碱性成纤维细胞生长因子在鼓膜穿孔中的应用
Application of Basic Fibroblast Growth Factor in Tympanic Membrane Perforation
DOI: 10.12677/acm.2024.14112997, PDF, HTML, XML,   
作者: 赵旭旭:重庆医科大学附属第一医院耳鼻咽喉头颈外科,重庆
关键词: 鼓膜穿孔碱性成纤维细胞生长因子Tympanic Membrane Perforation Basic Fibroblast Growth Factor
摘要: 鼓膜穿孔(tympanic membrane perforation, TMP)是耳鼻咽喉科常见的疾病,根据病程可分为急性穿孔和慢性穿孔,对于急性穿孔的处理往往是等待其自发愈合,而慢性TMP通常需要手术治疗,手术费用高,需要高级的耳科设备,且自身移植材料会造成取材部位的损伤。生物材料在鼓膜的修复中显示出巨大的潜力,包括细胞、支架以及生长因子。其中,碱性成纤维细胞生长因子(bFGF)可以促进成纤维细胞的增殖和残留鼓膜中纤维层的血运重建,从而促进鼓膜愈合,在鼓膜穿孔的非手术治疗中起了重要的作用,本文将碱性成纤维细胞生长因子在TMP中的应用作以综述,希望为TMP的治疗提供新思路。
Abstract: Tympanic membrane perforation (TMP) is a common disease in otolaryngology, which can be divided into acute perforation and chronic perforation according to the course of disease. At present, the treatment of acute tympanic membrane perforation is often to wait for its spontaneous healing, while chronic tympanic membrane perforation usually requires surgical treatment, which is expensive, requires advanced ear equipment, and self-transplantation materials will cause damage to the site. Biomaterials show great potential in the repair of tympanic membranes, including cells, scaffolds, and growth factors. Among them, fibroblast growth factor 2 (bFGF) can promote the proliferation of fibroblasts and the revascularization of the fibrous layer in the tympanic membrane residue, so as to promote the healing of the tympanic membrane, which plays an important role in non-operation treatment of TMP. In this paper, we review the application of bFGF and its related derivatives in TMP, hoping to provide a new treatment selection for repairing tympanic membrane.
文章引用:赵旭旭. 碱性成纤维细胞生长因子在鼓膜穿孔中的应用[J]. 临床医学进展, 2024, 14(11): 1164-1169. https://doi.org/10.12677/acm.2024.14112997

1. 引言

鼓膜穿孔(tympanic membrane perforation, TMP)通常会导致听力下降、感染、中耳胆脂瘤和其他并发症。外伤性TMP可自发愈合,愈合率与穿孔大小和位置相关,一项前瞻性研究中提到,鼓膜穿孔小于1/4的患者中,72%的患者在保守治疗下一个月内自动愈合,而较大的鼓膜穿孔只有25%的患者愈合[1]。穿孔累及环韧带、锤骨柄不容易愈合[2]。此外,自发愈合后的鼓膜与正常鼓膜的结构有所不同,缺乏纤维层,容易发生再穿孔[3]。慢性TMP通常难以自发愈合,常常需要手术治疗,鼓膜移植材料多是取自自身的软骨或筋膜,修复后的鼓膜与正常鼓膜的声传输性能不同[4],而且取材有限且会导致取材部位的疤痕形成。以细胞、支架、生长因子为代表的生物材料修复TMP是重要的前言研究。其中,碱性成纤维细胞生长因子(bFGF)可以促进成纤维细胞的增殖和残留鼓膜中纤维层的血运重建,从而促进鼓膜愈合[5]。有望成为治疗慢性TMP的一种成本效益高、侵入性较小和可靠的非手术治疗方式。bFGF可单独用于急性外伤性TMP促进鼓膜愈合,也可用于鼓膜修补术中提高愈合率,同时也是生物工程鼓膜重要的成分。本研究将碱性成纤维细胞生长因子在TMP中的应用予以综述,希望为TMP的治疗提供新的思路。

