[1]
|
Dong, B., Cao, L., Su, G., Liu, W., Qu, H. and Jiang, D. (2009) Synthesis and Characterization of the Water-Soluble Silica-Coated ZnS: Mn Nanoparticles as Fluorescent Sensor for Cu2+ Ions. Journal of Colloid and Interface Science, 339, 78-82. https://doi.org/10.1016/j.jcis.2009.07.039
|
[2]
|
Salavati-Niasari, M., Davar, F. and Mir, N. (2008) Synthesis and Characterization of Metallic Copper Nanoparticles via Thermal Decomposition. Polyhedron, 27, 3514-3518. https://doi.org/10.1016/j.poly.2008.08.020
|
[3]
|
Deshmukh, G.S., Pathak, S.U., Peshwe, D.R. and Ekhe, J.D. (2010) Effect of Uncoated Calcium Carbonate and Stearic Acid Coated Calcium Carbonate on Mechanical, Thermal and Structural Properties of Poly(Butylene Terephthalate) (PBT)/Calcium Carbonate Composites. Bulletin of Materials Science, 33, 277-284. https://doi.org/10.1007/s12034-010-0043-7
|
[4]
|
Caruso, R.A., Susha, A. and Caruso, F. (2001) Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials, 13, 400-409. https://doi.org/10.1021/cm001175a
|
[5]
|
Ballauff, M. and Lu, Y. (2007) “Smart” Nanoparticles: Preparation, Characterization and Applications. Polymer, 48, 1815-1823. https://doi.org/10.1016/j.polymer.2007.02.004
|
[6]
|
Ghosh Chaudhuri, R. and Paria, S. (2011) Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112, 2373-2433. https://doi.org/10.1021/cr100449n
|
[7]
|
Koch, U., Fojtik, A., Weller, H. and Henglein, A. (1985) Photochemistry of Semiconductor Colloids. Preparation of Extremely Small ZnO Particles, Fluorescence Phenomena and Size Quantization Effects. Chemical Physics Letters, 122, 507-510. https://doi.org/10.1016/0009-2614(85)87255-9
|
[8]
|
Youn, H.C., Baral, S. and Fendler, J.H. (1988) Dihexadecyl Phosphate, Vesicle-Stabilized and in situ Generated Mixed Cadmium Sulfide and Zinc Sulfide Semiconductor Particles: Preparation and Utilization for Photosensitized Charge Separation and Hydrogen Generation. The Journal of Physical Chemistry, 92, 6320-6327. https://doi.org/10.1021/j100333a029
|
[9]
|
Henglein, A. (1989) Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chemical Reviews, 89, 1861-1873. https://doi.org/10.1021/cr00098a010
|
[10]
|
Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., et al. (1992) Demonstration of a Shell-Core Structure in Layered Cadmium Selenide-Zinc Selenide Small Particles by X-Ray Photoelectron and Auger Spectroscopies. The Journal of Physical Chemistry, 96, 3812-3817. https://doi.org/10.1021/j100188a045
|
[11]
|
Zhou, H.S., Sasahara, H., Honma, I., Komiyama, H. and Haus, J.W. (1994) Coated Semiconductor Nanoparticles: The CdS/PbS System’s Photoluminescence Properties. Chemistry of Materials, 6, 1534-1541. https://doi.org/10.1021/cm00045a010
|
[12]
|
Balakrishnan, S., Bonder, M.J. and Hadjipanayis, G.C. (2009) Particle Size Effect on Phase and Magnetic Properties of Polymer-Coated Magnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 321, 117-122. https://doi.org/10.1016/j.jmmm.2008.08.055
|
[13]
|
Salgueiriño‐Maceira, V. and Correa‐Duarte, M.A. (2007) Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications. Advanced Materials, 19, 4131-4144. https://doi.org/10.1002/adma.200700418
|
[14]
|
Caruso, F. (2001) Nanoengineering of Particle Surfaces. Advanced Materials, 13, 11-22. https://doi.org/10.1002/1521-4095(200101)13:1<11::aid-adma11>3.0.co;2-n
|
[15]
|
Daniel, M. and Astruc, D. (2003) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346. https://doi.org/10.1021/cr030698+
|
[16]
|
Phadtare, S., Kumar, A., Vinod, V.P., Dash, C., Palaskar, D.V., Rao, M., et al. (2003) Direct Assembly of Gold Nanoparticle “Shells” on Polyurethane Microsphere “Cores” and Their Application as Enzyme Immobilization Templates. Chemistry of Materials, 15, 1944-1949. https://doi.org/10.1021/cm020784a
|
[17]
|
Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., et al. (1992) Demonstration of a Shell-Core Structure in Layered Cadmium Selenide-Zinc Selenide Small Particles by X-Ray Photoelectron and Auger Spectroscopies. The Journal of Physical Chemistry, 96, 3812-3817. https://doi.org/10.1021/j100188a045
|
[18]
|
Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., et al. (1990) Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. Journal of the American Chemical Society, 112, 1327-1332. https://doi.org/10.1021/ja00160a005
|
[19]
|
Qi, L., Ma, J., Cheng, H. and Zhao, Z. (1996) Synthesis and Characterization of Mixed CdS ZnS Nanoparticles in Reverse Micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 111, 195-202. https://doi.org/10.1016/0927-7757(96)03545-5
|
[20]
|
Mews, A., Eychmueller, A., Giersig, M., Schooss, D. and Weller, H. (1994) Preparation, Characterization, and Photophysics of the Quantum Dot Quantum Well System Cadmium Sulfide/Mercury Sulfide/Cadmium Sulfide. The Journal of Physical Chemistry, 98, 934-941. https://doi.org/10.1021/j100054a032
|
[21]
|
Kamat, P.V. and Shanghavi, B. (1997) Interparticle Electron Transfer in Metal/Semiconductor Composites. Picosecond Dynamics of CdS-Capped Gold Nanoclusters. The Journal of Physical Chemistry B, 101, 7675-7679. https://doi.org/10.1021/jp9709464
|
[22]
|
Scodeller, P., Flexer, V., Szamocki, R., Calvo, E.J., Tognalli, N., Troiani, H., et al. (2008) Wired-Enzyme Core-Shell Au Nanoparticle Biosensor. Journal of the American Chemical Society, 130, 12690-12697. https://doi.org/10.1021/ja802318f
|
[23]
|
Dresco, P.A., Zaitsev, V.S., Gambino, R.J. and Chu, B. (1999) Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles. Langmuir, 15, 1945-1951. https://doi.org/10.1021/la980971g
|
[24]
|
Hota, G., Idage, S.B. and Khilar, K.C. (2007) Characterization of Nano-Sized CdS-Ag2S Core-Shell Nanoparticles Using XPS Technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293, 5-12. https://doi.org/10.1016/j.colsurfa.2006.06.036
|
[25]
|
Li, T., Moon, J., Morrone, A.A., Mecholsky, J.J., Talham, D.R. and Adair, J.H. (1999) Preparation of Ag/SiO2 Nanosize Composites by a Reverse Micelle and Sol-Gel Technique. Langmuir, 15, 4328-4334. https://doi.org/10.1021/la970801o
|
[26]
|
Cui, S., Yi, Z., Xu, Y., Huang, J., Xu, J., Luo, J., et al. (2022) Study of the Core-Shell Structure MoSi2@ Al2O3 Powder Prepared by the Sol-Gel Method in a Low-Vacuum Atmosphere. Surface and Coatings Technology, 432, Article 128086. https://doi.org/10.1016/j.surfcoat.2022.128086
|
[27]
|
Zhao, J., Liu, M., Chang, J., Shao, Y., Liu, B. and Liu, R. (2020) Controllable Synthesis of SiC@Graphene Core‐Shell Nanoparticles via Fluidized Bed Chemical Vapor Deposition. Journal of the American Ceramic Society, 103, 5579-5585. https://doi.org/10.1111/jace.17284
|
[28]
|
Hwang, C., DiPietro, S., Xie, K.Y., Yang, Q., Celik, A.M., Khan, A.U., et al. (2019) Small Amount TiB2 Addition into B4C through Sputter Deposition and Hot Pressing. Journal of the American Ceramic Society, 102, 4421-4426. https://doi.org/10.1111/jace.16457
|
[29]
|
Yao, W., Yan, J., Li, X., Chen, P. and Zhu, B. (2022) Enhancement Mechanical Properties of B4C Ceramics with the Core-Shell Structure Powders. In: Chen, M., Giorgetti, M., Li, Z., Chen, Z., Jin, B. and Agarwal, R.K., Eds., Advances in Machinery, Materials Science and Engineering Application, IOS Press, 170-175. https://doi.org/10.3233/atde220433
|
[30]
|
Castellano-Soria, A., López-Sánchez, J., Granados-Miralles, C., Varela, M., Navarro, E., González, C., et al. (2022) Novel One-Pot Sol-Gel Synthesis Route of Fe3C/Few-Layered Graphene Core/Shell Nanoparticles Embedded in a Carbon Matrix. Journal of Alloys and Compounds, 902, Article 163662. https://doi.org/10.1016/j.jallcom.2022.163662
|
[31]
|
He, Z., Tu, R., Katsui, H. and Goto, T. (2013) Synthesis of SiC/SiO2 Core-Shell Powder by Rotary Chemical Vapor Deposition and Its Consolidation by Spark Plasma Sintering. Ceramics International, 39, 2605-2610. https://doi.org/10.1016/j.ceramint.2012.09.025
