[1]
|
Hajiesmaili, E. and Clarke, D.R. (2021) Dielectric Elastomer Actuators. Journal of Applied Physics, 129, Article 151102. https://doi.org/10.1063/5.0043959
|
[2]
|
Tang, C., Ma, W., Li, B., Jin, M. and Chen, H. (2020) Cephalopod-Inspired Swimming Robot Using Dielectric Elastomer Synthetic Jet Actuator. Advanced Engineering Materials, 22, Article 2070014. https://doi.org/10.1002/adem.202070014
|
[3]
|
Sun, W., Liu, F., Ma, Z., Li, C. and Zhou, J. (2016) Soft Mobile Robots Driven by Foldable Dielectric Elastomer Actuators. Journal of Applied Physics, 120, Article 084901. https://doi.org/10.1063/1.4960718
|
[4]
|
Yang, T., Xiao, Y., Zhang, Z., Liang, Y., Li, G., Zhang, M., et al. (2018) A Soft Artificial Muscle Driven Robot with Reinforcement Learning. Scientific Reports, 8, Article 14518. https://doi.org/10.1038/s41598-018-32757-9
|
[5]
|
Christianson, C., Goldberg, N.N., Deheyn, D.D., Cai, S. and Tolley, M.T. (2018) Translucent Soft Robots Driven by Frameless Fluid Electrode Dielectric Elastomer Actuators. Science Robotics, 3, eaat1893. https://doi.org/10.1126/scirobotics.aat1893
|
[6]
|
周方浩. 介电高弹聚合物叠层驱动器建模与软体机器人系统设计研究[D]: [博士学位论文]. 杭州: 浙江大学, 2022.
|
[7]
|
Ren, Z., Kim, S., Ji, X., Zhu, W., Niroui, F., Kong, J., et al. (2022) A High-Lift Micro-Aerial-Robot Powered by Low-Voltage and Long-Endurance Dielectric Elastomer Actuators. Advanced Materials, 34, Article 2106757. https://doi.org/10.1002/adma.202106757
|
[8]
|
Kim, S., Hsiao, Y., Lee, Y., Zhu, W., Ren, Z., Niroui, F., et al. (2023) Laser-Assisted Failure Recovery for Dielectric Elastomer Actuators in Aerial Robots. Science Robotics, 8, eadf4278. https://doi.org/10.1126/scirobotics.adf4278
|
[9]
|
马静, 李晨阳. 看完电影, 他造出“毒液”机器人[N]. 中国科学报, 2022-04-21(003).
|
[10]
|
Li, Y., Peine, J., Mencattelli, M., Wang, J., Ha, J. and Dupont, P.E. (2022) A Soft Robotic Balloon Endoscope for Airway Procedures. Soft Robotics, 9, 1014-1029. https://doi.org/10.1089/soro.2020.0161
|
[11]
|
Liu, D., Liu, X., Chen, Z., Zuo, Z., Tang, X., Huang, Q., et al. (2022) Magnetically Driven Soft Continuum Microrobot for Intravascular Operations in Microscale. Cyborg and Bionic Systems, 2022, Article ID: 9850832. https://doi.org/10.34133/2022/9850832
|
[12]
|
Song, Z., Zhang, W., Zhang, W. and Paolo, D. (2022) A Novel Biopsy Capsule Robot Based on High-Speed Cutting Tissue. Cyborg and Bionic Systems, 2022, Article ID: 9783517. https://doi.org/10.34133/2022/9783517
|
[13]
|
Tauber, F., Desmulliez, M., Piccin, O. and Stokes, A.A. (2023) Perspective for Soft Robotics: The Field’s Past and Future. Bioinspiration & Biomimetics, 18, Article 035001. https://doi.org/10.1088/1748-3190/acbb48
|
[14]
|
Esser, F.J., Auth, P. and Speck, T. (2020) Artificial Venus Flytraps: A Research Review and Outlook on Their Importance for Novel Bioinspired Materials Systems. Frontiers in Robotics and AI, 7, Article 75. https://doi.org/10.3389/frobt.2020.00075
|
[15]
|
Rus, D. and Tolley, M.T. (2015) Design, Fabrication and Control of Soft Robots. Nature, 521, 467-475. https://doi.org/10.1038/nature14543
|
[16]
|
郭晶晶, 郭校言, 脱佳霖, 等. 柔性有机聚合物光子器件及其生物医学应用[J]. 激光与光电子学进展, 2023, 60(13): 211-229.
|
[17]
|
Li, C., Xue, Y., Han, M., Palmer, L.C., Rogers, J.A., Huang, Y., et al. (2021) Synergistic Photoactuation of Bilayered Spiropyran Hydrogels for Predictable Origami-Like Shape Change. Matter, 4, 1377-1390. https://doi.org/10.1016/j.matt.2021.01.016
|
[18]
|
Wu, B., Xue, Y., Ali, I., Lu, H., Yang, Y., Yang, X., et al. (2022) The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots toward Off-Road Locomotion. Research, 2022, Article 15. https://doi.org/10.34133/research.0015
|
[19]
|
王宇轩, 刘朝雨, 王江北, 等. 具有多地形运动能力的双模块软体机器人[J]. 上海交通大学学报, 2022, 56(10): 1388-1396.
|
[20]
|
郭倩楠. 软体机器人研究现状与趋势[J]. 机器人技术与应用, 2022(3): 13-16.
