[1]
|
钱凤魁, 王化军, 王祥国, 等. 基于WOFOST模型与遥感数据同化的县级尺度玉米估产研究[J]. 沈阳农业大学学报, 2024, 55(2): 138-152.
|
[2]
|
田谧, 张尚美, 于冷, 等. 生物技术应用在经济结构以及资源环境上的作用研究——基于DNDC-CGE模型的玉米种植影响模拟[J]. 现代管理科学, 2017(1): 66-68.
|
[3]
|
张婷, 赵明, 马树庆, 等. 基于理论-经验模型的春玉米产量丰歉动态气象评估[J]. 气象与环境科学, 2024, 47(2): 86-93.
|
[4]
|
蒙继华, 王亚楠, 林圳鑫, 等. 作物生长模型研究现状与展望[J]. 农业机械学报, 2024, 55(2): 1-15, 27.
|
[5]
|
李荣平, 周广胜, 张慧玲. 植物物候研究进展[J]. 应用生态学报, 2006, 17(3): 541-544.
|
[6]
|
韩少宇. 基于多平台遥感数据的冬小麦长势监测和产量预测[D]: [博士学位论文]. 郑州: 河南农业大学, 2023.
|
[7]
|
罗浩田. 基于混合神经网络的冬小麦产量预测方法研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2022.
|
[8]
|
陈博謇. 基于深度学习的农作物产量品质监测及模型可解释性研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2022.
|
[9]
|
吉文翰, 郑恒彪, 王迪, 等. 基于无人机影像和卷积神经网络的水稻育种材料产量预测研究[J/OL]. 南京农业大学学报: 1-13. http://kns.cnki.net/kcms/detail/32.1148.S.20240616.0000.002.html, 2024-07-18.
|
[10]
|
黄成龙. 人工智能及云计算在智慧农业教学中的应用[J]. 科教文汇(上旬刊), 2020(4): 71-72.
|
[11]
|
王辉, 付虹雨, 岳云开, 等. 基于气候变量的苎麻产量SSA-BP预测模型[J]. 中国农业科技导报, 2024, 26(1): 110-118.
|
[12]
|
赵龙才, 李粉玲, 常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报, 2023, 54(2): 1-19.
|
[13]
|
朱炯. 冬小麦单产遥感多尺度估算方法实验研究[D]: [硕士学位论文]. 北京: 中国科学院大学, 2021.
|
[14]
|
林用智. 耦合多类辐射传输模型的农作物参数定量反演[D]: [硕士学位论文]. 南充: 西华师范大学, 2023.
|
[15]
|
刘玉汐, 赵柠, 任景全, 等. 基于CERES-Maize模型的吉林春玉米遗传参数调试[J]. 中国农学通报, 2017, 33(24): 12-19.
|
[16]
|
郭恩亮. 多模型耦合下的玉米涝灾风险动态评价研究[D]: [博士学位论文]. 长春: 东北师范大学, 2017.
|
[17]
|
Song, L. and Jin, J. (2020) Improving Ceres-Maize for Simulating Maize Growth and Yield under Water Stress Conditions. European Journal of Agronomy, 117, Article ID: 126072. https://doi.org/10.1016/j.eja.2020.126072
|
[18]
|
杨晓娟, 张仁和, 路海东, 等. 基于CERES-Maize模型的玉米水分关键期干旱指数天气保险: 以陕西长武为例一[J]. 中国农业气象, 2020, 41(10): 655-667.
|
[19]
|
李思琪, 王俊洁, 孟明雪, 等. 三江平原白浆土区雨养玉米AquaCrop模型模拟研究[J]. 首都师范大学学报(自然科学版), 2024, 45(5): 74-80.
|
[20]
|
马超, 吴天傲, 章伟忠, 等. 基于AquaCrop模型的水稻多目标灌溉制度优化研究[J]. 灌溉排水学报, 2024, 43(1): 9-16.
|
[21]
|
任聪哲, 范文波, 乔长录, 等. 基于AquaCrop模型的塔额盆地夏玉米节水潜力分析[J]. 干旱地区农业研究, 2024, 42(2): 140-149, 209.
|
[22]
|
徐昆, 朱秀芳, 刘莹, 等. 采用AquaCrop作物生长模型研究中国玉米干旱脆弱性[J]. 农业工程学报, 2020, 36(1): 154-161.
