铁基复合材料的制备及其在硝酸盐/亚硝酸盐还原制氨中的电催化性能
Preparation of Iron-Based Composites and Their Electrocatalytic Performance in Nitrate/Nitrite Reduction to Ammonia
DOI: 10.12677/japc.2024.134062, PDF, HTML, XML,    国家自然科学基金支持
作者: 赵新颖:南通大学化学化工学院,江苏 南通;苏州大学能源学院,江苏 苏州;钱 涛*:南通大学化学化工学院,江苏 南通
关键词: 电催化硝酸盐还原电催化亚硝酸盐还原合成氨合金化异质结Electrocatalytic Nitrate Reduction Electrocatalytic Nitrite Reduction Ammonia Synthesis Alloying Heterojunction
摘要: 氨作为一种多用途化合物,在人类社会生活中发挥着重要作用。目前,氨的大规模生产依赖于能源密集型的Haber-Bosch工艺,这一工艺需要在高温高压的条件下进行,导致了巨大的能源消耗和环境负担。电合成技术是能在常温常压下生产氨的绿色合成工艺,电催化硝酸盐/亚硝酸盐还原合成氨(eNOxRR, x = 3和2)不仅可以解决环境污染问题,还能变废为宝,将污染物转化为高附加值产品。近几年来,eNOxRR催化剂的研究取得了一系列进展,其中铁基催化剂具有最大的电催化硝酸盐/亚硝酸盐还原合成氨潜力。然而,eNOxRR是一个复杂的多电子和多质子转移反应,反应过程中可能生成大量的副产物。同时,竞争性析氢反应会导致电子消耗和相对较低的选择性。因此eNOxRR系统的氨产率和法拉第效率仍有较大的提升空间。
Abstract: As a versatile compound, ammonia plays an important role in human social life. At present, the large-scale production of ammonia relies on the energy-intensive Haber–Bosch process, which requires reaction conditions of high temperature and pressure, resulting in huge energy consumption and environmental burden. Electrosynthesis technology is a green synthesis process that can produce ammonia at room temperature and pressure. Electrocatalytic nitrate/nitrite reduction to ammonia (eNOxRR, x = 3 and 2) can not only solve environmental pollution problems, but also turn waste into treasure and convert pollutants into high-value-added products. In recent years, research on eNOxRR catalysts has made a series of progress, among which iron-based catalysts have the greatest potential for electrocatalytic nitrate/nitrite reduction to ammonia. However, eNOxRR is a complex multi-electron and multi-proton transfer reaction, and a large number of byproducts can be generated. Meanwhile, competitive hydrogen evolution reaction results in electron consumption and relatively low selectivity. Therefore, there is still significant room for improvement of the ammonia yield rate and Faradaic efficiency of eNOxRR systems.
文章引用:赵新颖, 钱涛. 铁基复合材料的制备及其在硝酸盐/亚硝酸盐还原制氨中的电催化性能[J]. 物理化学进展, 2024, 13(4): 584-599. https://doi.org/10.12677/japc.2024.134062

1. 引言

氨(NH3)不仅是农业和制药行业的重要原料,也是一种高效的储能介质[1]。氨具有体积能量密度高(3000 Wh·kg1)、节能(与氢气分解相比)以及运输和储存方便的优点[2]。目前,氨的合成依赖于传统的Haber-Bosch工艺,该工艺使用Fe/Ru基催化剂在高温(400℃~500℃)和高压条件(150~300 atm)下将氮气(N2)和氢气转化为氨[3]。这是一个能源密集型过程,不仅消耗大量能源,还释放大量二氧化碳(CO2) [4] [5]。过去的一个世纪里,研究者们致力于优化Haber-Bosch工艺,但仍未解决相关的问题[6] [7]。因此,开发经济、环保的氨合成方法具有重要意义。作为一种可替代的绿色氨合成方法,在温和条件下利用可再生能源的电合成技术被研究人员广泛研究[8]。其中,电催化氮气还原反应(eNRR)引起了人们的极大关注,因为它提供了在温和条件下直接利用水和氮气生产氨的可能性[9]。尽管研究人员一直在努力优化该反应,但eNRR的法拉第效率(FE)和氨产率(R(NH3))仍无法满足工业需求[10] [11]。氮气在水中的低溶解度导致反应界面处氮气输送不足是eNRR的氮气还原率低的主要原因[12]。此外,在环境条件下,N≡N的键能高(941 kJ·mol1),氮气具有极高的稳定性,也使eNRR性能较差[13]。因此,在技术上仍无法实现eNRR的工业应用。

