部的运动功能方面,VR组FMA-UE评分改善显著优于常规训练组,但对WMFT、ARAT及BBT的评分来说,VR组并没有明显优于对照组,可能是由于当前VR技术在识别手部精细活动方面的局限性导致的[38]。亚组分析结果显示干预时长 ≥ 4 W时,VR干预组的FMA-UE、WMFT及BBT评分显著优于对照组,干预次数的增加(>15次)在FMA-UE和BBT指标中也显示出显著的改善效果,因此干预时长和干预次数可能是影响上肢功能恢复的重要影响因素。然而,由于纳入的研究数量相对较少,仍然需要更多的随机对照试验来验证干预效果。

在平衡和步行能力方面,VR组BBS和TUGT的评分显著优于常规训练组,亚组分析结果显示,干预次数的增加(>15次)和干预周期的延长(≥4周)均显著改善了VR组的BBS和TUGT评分。基于VR的步行训练能在安全的环境下模拟日常行走环境,在步行能力训练的同时能提高患者应对环境扰动的能力,增强患者对复杂地形和突发情况的适应能力[39]。此外,VR训练通过视觉和听觉反馈增强感觉输入,帮助患者更好地理解和调整自己的运动模式,从而改善步态和平衡[30]

日常生活能力上,研究发现VR组的BI评分显著优于常规训练组,表明VR训练在提升基础日常生活活动能力上具有明显优势。与过往发现不同的是,本实验中FIM评分并未显示出显著差异,这可能是由于FIM涵盖范围较广,不仅包括基础ADL活动,还涵盖对受试者的认知功能和社会参与能力的评估,亚急性期作为脑卒中后恢复的一个较短的临床阶段,患者的恢复速度差异性较大,导致FIM评分不够显著[40]。相较于BI,FIM的综合评估特性使其在显示VR训练的全面效果方面可能较为保守。BI的简洁评分体系专注于基本的身体活动和生活技能,使其在临床应用中更加广泛,尤其是在快速评估和监测康复进程方面[41]。因此,本研究结果表明VR训练对亚急性期脑卒中患者的基本日常生活活动能力的改善效果是显著的,但是FIM的结果提示我们,在全面改善患者的功能独立性方面,可能需要更多元化的训练方法。

本研究存在一定的局限性:① 纳入结局指标间采用的量表存在一定差异,有部分研究的纳入样本量较小;② 不同的研究可能使用不同的VR设备干预形式及干预频次存在差异;③ 多项结果显示出较高的异质性,这可能是由于患者特征(如年龄、性别、卒中类型)差异、训练频率和干预周期的不一致所致。尽管通过亚组分析探讨了训练次数和周期的影响,但不同指标在改善幅度上的差异表明,VR训练的具体效果可能受到任务内容、训练复杂度及患者个体差异的影响。

5. 结论

本项元分析结合了31篇随机对照试验,研究了VR训练对亚急性期脑卒中患者的康复效果。结果显示,VR训练在改善患者的FMA-UE评分、TUGT以及BI评分具有显著的效果。然而,对于平衡能力、手部精细活动及功能独立性方面,VR训练的效果并不显著。未来的研究应进一步探索VR设备的精准性和个体化设计,并优化干预方案的频率与周期,以提升长期康复效果,为脑卒中患者的全面康复和生活质量的改善提供更有力的支持。

