[1]
|
Zhang, S., Wu, J., Zheng, M., Jin, X., Shen, Z., Li, Z., et al. (2023) Fe/Cu Diatomic Catalysts for Electrochemical Nitrate Reduction to Ammonia. Nature Communications, 14, Article No. 3634. https://doi.org/10.1038/s41467-023-39366-9
|
[2]
|
Guo, J. and Chen, P. (2017) Catalyst: NH3 as an Energy Carrier. Chem, 3, 709-712. https://doi.org/10.1016/j.chempr.2017.10.004
|
[3]
|
Liu, S., Qian, T., Wang, M., Ji, H., Shen, X., Wang, C., et al. (2021) Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Ambient Ammonia Synthesis. Nature Catalysis, 4, 322-331. https://doi.org/10.1038/s41929-021-00599-w
|
[4]
|
Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Darensbourg, M.Y., et al. (2018) Beyond Fossil Fuel-Driven Nitrogen Transformations. Science, 360, eaar6611. https://doi.org/10.1126/science.aar6611
|
[5]
|
Liu, S., Wang, M., Qian, T., Ji, H., Liu, J. and Yan, C. (2019) Facilitating Nitrogen Accessibility to Boron-Rich Covalent Organic Frameworks via Electrochemical Excitation for Efficient Nitrogen Fixation. Nature Communications, 10, Article No. 3898. https://doi.org/10.1038/s41467-019-11846-x
|
[6]
|
Liu, S., Wang, M., Ji, H., Zhang, L., Ni, J., Li, N., et al. (2023) Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. Advanced Materials, 35, Article ID: 2211730. https://doi.org/10.1002/adma.202211730
|
[7]
|
Soloveichik, G. (2019) Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber-Bosch Process. Nature Catalysis, 2, 377-380. https://doi.org/10.1038/s41929-019-0280-0
|
[8]
|
Chen, W., Yang, X., Chen, Z., Ou, Z., Hu, J., Xu, Y., et al. (2023) Emerging Applications, Developments, Prospects, and Challenges of Electrochemical Nitrate-to-Ammonia Conversion. Advanced Functional Materials, 33, Article ID: 2300512. https://doi.org/10.1002/adfm.202300512
|
[9]
|
Ni, J., Cheng, Q., Liu, S., Wang, M., He, Y., Qian, T., et al. (2023) Deciphering Electrolyte Selection for Electrochemical Reduction of Carbon Dioxide and Nitrogen to High-Value-Added Chemicals. Advanced Functional Materials, 33, Article ID: 2212483. https://doi.org/10.1002/adfm.202212483
|
[10]
|
He, Y., Liu, S., Wang, M., Cheng, Q., Qian, T. and Yan, C. (2023) Deciphering Engineering Principle of Three-Phase Interface for Advanced Gas-Involved Electrochemical Reactions. Journal of Energy Chemistry, 80, 302-323. https://doi.org/10.1016/j.jechem.2023.02.002
|
[11]
|
Qin, D., Song, S., Liu, Y., Wang, K., Yang, B. and Zhang, S. (2023) Enhanced Electrochemical Nitrate-to-Ammonia Performance of Cobalt Oxide by Protic Ionic Liquid Modification. Angewandte Chemie International Edition, 62, e202304935. https://doi.org/10.1002/anie.202304935
|
[12]
|
Jiang, Y., Wang, M., Zhang, L., Liu, S., Cao, Y., Qian, S., et al. (2022) Distorted Spinel Ferrite Heterostructure Triggered by Alkaline Earth Metal Substitution Facilitates Nitrogen Localization and Electrocatalytic Reduction to Ammonia. Chemical Engineering Journal, 450, Article ID: 138226. https://doi.org/10.1016/j.cej.2022.138226
|
[13]
|