与eNRR相比,电催化硝酸盐/亚硝酸盐还原合成氨(eNOxRR)有利于提高氨合成的反应速率。首先, NO x (x = 3和2)的溶解度较高,有助于催化剂表面与 NO x 充分接触[14]。其次,N=O的键能相对较低(204 kJ·mol1),促进了脱氧/氢化过程[15]。再次,eNOxRR的反应理论电势比eNRR高,从热力学上看,eNOxRR比eNRR更容易发生。此外, NO 3 是一种常见的污染物,主要来源于氮肥的滥用、废水的排放和化石燃料的燃烧[16] NO 3 可被人体内的硝酸盐还原酶转化为毒性更强的 NO 2 ,引起高铁血红蛋白血症和癌症等多种严重疾病[17]。考虑到经济效益和环境保护,硝酸盐和亚硝酸盐是生产氨的理想原料[18]。将硝酸盐和亚硝酸盐还原为高附加值的氨不仅能有效缓解能源危机,还能减轻硝酸盐和亚硝酸盐造成的环境污染[19]

2. 硝酸盐/亚硝酸盐还原合成氨的反应机理

硝酸盐/亚硝酸盐还原合成氨是一个复杂的8/6电子转移过程,该过程可能产生大量价态为−3到+5的反应中间体和产物(图1) [20]。因此,了解eNOxRR的机理对设计高效催化剂具有重要意义。eNOxRR的反应机理很大程度上受反应物浓度和pH的影响。eNO3RR可分为间接自催化还原路径和直接电催化还原路径[21]

Figure 1. (a) A schematic diagram of the mechanism and main pathways of eNOxRR in solution; the diagram is divided into five quadrants based on the main products, including rate-limiting steps, Vetter mechanism, Schmid mechanism, Vooys-Koper-Chumanov mechanism, and reduction to ammonia; and (b) atomic hydrogen reduction pathway and (c) electron transfer reduction pathway for direct electrocatalytic reduction in (b) and (c) [20]

1. (a) 溶液中eNOxRR的机理和主要路径示意图;根据主要产品,将示意图分为五个象限,包括限速步骤、Vetter机理、Schmid机理、Vooys-Koper-Chumanov机理和还原为氨;直接电催化还原路径的(b) 原子氢还原路径和(c) 电子转移还原路径[20]

间接自催化还原只发生在高离子浓度(1.0~4.0 M NO 3 )的强酸电解液中。 NO 3 不是真正的电活性物质,也不直接参与电子转移。不同的电活性物质可导致两种自催化机理:Vetter和Schmid机理。Vetter机理的电活性物质是NO2•,而Schmid机理的电活性物质是NO+。NO2和HNO2分别是Vetter和Schmid机理的最终产物。当 NO 3 浓度超过4.0 M时,发生的反应不涉及电化学电子转移,因此不是间接自催化还原的一部分。直接电催化还原发生在低 NO 3 浓度下(<1 M)。大多数研究通常在低 NO 3 浓度下进行。 NH 3 / NH 4 + 和N2是氮元素最稳定的热力学形式,特别是pH值在6到9之间。 NO 3 / NO 2 还原为N2是一个5/3的电子转移过程。因此,N2 NO x 还原为NH3的有力竞争产物。直接电催化还原可通过两个不同的路径进行:原子氢还原路径和电子转移还原路径。