2. 碱性成纤维细胞生长因子愈合TMP机制

bFGF也叫成纤维细胞生长因子2、II类肝素结合生长因子,贝复济、贝复舒是其在临床中常见的制剂[6]。bFGF在机体内作用广泛,参与血管生成,损伤修复和神经组织生长发育,已被用于治疗压疮、溃疡和烧伤等难以愈合的伤口。bFGF通过促进内皮细胞、成纤维细胞的增殖和分化以及穿孔边缘的新生血管的形成从而促进鼓膜愈合。鼓膜的愈合经历了三个阶段:炎症、增殖和重塑,炎症期以肿胀和由间质、淋巴和血液组成的局部渗出反应为特征。增殖期发生在损伤后3~4天,在此期间,bFGF促进穿孔边缘角质形成细胞的迁移和增殖,这些细胞可鼓膜愈合过程中的支架结构,结缔组织参与最后的修复,而bFGF可介导结缔组织反应[7]。自发愈合的鼓膜往往较薄,缺乏纤维层,再穿孔的风险较高。bFGF可促进新血管形成并改善鼓膜纤维层中胶原纤维的排列,从而降低再穿孔的风险[8]。此外,外用bFGF可以通过保持TMP边缘的湿润从而缩短愈合时间、提高愈合率[9]

3. 碱性成纤维细胞生长因子在鼓膜穿孔中的应用

3.1. bFGF在急性TMP中的应用

急性TMP可以自发愈合,与自发愈合相比,在急性TMP中使用bFGF可以缩短穿孔的愈合时间、提高穿孔愈合率。一项关于bFGF治疗TMP的有效性的meta分析表明,与无干预相比,在急性TMP中使用bFGF,bFGF组的闭合率范围为89%~100% (中位数97.5%),而对照组的闭合率范围为53%~90% (中位数79.5%) [10]。此外,bFGF能够促进特殊类型TMP的愈合。研究者将bFGF用于亚急性TMP、边缘卷曲的大鼓膜(>50%)穿孔、爆炸引起的TMP,均获得了较好的疗效[11]-[13]

3.2. 碱性成纤维细胞因子在慢性TMP中的应用

慢性TMP被定义为穿孔时间大于3个月而不能自行愈合,根据病因又可分为慢性外伤性鼓膜穿孔与慢性中耳炎性鼓膜穿孔,慢性TMP难以自发愈合,往往需要通过手术治疗,bFGF为不想手术的患者提供了一种选择。对于慢性TMP,通常需要切除穿孔边缘,制作新鲜创面后再使用一定疗程的bFGF。bFGF可促进慢性外伤性穿孔和中耳炎引起的小穿孔修复,对于较大的、中耳炎引起的TMP效果较差。陈如如等人[14]将bFGF用于慢性外伤性TMP和中耳炎引起的TMP的患者中,在慢性外伤性TMP的患者中bFGF治疗组和对照组的愈合率分别为88.9% (8/9)和9.1% (1/11),而在中耳炎引起的慢性TMP中,治疗组和对照组之间的愈合率均低,两组间没有统计学差异。另一项研究中也得到了相似的结论,Zihan Lou等人将bFGF用于慢性TMP的病人,66.7% (4/6)的慢性中耳炎小穿孔实现了完全闭合,在7位中等大小的慢性穿孔的病人中,2人外伤性TMP获得愈合,5人继发于慢性化脓性中耳炎均未愈合[5]。此外,在鼓膜成形术中使用bFGF能提高愈合率,Lou在全厚软骨鼓膜成形术中,使用浸有bFGF的可吸收材料填塞固定移植的鼓膜,两年的随访研究发现,与对照组相比,bFGF组可以提高长期愈合率[15]