Yang, C., Zhu, Y., Liu, J., Qin, Y., Wang, H., Liu, H., et al. (2020) Defect Engineering for Electrochemical Nitrogen Reduction Reaction to Ammonia. Nano Energy, 77, Article ID: 105126. https://doi.org/10.1016/j.nanoen.2020.105126
|
[14]
|
Chang, Z., Meng, G., Chen, Y., Chen, C., Han, S., Wu, P., et al. (2023) Dual-Site W-O-Cop Catalysts for Active and Selective Nitrate Conversion to Ammonia in a Broad Concentration Window. Advanced Materials, 35, Article ID: 2304508. https://doi.org/10.1002/adma.202304508
|
[15]
|
He, Y., Wang, M., Liu, S., Zhang, L., Cheng, Q., Yan, C., et al. (2023) A Superaerophilic Gas Diffusion Electrode Enabling Facilitated Nitrogen Feeding through Hierarchical Micro/Nano Channels for Efficient Ambient Synthesis of Ammonia. Chemical Engineering Journal, 454, Article ID: 140106. https://doi.org/10.1016/j.cej.2022.140106
|
[16]
|
Liu, S., Wang, M., Cheng, Q., He, Y., Ni, J., Liu, J., et al. (2022) Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 16, 17911-17930. https://doi.org/10.1021/acsnano.2c09168
|
[17]
|
Song, Z., Liu, Y., Zhong, Y., Guo, Q., Zeng, J. and Geng, Z. (2022) Efficient Electroreduction of Nitrate into Ammonia at Ultralow Concentrations via an Enrichment Effect. Advanced Materials, 34, Article ID: 2204306. https://doi.org/10.1002/adma.202204306
|
[18]
|
Jiang, H., Chen, G., Savateev, O., Xue, J., Ding, L., Liang, Z., et al. (2023) Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc-Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages. Angewandte Chemie International Edition, 62, e202218717. https://doi.org/10.1002/anie.202218717
|
[19]
|
He, D., Ooka, H., Li, Y., Kim, Y., Yamaguchi, A., Adachi, K., et al. (2022) Regulation of the Electrocatalytic Nitrogen Cycle Based on Sequential Proton-Electron Transfer. Nature Catalysis, 5, 798-806. https://doi.org/10.1038/s41929-022-00833-z
|
[20]
|
Liu, D., Qiao, L., Peng, S., Bai, H., Liu, C., Ip, W.F., et al. (2023) Recent Advances in Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Advanced Functional Materials, 33, Article ID: 2303480. https://doi.org/10.1002/adfm.202303480
|
[21]
|
Dima, G.E., de Vooys, A.C.A. and Koper, M.T.M. (2003) Electrocatalytic Reduction of Nitrate at Low Concentration on Coinage and Transition-Metal Electrodes in Acid Solutions. Journal of Electroanalytical Chemistry, 554, 15-23. https://doi.org/10.1016/s0022-0728(02)01443-2
|
[22]
|
Bae, S., Stewart, K.L. and Gewirth, A.A. (2007) Nitrate Adsorption and Reduction on Cu(100) in Acidic Solution. Journal of the American Chemical Society, 129, 10171-10180. https://doi.org/10.1021/ja071330n
|
[23]
|
Zeng, Y., Priest, C., Wang, G. and Wu, G. (2020) Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. Small Methods, 4, Article ID: 2000672. https://doi.org/10.1002/smtd.202000672
|
[24]
|
Gennero de Chialvo, M.R. and Chialvo, A.C. (1998) Kinetics of Hydrogen Evolution Reaction with Frumkin Adsorption: Re-Examination of the Volmer-Heyrovsky and Volmer-Tafel Routes. Electrochimica Acta, 44, 841-851. https://doi.org/10.1016/s0013-4686(98)00233-3
|
[25]
|
Shin, H., Jung, S., Bae, S., Lee, W. and Kim, H. (2014) Nitrite Reduction Mechanism on a Pd Surface. Environmental Science & Technology, 48, 12768-12774. https://doi.org/10.1021/es503772x