|
[21]
|
尹富强, 许啸, 李赵春. 聚乙烯醇导电水凝胶增强剂的研究进展[J]. 功能材料, 2023, 54(2): 2036-2042+2108.
|
[22]
|
周伯先. 耕耘吧, 兴许会有收获!——记《合成橡胶工业》杂志创办15年[J]. 编辑学报, 1993(4): 241-245.
|
[23]
|
白龙. 基于流体驱动的仿生变刚度软体驱动器设计与实验研究[D]: [博士学位论文]. 北京: 北京交通大学, 2022.
|
[24]
|
姚建涛, 陈新博, 陈俊涛, 等. 轮足式仿生软体机器人设计与运动分析[J]. 机械工程学报, 2019, 55(5): 27-35.
|
[25]
|
Rus, D. and Tolley, M.T. (2015) Design, Fabrication and Control of Soft Robots. Nature, 521, 467-475. https://doi.org/10.1038/nature14543
|
[26]
|
Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., et al. (2014) A Compliant, Underactuated Hand for Robust Manipulation. The International Journal of Robotics Research, 33, 736-752. https://doi.org/10.1177/0278364913514466
|
[27]
|
Deimel, R. and Brock, O. (2015) A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping. The International Journal of Robotics Research, 35, 161-185. https://doi.org/10.1177/0278364915592961
|
[28]
|
Zhou, J., Yi, J., Chen, X., Liu, Z. and Wang, Z. (2018) BCL-13: A 13-DOF Soft Robotic Hand for Dexterous Grasping and In-Hand Manipulation. IEEE Robotics and Automation Letters, 3, 3379-3386. https://doi.org/10.1109/lra.2018.2851360
|
[29]
|
Zhou, J., Chen, X., Chang, U., Lu, J., Leung, C.C.Y., Chen, Y., et al. (2019) A Soft-Robotic Approach to Anthropomorphic Robotic Hand Dexterity. IEEE Access, 7, 101483-101495. https://doi.org/10.1109/access.2019.2929690
|
[30]
|
Abondance, S., Teeple, C.B. and Wood, R.J. (2020) A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation. IEEE Robotics and Automation Letters, 5, 5502-5509. https://doi.org/10.1109/lra.2020.3007411
|
[31]
|
Becker, K., Teeple, C., Charles, N., Jung, Y., Baum, D., Weaver, J.C., et al. (2022) Active Entanglement Enables Stochastic, Topological Grasping. Proceedings of the National Academy of Sciences, 119, e2209819119. https://doi.org/10.1073/pnas.2209819119
|
[32]
|
Spinks, G.M., Martino, N.D., Naficy, S., Shepherd, D.J. and Foroughi, J. (2021) Dual High-Stroke and High–work Capacity Artificial Muscles Inspired by DNA Supercoiling. Science Robotics, 6, eabf4788. https://doi.org/10.1126/scirobotics.abf4788
|
[33]
|
Gao, J., Clement, A., Tabrizi, M. and Shankar, M.R. (2021) Molecularly Directed, Geometrically Latched, Impulsive Actuation Powers Sub-Gram Scale Motility. Advanced Materials Technologies, 7, Article 2100979. https://doi.org/10.1002/admt.202100979
|
[34]
|
王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
|
[35]
|
Pang, W., Xu, S., Wu, J., Bo, R., Jin, T., Xiao, Y., et al. (2022) A Soft Microrobot with Highly Deformable 3D Actuators for Climbing and Transitioning Complex Surfaces. Proceedings of the National Academy of Sciences, 119, e2215028119. https://doi.org/10.1073/pnas.2215028119
|
[36]
|
Wang, Y., Liu, J. and Yang, S. (2022) Multi-Functional Liquid Crystal Elastomer Composites. Applied Physics Reviews, 9, Article 011301. https://doi.org/10.1063/5.0075471
|
[37]
|
周洪玲, 吴也可, 赵立星. 碳纳米材料在引导骨再生膜中的应用研究进展[J]. 中国实用口腔科杂志, 2023, 16(1): 93-98.
|
[38]
|
张倩, 安可心, 尚宏周, 等. 高分子水凝胶在医学领域应用的研究新进展[J]. 化学通报, 2023, 86(7): 868-872.
|
[39]
|
Yang, L., Miao, J., Li, G., Ren, H., Zhang, T., Guo, D., et al. (2022) Soft Tunable Gelatin Robot with Insect-Like Claw for Grasping, Transportation, and Delivery. ACS Applied Polymer Materials, 4, 5431-5440. https://doi.org/10.1021/acsapm.2c00522
|
[40]
|
Sun, M., Tian, C., Mao, L., Meng, X., Shen, X., Hao, B., et al. (2022) Reconfigurable Magnetic Slime Robot: Deformation, Adaptability, and Multifunction. Advanced Functional Materials, 32, Article 2112508. https://doi.org/10.1002/adfm.202112508
|
[41]
|
Rumley, E.H., Preninger, D., Shagan Shomron, A., Rothemund, P., Hartmann, F., Baumgartner, M., et al. (2023) Biodegradable Electrohydraulic Actuators for Sustainable Soft Robots. Science Advances, 9, eadf5551. https://doi.org/10.1126/sciadv.adf5551
|
[42]
|
张梦然. 可生物降解人造肌肉问世[N]. 科技日报, 2023-03-24(004).
|
[43]
|
袁菡悠. 气动软体机械手的设计与研究[D]: [硕士学位论文]. 成都: 西华大学, 2022.
|