3.3. 碱性成纤维细胞因子在鼓膜修补生物材料中的应用

鼓膜修补的材料大多为取自自身的颞肌筋膜、耳屏软骨,会导致取材部位的瘢痕形成,且往往比正常鼓膜厚,在声音传输方面具有一定的局限。生物材料的发展为鼓膜修补材料带来了新的选择,生长因子是生物工程鼓膜中重要的组成成分,其在生物工程鼓膜中的应用方式有三种:含支架、种子细胞和生长因子的人工鼓膜;生长因子浸泡的支架材料;支架材料放置于穿孔部位,生长因子滴耳;生物支架可提供结构支持以引导组织再生,而生物活性分子促进细胞增殖和迁移,相比于取自自身材料的鼓膜移植物,生物工程鼓膜与正常鼓膜更相似,在声音传输方面具有更好的性能。Nobuhiro Hakuba [16]等人使用胶原肽和硅酮膜制成支架材料放置于穿孔边缘,在边缘加用bFGF治疗TMP,在慢性鼓膜小穿孔中获得了较好的疗效。自发愈合的鼓膜缺乏纤维层,鼓膜很薄,加有bFGF的生物材料愈合的鼓膜更接近正常鼓膜。Yao X. [17]制作脱细胞胶原支架(ACS),并使用bFGF滴耳治疗大鼠外伤性TMP,在显微镜下观察,与自发愈合的松散无须的胶原纤维相比,该法愈合后的鼓膜纤维层中有大量紧密、排列良好的胶原纤维,且外观与厚度和正常鼓膜更为相近。

bFGF联合明胶海绵治疗TMP的研究较多,Zhong-Hai Jin等人进行的一项随机对照试验发现,与单纯观察和明胶海绵加无菌水修补相比,bFGF加明胶海绵可缩短急性TMP的愈合时间,提高闭合率[18]。鼓膜穿孔边缘提供细胞,以生物材料为支架,bFGF作为调节因子,引导上皮迁移,从而闭合穿孔[19]。bFGF与明胶海绵的联合应用在治疗慢性TMP中效果较好,两项研究应用了同样的方法,内镜下制作新鲜创面,使用bFGF浸泡的明胶海绵填塞中耳,并用纤维蛋白胶封闭穿孔,随访中若穿孔没有愈合,再重复上述治疗。Shin-Ichi Kanemaru等人[20]招募了20位患者,治疗后的16周的愈合率与穿孔面积缩小率分别为75%和92.2%。

3.4. 碱性成纤维细胞生长因子治疗鼓膜穿孔的安全性

bFGF治疗TMP是安全有效的,一项meta显示,bFGF和对照组在治疗鼓膜穿孔中的并发症发生率无统计学差异[21]。有学者认为在外伤后的组织应用bFGF会增加感染风险,且感染的风险呈剂量依赖性[22]。但未有临床试验报道将bFGF用于TMP中增加了感染的风险。Lou等人的研究发现,bFGF的使用会增加耳流液的风险,但耳流液并不影响闭合率,只是延长了闭合时间,发生耳流液的患者最后会获得良好的闭合[18] [23]

有研究者认为,由于bFGF具有促进增殖的作用,bFGF的使用可能会增加胆脂瘤的发生,但是在临床试验的随访中并没有观察到胆脂瘤的发生。Lou等人进行了一项关于创伤性TMP后应用bFGF的短期和长期副作用的研究中显示,一年的随访研究并没有发现胆脂瘤的发生[23]在全软骨鼓膜成形术中使用bFGF的两年的随访中也没有胆脂瘤的发生[15]。此外,bFGF没有耳毒性,应用于中耳时不会导致镫骨损伤或外淋巴渗漏迹象[24]

bFGF是一种高度不稳定的蛋白质[25],环境温度下,生物活性仅持续24~36小时,在临床中的应用受到一定的限制,因此不管是单独使用,还是联合生物材料治疗TMP,都应当注意其活性持续时间的问题。研究者在bFGF中加入甲基纤维素、丙氨酸、人血白蛋白,并在体外研究中证实了其稳定性与有效性[26]。有望解决其在生物支架中因稳定性差而存在的局限性。