最初, NO 3 被吸附在催化剂表面,形成吸附态(ad)的 NO 3 (方程式(1))。 NO 3 通过双重配位吸附在金属表面,其中 NO 3 可以通过一个或两个O原子与Cu、Au和Pt的金属表面配位[22] NO 3 NO 2 都与Cu(100)表面表现出双重配位,这促进了N=O键的断裂[23]。在原子氢还原路径中,原子H(ad)是通过Volmer过程在阴极表面产生的(方程式(2)) [24]。H原子具有很强的还原性,可以还原许多中间体,如 NO 3 NO 2 和NO (方程式(3),式(4),式(5))。两个氮原子可结合起来生成氮气。H(ad)的迁移势垒计算值为0.10  eV,明显低于N(ad)的迁移势垒(0.75  eV) [25]。此外,N-H的形成比N-N的形成在动力学上更有利[26]。因此,H(ad)吸附增强促进了NH3的生成(方程式(6),式(7),式(8))。

N O 3( aq ) N O 3( ad ) (1)

H 2 O+ e H (ad) +O H (2)

N O 3( ad ) +2 H ( ad ) N O 2( ad ) + H 2 O (3)

N O 2( ad ) + H ( ad ) N O ( ad ) +O H (4)

N O ( ad ) +2 H ( ad ) N ( ad ) + H 2 O (5)

N ( ad ) + H ( ad ) N H ( ad ) (6)

N H ( ad ) + H ( ad ) N H 2( ad ) (7)

N H 2( ad ) + H ( ad ) N H 3( ad ) (8)

N O 2 由N-O的裂解产生(方程式(9)),该过程通过包含三个步骤的电化学–化学–电化学机理进行[27] N O 3 还原为 N O 2 被认为是整个过程的速率决定步骤(RDS)。在初始电化学还原过程中, N O 3 被还原为不稳定的硝酸二阶阴离子( N O 3 2 ) (方程式(10))。随后, N O 3 2 被迅速水解为二氧化氮自由基(NO2•) (方程式(11))。随后,NO2•的第二次电荷转移反应生成 N O 2 (方程式(12))。根据方程式(13),高活性 N O 2 可以在电极表面产生吸附态的一氧化氮(NO(ad))。 N O 2 先生成 N O 2 2 ,由于 N O 2 2 不稳定而迅速水解为NO(ad)

N O 3( ad ) +2 H + +2 e N O 2( ad ) + H 2 O (9)

N O 3( ad ) + e N O 3( ad ) 2 (10)

N O 3( ad ) 2 + H 2 ON O 2 · ( ad ) +2O H (11)

N O 2 · ( ad ) + e N O 2( ad ) + H 2 O (12)

N O 2( ad ) +2 H + + e N O ( ad ) + H 2 O (13)

NO(ad)是产生NH3、N2O和N2的关键中间体。NO(ad)的吸附行为决定了产物的选择性和催化机理:当NO(ad)是N端吸附时,NO(ad)通过电化学–电化学机理被还原,这是目前被广泛接受的氨合成机理[28]。电化学机理包括几个连续的直接电荷转移过程。首先,NO(ad)被电子还原后形成HNO(ad) (方程式(14))。接着,生成的HNO被一个电子还原成H2NO(ad) (方程式(15))。然后,电荷转移迅速将H2NO(ad)还原为羟胺(NH2OH) (方程式(16)),在反应过程中羟胺可能会发生质子化,其质子化受pH值的影响(方程式(17))。最后,NH2OH被还原为最终产物NH3 (方程式(18))。氨和铵离子之间存在平衡(方程式(19))。在大规模的eNOxRR中,可能会积累一定量的NH2OH。NH2OH可能进一步生成N2和N2O (方程式(20)和式(21))。此外,两个HNO分子可以迅速结合生成次亚硝酸(H2N2O2) (方程式(22)),在强酸中,H2N2O2被酸催化,分解生成N2O (方程式(23)) [29]

N O ( ad ) + H + + e HN O ( ad ) (14)