|
[32]
|
Liu, C., Yang, Y., Lv, P., Guo, J., Xiang, M. and Zhu, Q. (2019) Fabrication of Core‐Shell Structured TiC-Fe Composite Powders by Fluidized Bed Chemical Vapor Deposition. Journal of the American Ceramic Society, 102, 4470-4479. https://doi.org/10.1111/jace.16351
|
[33]
|
Tang, H., Huang, Z. and Tan, S. (2006). PVD Sic and PVD Si Coatings on RB Sic for Surface Modification. 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Xi’an, 2-5 November 2005, 69-74. https://doi.org/10.1117/12.674197
|
[34]
|
Tang, W.J., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., et al. (2006) Fabrication and Characteristics of TiB2/Al2O3 Core/Shell Particles by Hybridization. Powder Technology, 167, 117-123. https://doi.org/10.1016/j.powtec.2006.06.007
|
[35]
|
Li, Z., Zhang, S. and Lee, W.E. (2007) Molten Salt Synthesis of LaAlO3 Powder at Low Temperatures. Journal of the European Ceramic Society, 27, 3201-3205. https://doi.org/10.1016/j.jeurceramsoc.2007.01.008
|
[36]
|
Li, Z., Lee, W.E. and Zhang, S. (2007) Low‐Temperature Synthesis of CaZrO3 Powder from Molten Salts. Journal of the American Ceramic Society, 90, 364-368. https://doi.org/10.1111/j.1551-2916.2006.01383.x
|
[37]
|
Jayaseelan, D.D., Zhang, S., Hashimoto, S. and Lee, W.E. (2007) Template Formation of Magnesium Aluminate (MgAl2O4) Spinel Microplatelets in Molten Salt. Journal of the European Ceramic Society, 27, 4745-4749. https://doi.org/10.1016/j.jeurceramsoc.2007.03.027
|
[38]
|
Hu, Y., Cheng, Z., Gao, J., Liu, Y., Yan, P., Ding, Q., et al. (2024) Strong and Robust Core-Shell Ceramic Fibers Composed of Highly Compacted Nanoparticles for Multifunctional Electronic Skin. Small, 20, Article 2404080. https://doi.org/10.1002/smll.202404080
|
[39]
|
Zhang, X., Zhang, Y., Guo, L., Liu, B., Wang, Y., Li, H., et al. (2024) Ablation Resistance of ZrC Coating Modified by Polymer-Derived SiHfOC Ceramic Microspheres at Ultrahigh Temperature. Journal of Materials Science & Technology, 182, 119-131. https://doi.org/10.1016/j.jmst.2023.09.031
|
[40]
|
Yu, Z., Li, F. and Zhu, Q. (2022) Single-Source-Precursor Synthesis and Phase Evolution of NbC-SiC-C Ceramic Nanocomposites with Core-Shell Structured NbC@C and SiC@C Nanoparticles. Advanced Powder Materials, 1, Article 100009. https://doi.org/10.1016/j.apmate.2021.09.009
|
[41]
|
Zhang, J., Wang, Z., Luo, J., Wang, S., Liang, B. and Chen, W. (2023) Microstructure, Properties and Toughening Mechanisms of MoSi2@ZrO2 Core Shell Composites Prepared by Spark Plasma Sintering. Materials Characterization, 195, Article 112510. https://doi.org/10.1016/j.matchar.2022.112510
|
[42]
|
Raja, N., Park, H., Choi, Y. and Yun, H. (2021) Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration. ACS Biomaterials Science & Engineering, 7, 1123-1133. https://doi.org/10.1021/acsbiomaterials.0c01341
|
[43]
|
Hassanzadeh-Tabrizi, S.A., Norbakhsh, H., Pournajaf, R. and Tayebi, M. (2021) Synthesis of Mesoporous Cobalt Ferrite/Hydroxyapatite Core-Shell Nanocomposite for Magnetic Hyperthermia and Drug Release Applications. Ceramics International, 47, 18167-18176. https://doi.org/10.1016/j.ceramint.2021.03.135
|
[44]
|
Tang, Z., Wu, K., Li, J. and Huang, S. (2020) Optimized Dual-Function Varistor-Capacitor Ceramics of Core-Shell Structured xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 Composites. Journal of the European Ceramic Society, 40, 3437-3444. https://doi.org/10.1016/j.jeurceramsoc.2020.03.034
|
[45]
|
De Almeida-Didry, S., Merad, S., Autret-Lambert, C., Nomel, M.M., Lucas, A. and Gervais, F. (2020) A Core-Shell Synthesis of CaCu3Ti4O12 (CCTO) Ceramics Showing Colossal Permittivity and Low Electric Losses for Application in Capacitors. Solid State Sciences, 109, Article 106431. https://doi.org/10.1016/j.solidstatesciences.2020.106431
|