基金项目

江苏省研究生科研创新计划(KYCX23_2375),项目负责人:聂瑶。

参考文献

[1] GBD 2019 Stroke Collaborators (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet. Neurology, 20, 795-820.
[2] Zhao, Y., Hua, X., Ren, X., Ouyang, M., Chen, C., Li, Y., et al. (2022) Increasing Burden of Stroke in China: A Systematic Review and Meta-Analysis of Prevalence, Incidence, Mortality, and Case Fatality. International Journal of Stroke, 18, 259-267.
https://doi.org/10.1177/17474930221135983
[3] Leong, S.C., Tang, Y.M., Toh, F.M. and Fong, K.N.K. (2022) Examining the Effectiveness of Virtual, Augmented, and Mixed Reality (VAMR) Therapy for Upper Limb Recovery and Activities of Daily Living in Stroke Patients: A Systematic Review and Meta-Analysis. Journal of NeuroEngineering and Rehabilitation, 19, Article No. 93.
https://doi.org/10.1186/s12984-022-01071-x
[4] Türkbey, T., Kutlay, S. and Gök, H. (2017) Clinical Feasibility of Xbox Kinecttm Training for Stroke Rehabilitation: A Single-Blind Randomized Controlled Pilot Study. Journal of Rehabilitation Medicine, 49, 22-29.
https://doi.org/10.2340/16501977-2183
[5] Szczepańska-Gieracha, J., Cieślik, B., Rutkowski, S., Kiper, P. and Turolla, A. (2020) What Can Virtual Reality Offer to Stroke Patients? A Narrative Review of the Literature. NeuroRehabilitation, 47, 109-120.
https://doi.org/10.3233/nre-203209
[6] Bernhardt, J., Hayward, K.S., Kwakkel, G., Ward, N.S., Wolf, S.L., Borschmann, K., et al. (2017) Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair, 31, 793-799.
https://doi.org/10.1177/1545968317732668
[7] Cano-Mañas, M.J., Collado-Vázquez, S., Rodríguez Hernández, J., Muñoz Villena, A.J. and Cano-de-la-Cuerda, R. (2020) Effects of Video-Game Based Therapy on Balance, Postural Control, Functionality, and Quality of Life of Patients with Subacute Stroke: A Randomized Controlled Trial. Journal of Healthcare Engineering, 2020, Article ID: 5480315.
https://doi.org/10.1155/2020/5480315
[8] Laffont, I., Froger, J., Jourdan, C., Bakhti, K., van Dokkum, L.E.H., Gouaich, A., et al. (2020) Rehabilitation of the Upper Arm Early after Stroke: Video Games versus Conventional Rehabilitation. A Randomized Controlled Trial. Annals of Physical and Rehabilitation Medicine, 63, 173-180.
https://doi.org/10.1016/j.rehab.2019.10.009
[9] Lam, S.S.L., Liu, T.W., Ng, S.S.M., Lai, C.W.K. and Woo, J. (2022) Bilateral Movement-Based Computer Games Improve Sensorimotor Functions in Subacute Stroke Survivors. Journal of Rehabilitation Medicine, 54, jrm00307.
https://doi.org/10.2340/jrm.v54.913
[10] Bian, M., Shen, Y., Huang, Y., Wu, L., Wang, Y., He, S., et al. (2022) A Non-Immersive Virtual Reality-Based Intervention to Enhance Lower-Extremity Motor Function and Gait in Patients with Subacute Cerebral Infarction: A Pilot Randomized Controlled Trial with 1-Year Follow-Up. Frontiers in Neurology, 13, Article ID: 985700.
https://doi.org/10.3389/fneur.2022.985700
[11] Brunner, I., Skouen, J.S., Hofstad, H., Aßmus, J., Becker, F., Sanders, A., et al. (2017) Virtual Reality Training for Upper Extremity in Subacute Stroke (Virtues). Neurology, 89, 2413-2421.
https://doi.org/10.1212/wnl.0000000000004744
[12] Cannell, J., Jovic, E., Rathjen, A., Lane, K., Tyson, A.M., Callisaya, M.L., et al. (2017) The Efficacy of Interactive, Motion Capture-Based Rehabilitation on Functional Outcomes in an Inpatient Stroke Population: A Randomized Controlled Trial. Clinical Rehabilitation, 32, 191-200.
https://doi.org/10.1177/0269215517720790
[13] Chen, L., Chen, Y., Fu, W.B., Huang, D.F. and Lo, W.L.A. (2022) The Effect of Virtual Reality on Motor Anticipation and Hand Function in Patients with Subacute Stroke: A Randomized Trial on Movement-Related Potential. Neural Plasticity, 2022, Article ID: 7399995.
https://doi.org/10.1155/2022/7399995
[14] Huang, Q., Jiang, X., Jin, Y., Wu, B., Vigotsky, A.D., Fan, L., et al. (2023) Immersive Virtual Reality-Based Rehabilitation for Subacute Stroke: A Randomized Controlled Trial. Journal of Neurology, 271, 1256-1266.