HN O ( ad ) + H + + e H 2 N O ( ad ) (15)

H 2 N O ( ad ) + H + + e N H 2 O H ( ad ) (16)

N H 2 OH+ H + N H 3 O H + (17)

N H 2 OH+2 H + +2 e N H 3 + H 2 O (18)

N H 3 + H + N H 4 + (19)

N H 2 OH+HNO N 2 + H 2 O (20)

N H 2 OH+HN O 2 N O 2 +2 H 2 O (21)

HNO+HNO H 2 N 2 O 2 (22)

H 2 N 2 O 2 N 2 O+ H 2 O (23)

当NO(ad)是O端吸附时,根据方程式(24),NO(ad)被还原为NOH(ad) [30]。然后,NOH(ad)质子化形成N(ad) (方程式(25))。此后,N(ad)连续质子化生成NH3(方程式(26),式(27),式(28))。

N O ( ad ) + H + + e NO H ( ad ) (24)

NO H ( ad ) + H + + e N ( ad ) + H 2 O (25)

N ( ad ) + H + + e N H ( ad ) (26)

N H ( ad ) + H + + e N H 2( ad ) (27)

N H 2( ad ) + H + + e N H 3 (28)

当NO(ad)被平行吸附时,随后的反应路径取决于质子化位点[20]。如果NO(ad)的N侧受到质子–电子对攻击,那么NO(ad)的还原与N端吸附的机理相同。如果NO(ad)的O侧受到质子–电子对攻击,则生成NOH(ad)。NOH(ad)可以在O侧或N侧被质子化,生成N(ad)或HNOH(ad) (方程式(29))。N(ad)进一步还原为NH3的路径与O端吸附类似。HNOH(ad)则进一步质子化生成NH2OH,接着,NH2OH被快速还原得到NH3 (方程式(30)和式(31))。

NO H ( ad ) + H + + e HNO H ( ad ) (29)

HNO H ( ad ) + H + + e N H 2 O H ( ad ) (30)

N H 2 O H ( ad ) +2 H + +2 e N H 3 + H 2 O (31)

氮气可以通过几种路径产生。Vooys-Koper机理是产生N2的路径之一[31]。由方程式(32)可知,吸附态的NO与溶解的NO结合形成不稳定的副产物HN2O2。通过方程式(33),HN2O2(ad)迅速转化为N2O(ad)。N2O(ad)可通过电荷转移进一步还原为 N 2 O ( ad ) 和N2。(方程式(34)和式(35))。 N O 3 的浓度会影响 N O 3 还原成N2的选择性。当 N O 3 浓度高时(如4.1、2.7和0.5 M),可以在Pt上检测到气态产物N2O和N2。当 N O 3 浓度小于0.1 M时,不生成N2O和N2,主要生成NH3

N O ( ad ) +N O ( aq ) + H + + e H N 2 O 2( ad ) (32)

H N 2 O 2( ad ) + H + + e N 2 O ( ad ) + H 2 O (33)

N 2 O ( ad ) + e N 2 O ( ad ) (34)

N 2 O ( ad ) +2 H + + e N 2 + H 2 O (35)

另一种生成N2的途径是Duca-Feliu-Koper机理,该机理提出NH2(ad)是由NO(ad)的还原和质子化产生的(方程式(36))。NO(ad)与NH2(ad)通过Langmuir-Hinshelwood重组生成短寿命的副产物NONH2(ad) (方程式(37))。最后,根据方程式(38),NONH2(ad)分解生成N2

N O ( ad ) +3 H 2 O+4 e N H 2( ad ) +4O H (36)

N H 2( ad ) +N O ( ad ) NON H 2( ad ) (37)

NON H 2( ad ) N 2 + H 2 O (38)

此外,NO(ad)可以转化为N(ad) (方程式(39))。然后,根据方程式(40),两个N(ad)耦合产生N2

N O ( ad ) +2 H + +2 e N ( ad ) + H 2 O (39)

N ( ad ) + N ( ad ) N 2 (40)