3.5. 碱性成纤维细胞生长因子与其他生长因子在鼓膜穿孔中应用的比较

Lou的研究认为,bFGF单独用于外伤性TMP可以提高愈合率、缩短愈合时间,但是局部应用bFGF并没有比氧氟沙星、表皮生长因子获得更好的闭合率或更短的闭合时间[27] [28]。bFGF在治疗TMP中是否比其他生长因子更有优势,这是值得我们关注及研究的。

血小板浓缩物是血液离心分层后的中间层产物,常见的包括富血小板纤维和富血小板血浆[29] [30]。富血小板血浆富含血管生成因子、血小板衍生的生长因子和转化生长因子等多种生长因子,可以改善胶原蛋白的合成和沉积,从而促进伤口减小、上皮再生和真皮血管生成[31]。在治疗急性TMP方面,富血小板纤维比自发愈合或纸片贴补具有更高的成功率[30]。鼓膜修补术中使用富血小板血浆可以有效的促进愈合,Cristina Tiple [32]将自制的血小板纤维蛋白膜用于软骨法鼓膜成形术中,愈合率与术后听力明显改善。一项meta分析显示,在鼓膜修补术中使用富血小板血浆治疗的闭合率范围为85.7%至100% (中位92.5%),而常规手术组的闭合率范围为55%至92% (中位82.6%) [29]。与bFGF在TMP中使用可能会增加感染不同,有研究者认为,富血小板纤维的使用可以减少感染,这可能与其中含有白细胞有关[30]。除了应用于鼓膜成形术中,与bFGF一样,血小板浓缩物也被制成多种生物材料用于TMP [33]

表皮生长因子(EGF)也被用于TMP的治疗中,EGF与bFGF均可加速外伤性TMP的闭合,Zhengcai Lou [34]进行的一项系统评价认为,EGF对急性穿孔的再生效果更好,而bFGF结合生物材料对慢性穿孔的修复效果优于EGF。EGF同样被用于生物工程鼓膜中,Hoon Seonwoo [35]开发了释放表皮生长因子的径向排列的纳米纤维贴片,该贴片可以缓慢的释放表皮生长因子,将该贴片用于慢性TMP的大鼠体内,可有效刺激慢性TMP的愈合,且愈合的鼓膜显示出与正常鼓膜相似的组织学特性。高剂量的表皮生长因子似乎会增加感染的风险,研究者采用高低剂量的EFG滴入外耳道,与低剂量以及自然愈合相比,高剂量的EFG组患者感染风险更高[36]

4. 总结与展望

bFGF的使用为TMP的患者带来获益,外用bFGF可提高穿孔的愈合率,缩短愈合时间,有些学者认为使用碱性成纤维细胞因子可能会增加感染的风险,但缺少临床研究支持这一观点。未来需要更大样本地研究bFGF在TMP中的获益与风险。

bFGF相关的生物材料在鼓膜再生过程中展现出良好的应用前景,可减少取材部位的创伤,并且有望获得与正常鼓膜相似的声传输性能,但目前生物材料应用于TMP的时间短,且多数都是基础研究,相关的临床试验很少,需要更多的临床试验验证材料的有效性与安全性。

与其他生长因子相比,bFGF在TMP中使用似乎并没有优势,在闭合外伤性TMP中,bFGF和表皮生长因子在愈合率和闭合时间上相当,因血小板浓缩物中含有白细胞等抗炎因子,其能更好地降低感染。目前有关生长因子的支架和生物材料很多,三种生长因子均有相关的生物材料,但多数仅是动物实验中应用,在临床中使用还需要进一步的研究。