https://doi.org/10.1007/s00415-023-12060-y
[15] Ikbali Afsar, S., Mirzayev, I., Umit Yemisci, O. and Cosar Saracgil, S.N. (2018) Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial. Journal of Stroke and Cerebrovascular Diseases, 27, 3473-3478.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007
[16] Kim, W., Cho, S., Park, S.H., Lee, J., Kwon, S. and Paik, N. (2018) A Low Cost Kinect-Based Virtual Rehabilitation System for Inpatient Rehabilitation of the Upper Limb in Patients with Subacute Stroke. Medicine, 97, e11173.
https://doi.org/10.1097/md.0000000000011173
[17] Kiper, P., Przysiężna, E., Cieślik, B., Broniec-Siekaniec, K., Kucińska, A., Szczygieł, J., et al. (2022) Effects of Immersive Virtual Therapy as a Method Supporting Recovery of Depressive Symptoms in Post-Stroke Rehabilitation: Randomized Controlled Trial. Clinical Interventions in Aging, 17, 1673-1685.
https://doi.org/10.2147/cia.s375754
[18] Lee, M., Shin, D. and Song, C. (2016) Canoe Game-Based Virtual Reality Training to Improve Trunk Postural Stability, Balance, and Upper Limb Motor Function in Subacute Stroke Patients: A Randomized Controlled Pilot Study. Journal of Physical Therapy Science, 28, 2019-2024.
https://doi.org/10.1589/jpts.28.2019
[19] Lee, S.J. and Chun, M.H. (2014) Combination Transcranial Direct Current Stimulation and Virtual Reality Therapy for Upper Extremity Training in Patients with Subacute Stroke. Archives of Physical Medicine and Rehabilitation, 95, 431-438.
https://doi.org/10.1016/j.apmr.2013.10.027
[20] Malik, A.N. and Masood, T. (2020) Task-Oriented Training and Exer-Gaming for Improving Mobility after Stroke: A Randomized Trial. Journal of the Pakistan Medical Association, 71, 186-190.
https://doi.org/10.47391/jpma.560
[21] Rogers, J.M., Duckworth, J., Middleton, S., Steenbergen, B. and Wilson, P.H. (2019) Elements Virtual Rehabilitation Improves Motor, Cognitive, and Functional Outcomes in Adult Stroke: Evidence from a Randomized Controlled Pilot Study. Journal of NeuroEngineering and Rehabilitation, 16, Article No. 56.
https://doi.org/10.1186/s12984-019-0531-y
[22] Sana, V., Ghous, M., Kashif, M., Albalwi, A., Muneer, R. and Zia, M. (2023) Effects of Vestibular Rehabilitation Therapy versus Virtual Reality on Balance, Dizziness, and Gait in Patients with Subacute Stroke: A Randomized Controlled Trial. Medicine, 102, e33203.
https://doi.org/10.1097/md.0000000000033203
[23] Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D., et al. (2010) Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. Stroke, 41, 1477-1484.
https://doi.org/10.1161/strokeaha.110.584979
[24] Sheehy, L., Taillon‐Hobson, A., Sveistrup, H., Bilodeau, M., Yang, C. and Finestone, H. (2020) Sitting Balance Exercise Performed Using Virtual Reality Training on a Stroke Rehabilitation Inpatient Service: A Randomized Controlled Study. PM&R, 12, 754-765.
https://doi.org/10.1002/pmrj.12331
[25] Shin, S., Lee, H., Chang, W.H., Ko, S.H., Shin, Y. and Kim, Y. (2022) A Smart Glove Digital System Promotes Restoration of Upper Limb Motor Function and Enhances Cortical Hemodynamic Changes in Subacute Stroke Patients with Mild to Moderate Weakness: A Randomized Controlled Trial. Journal of Clinical Medicine, 11, Article No. 7343.
https://doi.org/10.3390/jcm11247343
[26] Türkbey, T., Kutlay, S. and Gök, H. (2017) Clinical Feasibility of Xbox Kinecttm Training for Stroke Rehabilitation: A Single-Blind Randomized Controlled Pilot Study. Journal of Rehabilitation Medicine, 49, 22-29.
https://doi.org/10.2340/16501977-2183
[27] Zhang, T., Wang, Z., Wang, P., Xing, L., Mei, L. and Zhao, J. (2017) Leap Motion-Based Virtual Reality Training for Improving Motor Functional Recovery of Upper Limbs and Neural Reorganization in Subacute Stroke Patients. Neural Regeneration Research, 12, 1823-1831.