|
[26]
|
Gao, J., Jiang, B., Ni, C., Qi, Y. and Bi, X. (2020) Enhanced Reduction of Nitrate by Noble Metal-Free Electrocatalysis on P Doped Three-Dimensional Co3O4 Cathode: Mechanism Exploration from Both Experimental and DFT Studies. Chemical Engineering Journal, 382, Article ID: 123034. https://doi.org/10.1016/j.cej.2019.123034
|
[27]
|
Zou, X., Chen, C., Wang, C., Zhang, Q., Yu, Z., Wu, H., et al. (2021) Combining Electrochemical Nitrate Reduction and Anammox for Treatment of Nitrate-Rich Wastewater: A Short Review. Science of The Total Environment, 800, Article ID: 149645. https://doi.org/10.1016/j.scitotenv.2021.149645
|
[28]
|
Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. and Westerhoff, P. (2018) Electrocatalytic Reduction of Nitrate: Fundamentals to Full-Scale Water Treatment Applications. Applied Catalysis B: Environmental, 236, 546-568. https://doi.org/10.1016/j.apcatb.2018.05.041
|
[29]
|
Bonner, F.T. and Hughes, M.N. (1988) The Aqueous Solution Chemistry of Nitrogen in Low Positive Oxidation States. Comments on Inorganic Chemistry, 7, 215-234. https://doi.org/10.1080/02603598808072309
|
[30]
|
Wang, S., Wang, Y., Fu, Y., Liu, T. and Wang, G. (2023) High-Throughput Mechanistic Study of Highly Selective Hydrogen-Bonded Organic Frameworks for Electrochemical Nitrate Reduction to Ammonia. Journal of Energy Chemistry, 87, 408-415. https://doi.org/10.1016/j.jechem.2023.08.050
|
[31]
|
de Vooys, A.C.A., Beltramo, G.L., van Riet, B., van Veen, J.A.R. and Koper, M.T.M. (2004) Mechanisms of Electrochemical Reduction and Oxidation of Nitric Oxide. Electrochimica Acta, 49, 1307-1314. https://doi.org/10.1016/j.electacta.2003.07.020
|
[32]
|
Wang, Y., Wang, C., Li, M., Yu, Y. and Zhang, B. (2021) Nitrate Electroreduction: Mechanism Insight, in Situ Characterization, Performance Evaluation, and Challenges. Chemical Society Reviews, 50, 6720-6733. https://doi.org/10.1039/d1cs00116g
|
[33]
|
Andersen, S.Z., Čolić, V., Yang, S., Schwalbe, J.A., Nielander, A.C., McEnaney, J.M., et al. (2019) A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature, 570, 504-508. https://doi.org/10.1038/s41586-019-1260-x
|
[34]
|
Zhang, Y., Zheng, H., Zhou, K., Ye, J., Chu, K., Zhou, Z., et al. (2023) Conjugated Coordination Polymer as a New Platform for Efficient and Selective Electroreduction of Nitrate into Ammonia. Advanced Materials, 35, Article ID: 2209855. https://doi.org/10.1002/adma.202209855
|
[35]
|
Wang, Y. and Shao, M. (2022) Theoretical Screening of Transition Metal-N4-Doped Graphene for Electroreduction of Nitrate. ACS Catalysis, 12, 5407-5415. https://doi.org/10.1021/acscatal.2c00307
|
[36]
|
Wang, S., Gao, H., Li, L., Hui, K.S., Dinh, D.A., Wu, S., et al. (2022) High-Throughput Identification of Highly Active and Selective Single-Atom Catalysts for Electrochemical Ammonia Synthesis through Nitrate Reduction. Nano Energy, 100, Article ID: 107517. https://doi.org/10.1016/j.nanoen.2022.107517
|
[37]
|