利益冲突

所有作者声明不存在利益冲突。

参考文献

[1] Harvie, M., Roy, C.F. and Gurberg, J. (2024) Traumatic Tympanic Membrane Perforations. Canadian Medical Association Journal, 196, E100.
https://doi.org/10.1503/cmaj.230868
[2] Bishnoi, T., Marlapudi, S.K. and Sahu, P.K. (2023) Factors Influencing the Outcome of Spontaneous Healing of Traumatic Tympanic Membrane Perforation: A Clinical Prospective Observational Study. Indian Journal of Otolaryngology and Head & Neck Surgery, 75, 1774-1781.
https://doi.org/10.1007/s12070-023-03722-4
[3] Lou, Z. (2021) The Effect of Epidermal Growth Factor on the Pseudo-Healing of Traumatic Tympanic Membrane Perforations. Brazilian Journal of Otorhinolaryngology, 87, 53-58.
https://doi.org/10.1016/j.bjorl.2019.06.011
[4] Eberhard, K.E., Masud, S.F., Knudson, I.M., Kirubalingam, K., Khalid, H., Remenschneider, A.K., et al. (2021) Mechanics of Total Drum Replacement Tympanoplasty Studied with Wideband Acoustic Immittance. Otolaryngology-Head and Neck Surgery, 166, 738-745.
https://doi.org/10.1177/01945998211029541
[5] Lou, Z., Lou, Z., Jin, K., Sun, J. and Chen, Z. (2021) Topical Application of bFGF Alone for the Regeneration of Chronic Tympanic Membrane Perforations: A Preliminary Case Series. Stem Cells International, 2021, Article 5583046.
https://doi.org/10.1155/2021/5583046
[6] 陈伟东, 郭伟霞, 刘男, 等. 重组牛碱性成纤维细胞生长因子外用凝胶联合耳内镜下软骨-软骨膜修补术治疗鼓膜大穿孔的临床研究[J]. 现代生物医学进展, 2024, 24(1): 185-188.
[7] Jeong, M., Bojkovic, K., Sagi, V. and Stankovic, K.M. (2021) Molecular and Clinical Significance of Fibroblast Growth Factor 2 in Development and Regeneration of the Auditory System. Frontiers in Molecular Neuroscience, 14, Article 757441.
https://doi.org/10.3389/fnmol.2021.757441
[8] Teh, B.M., Marano, R.J., Shen, Y., Friedland, P.L., Dilley, R.J. and Atlas, M.D. (2013) Tissue Engineering of the Tympanic Membrane. Tissue Engineering Part B: Reviews, 19, 116-132.
https://doi.org/10.1089/ten.teb.2012.0389
[9] Lou, Z.C. and Lou, Z.H. (2017) A Moist Edge Environment Aids the Regeneration of Traumatic Tympanic Membrane Perforations. The Journal of Laryngology & Otology, 131, 564-571.
https://doi.org/10.1017/s0022215117001001
[10] Huang, J., Teh, B.M., Eikelboom, R.H., Han, L., Xu, G., Yao, X., et al. (2020) The Effectiveness of bFGF in the Treatment of Tympanic Membrane Perforations: A Systematic Review and Meta-Analysis. Otology & Neurotology, 41, 782-790.
https://doi.org/10.1097/mao.0000000000002628
[11] Lou, Z., Huang, P., Yang, J., Xiao, J. and Chang, J. (2016) Direct Application of bFGF without Edge Trimming on Human Subacute Tympanic Membrane Perforation. American Journal of Otolaryngology, 37, 156-161.
https://doi.org/10.1016/j.amjoto.2015.11.004
[12] Lou, Z., Lou, Z., Tang, Y. and Xiao, J. (2015) Utility of Basic Fibroblast Growth Factor in the Repair of Blast-Induced Total or Near-Total Tympanic Membrane Perforations: A Pilot Study. American Journal of Otolaryngology, 36, 794-797.
https://doi.org/10.1016/j.amjoto.2015.08.007
