[1]
|
Martel-Pelletier, J., Barr, A.J., Cicuttini, F.M., Conaghan, P.G., Cooper, C., Goldring, M.B., et al. (2016) Osteoarthritis. Nature Reviews Disease Primers, 2, Article No. 16072. https://doi.org/10.1038/nrdp.2016.72
|
[2]
|
Glyn-Jones, S., Palmer, A.J.R., Agricola, R., Price, A.J., Vincent, T.L., Weinans, H., et al. (2015) Osteoarthritis. The Lancet, 386, 376-387. https://doi.org/10.1016/s0140-6736(14)60802-3
|
[3]
|
Rausch Osthoff, A., Niedermann, K., Braun, J., Adams, J., Brodin, N., Dagfinrud, H., et al. (2018) 2018 EULAR Recommendations for Physical Activity in People with Inflammatory Arthritis and Osteoarthritis. Annals of the Rheumatic Diseases, 77, 1251-1260. https://doi.org/10.1136/annrheumdis-2018-213585
|
[4]
|
Lasda, E. and Parker, R. (2014) Circular RNAs: Diversity of Form and Function. RNA, 20, 1829-1842. https://doi.org/10.1261/rna.047126.114
|
[5]
|
Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L., et al. (2015) Exon Circularization Requires Canonical Splice Signals. Cell Reports, 10, 103-111. https://doi.org/10.1016/j.celrep.2014.12.002
|
[6]
|
Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J., et al. (2016) The Biogenesis of Nascent Circular RNAs. Cell Reports, 15, 611-624. https://doi.org/10.1016/j.celrep.2016.03.058
|
[7]
|
Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., et al. (2014) circRNA Biogenesis Competes with Pre-mRNA Splicing. Molecular Cell, 56, 55-66. https://doi.org/10.1016/j.molcel.2014.08.019
|
[8]
|
Lee, Y., Choe, J., Park, O.H. and Kim, Y.K. (2020) Molecular Mechanisms Driving mRNA Degradation by m6A Modification. Trends in Genetics, 36, 177-188. https://doi.org/10.1016/j.tig.2019.12.007
|
[9]
|
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015) Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nature Structural & Molecular Biology, 22, 256-264. https://doi.org/10.1038/nsmb.2959
|
[10]
|
Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., et al. (2013) Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature, 495, 384-388. https://doi.org/10.1038/nature11993
|
[11]
|
Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J., et al. (2011) miRNA-Dependent Gene Silencing Involving AgO2-Mediated Cleavage of a Circular Antisense RNA. The EMBO Journal, 30, 4414-4422. https://doi.org/10.1038/emboj.2011.359
|
[12]
|
Zhang, Y., Zhang, X., Chen, T., Xiang, J., Yin, Q., Xing, Y., et al. (2013) Circular Intronic Long Noncoding RNAs. Molecular Cell, 51, 792-806. https://doi.org/10.1016/j.molcel.2013.08.017
|
[13]
|
Monachello, D., Lauraine, M., Gillot, S., Michel, F. and Costa, M. (2021) A New RNA-DNA Interaction Required for Integration of Group II Intron Retrotransposons into DNA Targets. Nucleic Acids Research, 49, 12394-12410. https://doi.org/10.1093/nar/gkab1031
|
[14]
|
Ye, F., Gao, G., Zou, Y., Zheng, S., Zhang, L., Ou, X., et al. (2019) CircFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer. Molecular Therapy-Nucleic Acids, 18, 88-98. https://doi.org/10.1016/j.omtn.2019.07.023
|
[15]
|
Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017) Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Research, 27, 626-641. https://doi.org/10.1038/cr.2017.31
|
[16]
|
Tang, S., Nie, X., Ruan, J., Cao, Y., Kang, J. and Ding, C. (2022) Circular RNA CircNFKB1 Promotes Osteoarthritis Progression through Interacting with ENO1 and Sustaining NF-κB Signaling. Cell Death & Disease, 13, Article No. 695. https://doi.org/10.1038/s41419-022-05148-2
|
[17]
|
Liao, H., Zhang, Z., Chen, H., Huang, Y., Liu, Z. and Huang, J. (2021) CircHYBID Regulates Hyaluronan Metabolism in Chondrocytes via hsa-miR-29b-3p/TGF-β1 Axis. Molecular Medicine, 27, Article No. 56. https://doi.org/10.1186/s10020-021-00319-x
|
[18]
|