反应物浓度、酸度和电极材料等因素均会影响eNOxRR的反应路径和最终产物。由于eNOxRR反应机理的复杂性和不完善性,需要提供更多的原位表征和理论计算来系统地解释反应机理,以促进反应体系的进一步发展,实现新的突破。

3. 硝酸盐/亚硝酸盐还原合成氨的测试体系和评价标准

3.1. 电化学测试

通常在H型电解池中使用三电极系统进行电化学测试。应进行控制实验,以确保测试系统无污染。必须排除来自大气、设备和工作电极的污染。电催化性能是评价催化剂好坏的主要指标,包括催化活性、产物选择性和催化剂稳定性。催化剂的催化活性可以初步通过循环伏安法或线性扫描伏安法(LSV)进行评估。在含有 NO x 的电解液中,电流密度的增大表明eNOxRR的发生。通过对LSV曲线的分析,可以获得起始电位,评估反应动力学,初步得到测试电位范围。通过计时电流测试记录电流随时间的变化,可进一步评估催化剂的活性。应在每个选定的电位下至少重复三次计时电流测试,以确认结果的可重复性。收集电化学测试后的电解液,并使用紫外–可见分光光度法(UV-vis)等方法对反应物和产物进行定量分析,进而获得相应的氨产率、法拉第效率、氨选择性(S(NH3))、转化率(C( NO x ))和氨局部电流密度等性能参数。通过气相色谱法(GC)检测电化学测试过程中产生的氢气,可评估催化剂的选择性。

一般来说,测试电位越负,转化率越高,而法拉第效率在不同的施加电位下呈火山型[32]。因此,可以获得在最佳电位下的最佳电催化活性。稳定性是分析催化剂性能的重要参数之一。在最佳电位下,可以分别通过多次循环计时电流法和连续计时电流法来评估循环稳定性和长时间稳定性。氨产率、法拉第效率、氨选择性或 NO x 转化率在合理范围内波动可证明催化剂具有优异的eNOxRR稳定性。应结合同位素标记实验与核磁共振(NMR)波谱,以验证所有产生的NH3都来自 NO x 的电还原。

3.2. 检测方法

紫外–可见分光光度法、离子色谱法、气相色谱–质谱法和核磁共振波谱法可用于反应物和几种产物的定量[33]。紫外–可见分光光度法是测定 N O 3 NO 2 NH 3 / NH 4 + 、N2H4和NH2OH浓度的常用方法,具有简便快捷的优点。然而,通过紫外–可见分光光度法检测产物和反应物大多数都需要加入显色剂,只有少数不需要加入试剂显色剂。因为 N O 3 在220 nm处有紫外吸收,所以可以直接测定 N O 3 的紫外–可见吸收光谱。由于 NO 2 在紫外–可见光区没有吸收,因此需要加入显色剂,生成在540 nm处有紫外吸收的紫红色物质。显色剂为乙酸、对氨基苯磺酸、盐酸萘乙二胺和超纯水的混合物。NH3 NH 4 + 在紫外–可见光区也没有吸收,可使用吲哚酚蓝法测定NH3 NH 4 + ,生成的吲哚酚蓝在655 nm处有吸收。奈式试剂也可用于NH3的检测,通过测定生成的黄褐色配合物在420 nm处的吸光度对氨进行定量。用Watt和Chrisp法测定N2H4,其中显色剂由对二甲氨基苯甲醛、乙醇和浓盐酸混合而成,通过测定所得络合物在455 nm的吸光度处进行评估。将过量的8-羟基喹啉溶解在乙醇和碳酸钠溶液中制备NH2OH显色剂。将电解液与显色剂混合,测定705 nm处的吸光度。