[13] Lou, Z.‐C. and Wang, Y.‐B.‐Z. (2013) Healing Outcomes of Large (>50%) Traumatic Membrane Perforations with Inverted Edges Following No Intervention, Edge Approximation and Fibroblast Growth Factor Application; a Sequential Allocation, Three‐Armed Trial. Clinical Otolaryngology, 38, 289-296.
https://doi.org/10.1111/coa.12135
[14] 陈如如, 项海杰, 张初琴, 等. 重组牛碱性成纤维细胞生长因子治疗慢性鼓膜穿孔的相关机制及临床研究[J]. 中国耳鼻咽喉头颈外科, 2022, 29(8): 527-529, 515.
[15] Lou, Z. (2021) Full-Thickness Cartilage Graft Myringoplasty Combined with Topical Application of bFGF for Repair of Perforations with Extensive Epithelialization. Auris Nasus Larynx, 48, 601-608.
https://doi.org/10.1016/j.anl.2020.11.013
[16] Hakuba, N., Hato, N., Okada, M., Mise, K. and Gyo, K. (2015) Preoperative Factors Affecting Tympanic Membrane Regeneration Therapy Using an Atelocollagen and Basic Fibroblast Growth Factor. JAMA Otolaryngology-Head & Neck Surgery, 141, 60-66.
https://doi.org/10.1001/jamaoto.2014.2613
[17] Yao, X., Teh, B.M., Li, H., Hu, Y., Huang, J., Lv, C., et al. (2020) Acellular Collagen Scaffold with Basic Fibroblast Growth Factor for Repair of Traumatic Tympanic Membrane Perforation in a Rat Model. Otolaryngology-Head and Neck Surgery, 164, 381-390.
https://doi.org/10.1177/0194599820938345
[18] Jin, Z., Dong, Y. and Lou, Z. (2017) The Effects of Fibroblast Growth Factor-2 Delivered via a Gelfoam Patch on the Regeneration of Myringosclerotic Traumatic Eardrum Perforations Lying Close to the Malleus. American Journal of Otolaryngology, 38, 582-587.
https://doi.org/10.1016/j.amjoto.2017.06.005
[19] Kanai, R., Kanemaru, S., Yamaguchi, T., Kita, S., Miwa, T., Kumazawa, A., et al. (2024) Outcomes of Regenerative Treatment for over 200 Patients with Tympanic Membrane Perforation. Auris Nasus Larynx, 51, 259-265.
https://doi.org/10.1016/j.anl.2023.09.003
[20] Kanemaru, S., Kanai, R., Omori, K., Yamamoto, N., Okano, T., Kishimoto, I., et al. (2021) Multicenter Phase III Trial of Regenerative Treatment for Chronic Tympanic Membrane Perforation. Auris Nasus Larynx, 48, 1054-1060.
https://doi.org/10.1016/j.anl.2021.02.007
[21] Xu, S., Yu, J., Hu, Y., Yang, B. and Yang, N. (2021) The Effectiveness and Safety of Growth Factors in the Treatment of Tympanic Membrane Perforations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. European Archives of Oto-Rhino-Laryngology, 279, 1863-1874.
https://doi.org/10.1007/s00405-021-06891-6
[22] Kälicke, T., Köller, M., Frangen, T.M., Schlegel, U., Sprutacz, O., Printzen, G., et al. (2007) Local Application of Basic Fibroblast Growth Factor Increases the Risk of Local Infection after Trauma: An in-vitro and in-vivo Study in Rats. Acta Orthopaedica, 78, 63-73.
https://doi.org/10.1080/17453670610013439
[23] Lou, Z.-C. and Lou, Z.-H. (2018) The Short-and Long-Term Adverse Effects of FGF-2 on Tympanic Membrane Perforations. Acta Otorhinolaryngologica Italica, 38, 264-272.
https://doi.org/10.14639/0392-100x-1480
[24] KaseKei‐Ichi, K., Iwanaga, T., Terakado, M., Tanaka, F., Takasaki, K., Kumagami, H., et al. (2008) Influence of Topical Application of Basic Fibroblast Growth Factor upon Inner Ear. Otolaryngology-Head and Neck Surgery, 138, 523-527.