|
[23]
|
高俊, 虞满华, 苏国红. 新质生产力赋能农文旅产业发展[J]. 西昌学院学报(社会科学版), 2024, 36(4): 42-52.
|
[24]
|
Chen, X., Feng, L., Yao, R., Wu, X., Sun, J. and Gong, W. (2021) Prediction of Maize Yield at the City Level in China Using Multi-Source Data. Remote Sensing, 13, Article 146. https://doi.org/10.3390/rs13010146
|
[25]
|
Khanal, S., Klopfenstein, A., KC, K., Ramarao, V., Fulton, J., Douridas, N., et al. (2021) Assessing the Impact of Agricultural Field Traffic on Corn Grain Yield Using Remote Sensing and Machine Learning. Soil and Tillage Research, 208, Article ID: 104880. https://doi.org/10.1016/j.still.2020.104880
|
[26]
|
Cheng, M., Penuelas, J., McCabe, M.F., Atzberger, C., Jiao, X., Wu, W., et al. (2022) Combining Multi-Indicators with Machine-Learning Algorithms for Maize Yield Early Prediction at the County-Level in China. Agricultural and Forest Meteorology, 323, Article ID: 109057. https://doi.org/10.1016/j.agrformet.2022.109057
|
[27]
|
Dhillon, R., Takoo, G., Sharma, V. and Nagle, M. (2024) Utilizing Machine Learning Framework to Evaluate the Effect of Climate Change on Maize and Soybean Yield. Computers and Electronics in Agriculture, 221, Article ID: 108982. https://doi.org/10.1016/j.compag.2024.108982
|
[28]
|
Guo, W., Huang, Y., Huang, Y., Li, Y., Song, X., Shen, J., et al. (2024) Develop Agricultural Planting Structure Prediction Model Based on Machine Learning: The Aging of the Population Has Prompted a Shift in the Planting Structure toward Food Crops. Computers and Electronics in Agriculture, 221, Article ID: 108941. https://doi.org/10.1016/j.compag.2024.108941
|
[29]
|
付渊, 任瑞仙, 王丽琴. 基于农业物联网的梯田农业生产环境构建与应用[J]. 物联网技术, 2024, 14(7): 133-135.
|
[30]
|
van Klompenburg, T., Kassahun, A. and Catal, C. (2020) Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Computers and Electronics in Agriculture, 177, Article ID: 105709. https://doi.org/10.1016/j.compag.2020.105709
|
[31]
|
Shetty, S.A., Padmashree, T., Sagar, B.M. and Cauvery, N.K. (2021) Performance Analysis on Machine Learning Algorithms with Deep Learning Model for Crop Yield Prediction. In: Jeena Jacob, I., Kolandapalayam Shanmugam, S., Piramuthu, S. and Falkowski-Gilski, P., Eds., Data Intelligence and Cognitive Informatics, Springer, 739-750. https://doi.org/10.1007/978-981-15-8530-2_58
|
[32]
|
Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D.R., Sidike, P., et al. (2021) Field-Scale Crop Yield Prediction Using Multi-Temporal Worldview-3 and Planetscope Satellite Data and Deep Learning. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 265-281. https://doi.org/10.1016/j.isprsjprs.2021.02.008
|
[33]
|
Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., et al. (2021) Integrating Multi-Source Data for Rice Yield Prediction across China Using Machine Learning and Deep Learning Approaches. Agricultural and Forest Meteorology, 297, Article ID: 108275. https://doi.org/10.1016/j.agrformet.2020.108275
|
[34]
|
Li, X., Geng, H., Zhang, L., Peng, S., Xin, Q., Huang, J., et al. (2022) Improving Maize Yield Prediction at the County Level from 2002 to 2015 in China Using a Novel Deep Learning Approach. Computers and Electronics in Agriculture, 202, Article ID: 107356. https://doi.org/10.1016/j.compag.2022.107356
|
[35]
|
Ma, Y., Zhang, Z., Kang, Y. and Özdoğan, M. (2021) Corn Yield Prediction and Uncertainty Analysis Based on Remotely Sensed Variables Using a Bayesian Neural Network Approach. Remote Sensing of Environment, 259, Article ID: 112408. https://doi.org/10.1016/j.rse.2021.112408
|