https://doi.org/10.4103/1673-5374.219043
[28] Choi, H., Shin, W. and Bang, D. (2021) Application of Digital Practice to Improve Head Movement, Visual Perception and Activities of Daily Living for Subacute Stroke Patients with Unilateral Spatial Neglect: Preliminary Results of a Single-Blinded, Randomized Controlled Trial. Medicine, 100, e24637.
https://doi.org/10.1097/md.0000000000024637
[29] Choi, J.H., Han, E.Y., Kim, B.R., Kim, S.M., Im, S.H., Lee, S.Y., et al. (2014) Effectiveness of Commercial Gaming-Based Virtual Reality Movement Therapy on Functional Recovery of Upper Extremity in Subacute Stroke Patients. Annals of Rehabilitation Medicine, 38, 485-493.
https://doi.org/10.5535/arm.2014.38.4.485
[30] de Rooij, I.J.M., van de Port, I.G.L., Punt, M., Abbink-van Moorsel, P.J.M., Kortsmit, M., van Eijk, R.P.A., et al. (2021) Effect of Virtual Reality Gait Training on Participation in Survivors of Subacute Stroke: A Randomized Controlled Trial. Physical Therapy, 101, pzab051.
https://doi.org/10.1093/ptj/pzab051
[31] Hyun, S., Lee, J. and Lee, B. (2021) The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18, Article No. 12229.
https://doi.org/10.3390/ijerph182212229
[32] Rodríguez-Hernández, M., Polonio-López, B., Corregidor-Sánchez, A., Martín-Conty, J.L., Mohedano-Moriano, A. and Criado-Álvarez, J. (2023) Can Specific Virtual Reality Combined with Conventional Rehabilitation Improve Poststroke Hand Motor Function? A Randomized Clinical Trial. Journal of NeuroEngineering and Rehabilitation, 20, Article No. 38.
https://doi.org/10.1186/s12984-023-01170-3
[33] Dąbrowská, M., Pastucha, D., Janura, M., Tomášková, H., Honzíková, L., Baníková, Š., et al. (2023) Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients. Medicina, 59, Article No. 1669.
https://doi.org/10.3390/medicina59091669
[34] Hsieh, H. (2019) Use of a Gaming Platform for Balance Training after a Stroke: A Randomized Trial. Archives of Physical Medicine and Rehabilitation, 100, 591-597.
https://doi.org/10.1016/j.apmr.2018.11.001
[35] Sip, P., Kozłowska, M., Czysz, D., Daroszewski, P. and Lisiński, P. (2023) Perspectives of Motor Functional Upper Extremity Recovery with the Use of Immersive Virtual Reality in Stroke Patients. Sensors, 23, Article No. 712.
https://doi.org/10.3390/s23020712
[36] Adomavičienė, A., Daunoravičienė, K., Kubilius, R., Varžaitytė, L. and Raistenskis, J. (2019) Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Medicina, 55, Article No. 98.
https://doi.org/10.3390/medicina55040098
[37] McEwen, D., Taillon-Hobson, A., Bilodeau, M., Sveistrup, H. and Finestone, H. (2014) Virtual Reality Exercise Improves Mobility after Stroke. Stroke, 45, 1853-1855.
https://doi.org/10.1161/strokeaha.114.005362
[38] Adie, K., Schofield, C., Berrow, M., Wingham, J., Humfryes, J., Pritchard, C., et al. (2016) Does the Use of Nintendo Wii Sportstm Improve Arm Function? Trial of Wiitm in Stroke: A Randomized Controlled Trial and Economics Analysis. Clinical Rehabilitation, 31, 173-185.
https://doi.org/10.1177/0269215516637893
[39] In, T., Lee, K. and Song, C. (2016) Virtual Reality Reflection Therapy Improves Balance and Gait in Patients with Chronic Stroke: Randomized Controlled Trials. Medical Science Monitor, 22, 4046-4053.
https://doi.org/10.12659/msm.898157
[40] Peiris, C.L., Taylor, N.F., Watts, J.J., Shields, N., Brusco, N.K. and Mortimer, D. (2019) Mapping the Functional Independence Measure to a Multi-Attribute Utility Instrument for Economic Evaluations in Rehabilitation: A Secondary Analysis of Randomized Controlled Trial Data. Disability and Rehabilitation, 42, 3024-3032.
https://doi.org/10.1080/09638288.2019.1582720
[41] Quinn, T., Harrison and McArthur (2013) Assessment Scales in Stroke: Clinimetric and Clinical Considerations. Clinical Interventions in Aging, 8, 201-211.
https://doi.org/10.2147/cia.s32405