https://doi.org/10.1016/j.otohns.2007.11.025
[25] Benington, L., Rajan, G., Locher, C. and Lim, L.Y. (2020) Fibroblast Growth Factor 2—A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics, 12, Article 508.
https://doi.org/10.3390/pharmaceutics12060508
[26] Benington, L., Mo, J., Li, M., Rajan, G., Locher, C. and Lim, L.Y. (2024) In vitro Assessment of Wound-Healing Efficacy of Stabilized Basic Fibroblast Growth Factor (FGF-2) Solutions. Pharmaceuticals, 17, Article 247.
https://doi.org/10.3390/ph17020247
[27] Lou, Z. and Lou, Z. (2017) A Comparative Study to Evaluate the Efficacy of EGF, FGF-2, and 0.3% (w/v) Ofloxacin Drops on Eardrum Regeneration. Medicine, 96, e7654.
https://doi.org/10.1097/md.0000000000007654
[28] Lou, Z.-C., Lou, Z.-H. and Tang, Y.-M. (2015) Comparative Study on the Effects of EGF and bFGF on the Healing of Human Large Traumatic Perforations of the Tympanic Membrane. The Laryngoscope, 126, E23-E28.
https://doi.org/10.1002/lary.25715
[29] Huang, J., Shi, Y., Wu, L., Lv, C., Hu, Y. and Shen, Y. (2021) Comparative Efficacy of Platelet-Rich Plasma Applied in Myringoplasty: A Systematic Review and Meta-Analysis. PLOS ONE, 16, e0245968.
https://doi.org/10.1371/journal.pone.0245968
[30] Huang, J., Teh, B.M., Zhou, C., Shi, Y. and Shen, Y. (2021) Tympanic Membrane Regeneration Using Platelet-Rich Fibrin: A Systematic Review and Meta-Analysis. European Archives of Oto-Rhino-Laryngology, 279, 557-565.
https://doi.org/10.1007/s00405-021-06915-1
[31] Xu, N., Wang, L., Guan, J., Tang, C., He, N., Zhang, W., et al. (2018) Wound Healing Effects of a Curcuma zedoaria Polysaccharide with Platelet-Rich Plasma Exosomes Assembled on Chitosan/Silk Hydrogel Sponge in a Diabetic Rat Model. International Journal of Biological Macromolecules, 117, 102-107.
https://doi.org/10.1016/j.ijbiomac.2018.05.066
[32] Tiple, C., Chirila, M., Vesa, S.C. and Stamate, M.C. (2023) Plasma-Rich Fibrin—Regenerative Material in Tympanic Membrane Surgery. Medicina, 59, Article 1292.
https://doi.org/10.3390/medicina59071292
[33] Shukla, A., Kaurav, Y.S. and Vatsyayan, R. (2020) Novel Use of Platelet Rich Fibrin Membrane in Transcanal Myringoplasty: A Prospective Study. Indian Journal of Otolaryngology and Head & Neck Surgery, 72, 355-362.
https://doi.org/10.1007/s12070-020-01851-8
[34] Lou, Z., Lou, Z., Jiang, Y. and Chen, Z. (2021) FGF2 and EGF for the Regeneration of Tympanic Membrane: A Systematic Review. Stem Cells International, 2021, Article 2366291.
https://doi.org/10.1155/2021/2366291
[35] Seonwoo, H., Shin, B., Jang, K., Lee, M., Choo, O., Park, S., et al. (2018) Epidermal Growth Factor-Releasing Radially Aligned Electrospun Nanofibrous Patches for the Regeneration of Chronic Tympanic Membrane Perforations. Advanced Healthcare Materials, 8, Article 1801160.
https://doi.org/10.1002/adhm.201801160
[36] Lou, Z.C. (2019) Dose-and Starting Time-Dependent Effect of the Application of EGF to the Regeneration of Traumatic Eardrum. Acta Oto-Laryngologica, 139, 1083-1089.
https://doi.org/10.1080/00016489.2019.1667533