Niu, H., Zhang, Z., Wang, X., Wan, X., Shao, C. and Guo, Y. (2020) Theoretical Insights into the Mechanism of Selective Nitrate-to-Ammonia Electroreduction on Single-Atom Catalysts. Advanced Functional Materials, 31, Article ID: 2008533. https://doi.org/10.1002/adfm.202008533
|
[38]
|
Chen, H., Zhang, C., Sheng, L., Wang, M., Fu, W., Gao, S., et al. (2022) Copper Single-Atom Catalyst as a High-Performance Electrocatalyst for Nitrate-Ammonium Conversion. Journal of Hazardous Materials, 434, Article ID: 128892. https://doi.org/10.1016/j.jhazmat.2022.128892
|
[39]
|
Zhao, X., Geng, Q., Dong, F., Zhao, K., Chen, S., Yu, H., et al. (2023) Boosting the Selectivity and Efficiency of Nitrate Reduction to Ammonia with a Single-Atom Cu Electrocatalyst. Chemical Engineering Journal, 466, Article ID: 143314. https://doi.org/10.1016/j.cej.2023.143314
|
[40]
|
Xue, Y., Yu, Q., Ma, Q., Chen, Y., Zhang, C., Teng, W., et al. (2022) Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N3C1 Sites. Environmental Science & Technology, 56, 14797-14807. https://doi.org/10.1021/acs.est.2c04456
|
[41]
|
Zhu, T., Chen, Q., Liao, P., Duan, W., Liang, S., Yan, Z., et al. (2020) Single-Atom Cu Catalysts for Enhanced Electrocatalytic Nitrate Reduction with Significant Alleviation of Nitrite Production. Small, 16, Article ID: 2004526. https://doi.org/10.1002/smll.202004526
|
[42]
|
Zhao, X., Jia, X., He, Y., Zhang, H., Zhou, X., Zhang, H., et al. (2021) Two-Dimensional BCN Matrix Inlaid with Single-Atom-Cu Driven Electrochemical Nitrate Reduction Reaction to Achieve Sustainable Industrial-Grade Production of Ammonia. Applied Materials Today, 25, Article ID: 101206. https://doi.org/10.1016/j.apmt.2021.101206
|
[43]
|
Xu, Y., Xie, M., Zhong, H. and Cao, Y. (2022) In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction. ACS Catalysis, 12, 8698-8706. https://doi.org/10.1021/acscatal.2c02033
|
[44]
|
Yang, J., Qi, H., Li, A., Liu, X., Yang, X., Zhang, S., et al. (2022) Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia. Journal of the American Chemical Society, 144, 12062-12071. https://doi.org/10.1021/jacs.2c02262
|
[45]
|
Li, P., Jin, Z., Fang, Z. and Yu, G. (2021) A Single-Site Iron Catalyst with Preoccupied Active Centers That Achieves Selective Ammonia Electrosynthesis from Nitrate. Energy & Environmental Science, 14, 3522-3531. https://doi.org/10.1039/d1ee00545f
|
[46]
|
Murphy, E., Liu, Y., Matanovic, I., Guo, S., Tieu, P., Huang, Y., et al. (2022) Highly Durable and Selective Fe-and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO− 2 Pathways. ACS Catalysis, 12, 6651-6662. https://doi.org/10.1021/acscatal.2c01367
|
[47]
|
Yao, Y., Zhao, L., Dai, J., Wang, J., Fang, C., Zhan, G., et al. (2022) Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction. Angewandte Chemie International Edition, 61, e202208215. https://doi.org/10.1002/anie.202208215
|
[48]
|
Ji, H., Wang, M., Liu, S., Sun, H., Liu, J., Qian, T., et al. (2020) In-Situ Observation as Activity Descriptor Enables Rational Design of Oxygen Reduction Catalyst for Zinc-Air Battery. Energy Storage Materials, 27, 226-231. https://doi.org/10.1016/j.ensm.2020.02.002
|
[49]
|