Saaoud, F., Drummer I.V., C., Shao, Y., Sun, Y., Lu, Y., Xu, K., et al. (2021) Circular RNAs Are a Novel Type of Non-Coding RNAs in ROS Regulation, Cardiovascular Metabolic Inflammations and Cancers. Pharmacology & Therapeutics, 220, Article 107715. https://doi.org/10.1016/j.pharmthera.2020.107715
|
[19]
|
Zhang, J., Cheng, F., Rong, G., Tang, Z. and Gui, B. (2021) Circular RNA Hsa_circ_0005567 Overexpression Promotes M2 Type Macrophage Polarization through miR-492/SOCS2 Axis to Inhibit Osteoarthritis Progression. Bioengineered, 12, 8920-8930. https://doi.org/10.1080/21655979.2021.1989999
|
[20]
|
Zhou, Z., Ma, J., Lu, J., Chen, A. and Zhu, L. (2020) Circular RNA circCDH13 Contributes to the Pathogenesis of Osteoarthritis via circCDH13/miR‐296‐3p/PTEN Axis. Journal of Cellular Physiology, 236, 3521-3535. https://doi.org/10.1002/jcp.30091
|
[21]
|
Zhang, Z., Yang, B., Zhou, S. and Wu, J. (2021) circRNA circ_SEC24A Upregulates DNMT3A Expression by Sponging miR-26b-5p to Aggravate Osteoarthritis Progression. International Immunopharmacology, 99, Article 107957. https://doi.org/10.1016/j.intimp.2021.107957
|
[22]
|
Chen, Z., Huang, Y., Chen, Y., Yang, X., Zhu, J., Xu, G., et al. (2023) CircFNDC3B Regulates Osteoarthritis and Oxidative Stress by Targeting miR-525-5p/HO-1 Axis. Communications Biology, 6, Article No. 200. https://doi.org/10.1038/s42003-023-04569-9
|
[23]
|
Zhang, S., Luo, J. and Zeng, S. (2022) Circ-LRP1B Functions as a Competing Endogenous RNA to Regulate Proliferation, Apoptosis and Oxidative Stress of LPS-Induced Human C28/I2 Chondrocytes. Journal of Bioenergetics and Biomembranes, 54, 93-108. https://doi.org/10.1007/s10863-022-09932-9
|
[24]
|
Shang, J., Li, H., Wu, B., Jiang, N., Wang, B., Wang, D., et al. (2022) CircHIPK3 Prevents Chondrocyte Apoptosis and Cartilage Degradation by Sponging miR‐30a‐3p and Promoting PON2. Cell Proliferation, 55, e13285. https://doi.org/10.1111/cpr.13285
|
[25]
|
Zhang, J., Cheng, F., Rong, G., Tang, Z. and Gui, B. (2020) Hsa_circ_0005567 Activates Autophagy and Suppresses IL-1β-Induced Chondrocyte Apoptosis by Regulating miR-495. Frontiers in Molecular Biosciences, 7, Article 216. https://doi.org/10.3389/fmolb.2020.00216
|
[26]
|
Jiang, S., Tian, G., Yang, Z., Gao, X., Wang, F., Li, J., et al. (2021) Enhancement of Acellular Cartilage Matrix Scaffold by Wharton’s Jelly Mesenchymal Stem Cell-Derived Exosomes to Promote Osteochondral Regeneration. Bioactive Materials, 6, 2711-2728. https://doi.org/10.1016/j.bioactmat.2021.01.031
|
[27]
|
Yan, L., Liu, G. and Wu, X. (2021) The Umbilical Cord Mesenchymal Stem Cell‐derived Exosomal LncRNA H19 Improves Osteochondral Activity through miR‐29b‐3p/FOXO3 Axis. Clinical and Translational Medicine, 11, e255. https://doi.org/10.1002/ctm2.255
|
[28]
|
Guo, Z., Wang, H., Zhao, F., Liu, M., Wang, F., Kang, M., et al. (2021) Exosomal Circ-BRWD1 Contributes to Osteoarthritis Development through the Modulation of miR-1277/TRAF6 Axis. Arthritis Research & Therapy, 23, Article No. 159. https://doi.org/10.1186/s13075-021-02541-8
|
[29]
|
Shen, S., Yang, Y., Shen, P., Ma, J., Fang, B., Wang, Q., et al. (2021) CircPDE4B Prevents Articular Cartilage Degeneration and Promotes Repair by Acting as a Scaffold for RIC8A and Mid1. Annals of the Rheumatic Diseases, 80, 1209-1219. https://doi.org/10.1136/annrheumdis-2021-219969
|
[30]
|
Cheng, S., Nie, Z., Cao, J. and Peng, H. (2022) Circ_0136474 Promotes the Progression of Osteoarthritis by Sponging miR-140-3p and Upregulating MECP2. Journal of Molecular Histology, 54, 1-12. https://doi.org/10.1007/s10735-022-10100-x
|
[31]
|
Liu, Y., Yang, Y., Lin, Y., Wei, B., Hu, X., Xu, L., et al. (2022) N6‐Methyladenosine‐Modified circRNA RERE Modulates Osteoarthritis by Regulating β‐Catenin Ubiquitination and Degradation. Cell Proliferation, 56, e13297. https://doi.org/10.1111/cpr.13297
|