Wang, Y., Xu, A., Wang, Z., Huang, L., Li, J., Li, F., et al. (2020) Enhanced Nitrate-to-Ammonia Activity on Copper-nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 142, 5702-5708. https://doi.org/10.1021/jacs.9b13347
|
[50]
|
Fang, L., Wang, S., Song, C., Yang, X., Li, Y. and Liu, H. (2022) Enhanced Nitrate Reduction Reaction via Efficient Intermediate Nitrite Conversion on Tunable Cuxniy/Nc Electrocatalysts. Journal of Hazardous Materials, 421, Article ID: 126628. https://doi.org/10.1016/j.jhazmat.2021.126628
|
[51]
|
Zhang, Z., Liu, Y., Su, X., Zhao, Z., Mo, Z., Wang, C., et al. (2023) Electro-Triggered Joule Heating Method to Synthesize Single-Phase Cuni Nano-Alloy Catalyst for Efficient Electrocatalytic Nitrate Reduction toward Ammonia. Nano Research, 16, 6632-6641. https://doi.org/10.1007/s12274-023-5402-y
|
[52]
|
Yin, H., Chen, Z., Xiong, S., Chen, J., Wang, C., Wang, R., et al. (2021) Alloying Effect-Induced Electron Polarization Drives Nitrate Electroreduction to Ammonia. Chem Catalysis, 1, 1088-1103. https://doi.org/10.1016/j.checat.2021.08.014
|
[53]
|
Gao, Q., Pillai, H.S., Huang, Y., Liu, S., Mu, Q., Han, X., et al. (2022) Breaking Adsorption-Energy Scaling Limitations of Electrocatalytic Nitrate Reduction on Intermetallic Cupd Nanocubes by Machine-Learned Insights. Nature Communications, 13, Article No. 2338. https://doi.org/10.1038/s41467-022-29926-w
|
[54]
|
Fang, J., Zheng, Q., Lou, Y., Zhao, K., Hu, S., Li, G., et al. (2022) Ampere-Level Current Density Ammonia Electrochemical Synthesis Using Cuco Nanosheets Simulating Nitrite Reductase Bifunctional Nature. Nature Communications, 13, Article No. 7899. https://doi.org/10.1038/s41467-022-35533-6
|
[55]
|
Chen, F., Wu, Z., Gupta, S., Rivera, D.J., Lambeets, S.V., Pecaut, S., et al. (2022) Efficient Conversion of Low-Concentration Nitrate Sources into Ammonia on a Ru-Dispersed Cu Nanowire Electrocatalyst. Nature Nanotechnology, 17, 759-767. https://doi.org/10.1038/s41565-022-01121-4
|
[56]
|
Gao, W., Xie, K., Xie, J., Wang, X., Zhang, H., Chen, S., et al. (2023) Alloying of Cu with Ru Enabling the Relay Catalysis for Reduction of Nitrate to Ammonia. Advanced Materials, 35, e2202952. https://doi.org/10.1002/adma.202202952
|
[57]
|
Sun, W., Ji, H., Li, L., Zhang, H., Wang, Z., He, J., et al. (2021) Built-In Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra-Low Concentration and Electroreduction to Ammonia. Angewandte Chemie International Edition, 60, 22933-22939. https://doi.org/10.1002/anie.202109785
|
[58]
|
He, W., Zhang, J., Dieckhöfer, S., Varhade, S., Brix, A.C., Lielpetere, A., et al. (2022) Splicing the Active Phases of Copper/Cobalt-Based Catalysts Achieves High-Rate Tandem Electroreduction of Nitrate to Ammonia. Nature Communications, 13, Article No. 1129. https://doi.org/10.1038/s41467-022-28728-4
|
[59]
|
Zhu, W., Yao, F., Wu, Q., Jiang, Q., Wang, J., Wang, Z., et al. (2023) Weakened D-P Orbital Hybridization in in Situ Reconstructed Ru/β-Co(OH)2 Heterointerfaces for Accelerated Ammonia Electrosynthesis from Nitrates. Energy & Environmental Science, 16, 2483-2493. https://doi.org/10.1039/d3ee00371j
|