离子色谱法是测定 N O 3 N O 2 NH 4 + 浓度可靠、简便的方法。然而,需要对样品进行预处理,以避免有机物或重金属离子损坏测试仪器。气相色谱法适用于检测气体和易于挥发的液体或固体,具有分析速度快和样品用量少的优点,但用于定量分析时,需用被测物纯样品对检测后输出的信号进行校正,可以使用气相色谱法定量测定N2、NO和N2O等气态产物。核磁共振波谱法具有高精度、非破坏性和适用性广的特点,但也存在仪器成本高和信号干扰等缺点。可通过1H NMR谱对 NH 4 + 进行定量,通过结合同位素标记实验和1H NMR谱,可进一步追踪氮的来源,排除来自外部的氮污染。值得注意的是,当NH3浓度等于或大于0.2 ppm时,可采用所有常规检测方法进行NH3定量。当NH3浓度小于0.2 ppm时,定量方法的选择取决于电化学测试后电解液的pH值。因此,为了保证数据的可靠性和准确性,需要采用两种或两种以上的方法来检测 NH 3 / NH 4 + 浓度。

3.3. 性能评价

氨产率、法拉第效率、转化率、氨选择性和稳定性是eNOxRR的主要性能评价参数。单位时间和单位质量/面积的氨产率是评价催化剂性能的直接参数。法拉第效率描述了电催化过程的整体选择性,定义为生成特定产物的实际消耗电子与理论消耗电子之比。eNOxRR过程与竞争性HER进行比较时,法拉第效率是评估eNOxRR选择性的参数。氨选择性是生成氨过程中反应物的转化量与消耗量的比值。

氨产率可用以下公式计算:

R( NH 3 )= [ 17c( NH 3 )×V ]/ ( t×m ) (41)

R( NH 3 )= [ 17c( NH 3 )×V ]/ ( t×s ) (42)

电催化 NO 3 / NO 2 还原为NH3的法拉第效率计算公式如下:

FE( NO 3 NH 3 )= [ 8F×c( NH 3 )×V ]/ ( 17×Q ) (43)

FE( NO 2 NH 3 )= [ 6F×c( NH 3 )×V ]/ ( 17×Q ) (44)

NO 3 / NO 2 的转化率计算公式如下:

C( NO x )= Δc c 0 ×100% (45)

氨选择性计算公式如下:

S( NH 3 )= c( NH 3 ) Δc ×100% (46)

其中,c(NH3)为NH3的浓度,V为电解液的体积,t为还原时间,m为催化剂的负载量,S为工作电极的面积,F为法拉第常数(96,485 C·mol1),Q为通过电极的总电荷,∆c为电解前后 NO x 浓度差,c0 NO 3 NO 2 的初始浓度。

气相产物的法拉第效率由气相色谱测定,其计算公式如下:

FE= ( n×F×c×V× )/ ( ×Q ) (47)

式中n为产生被测气体所需的转移电子数,c为被测气体在标准气体中的浓度,V为GC进样体积,Q为电荷量。

4. 硝酸盐/亚硝酸盐还原合成氨催化剂的研究进展

4.1. 单原子材料的研究进展

具有孤立金属活性位点的单原子催化剂(SACs)由于其近100%的原子利用率、可调节的配位环境和均匀的催化活性中心而受到了广泛关注[34]。单原子需要锚定在基底上,各种过渡金属(TM)原子已被成功嵌入到不同的基底中。基底的类型会影响单原子催化剂的性能,其中氮掺杂碳材料被认为是有前途的单原子载体。单原子催化剂中孤立的金属位点可以避免两个相邻的含N中间体(*NO或*N)的耦合。然而,在eNOxRR过程中,由于配位低和表面能高,单原子容易聚集或迁移,此外单原子孤立的金属位点无法有效吸附和活化eNO3RR的反应中间体。

Figure 2. Volcano plots showing the performance of eNO3RR for the formation of (a) NH3 and (b) N2 on TM-N4/C, where different markers represent different PDS; (c) Contour map of the selectivity for the formation of NH3 and N2 by eNO3RR [35]; (d) HAADF-STEM image of the Cu-N-C catalyst; (e) HAADF-STEM image of the Cu-N-C catalyst after electrolysis of nitrates for 1 hour under argon protection, at a potential of −1.0 V vs. RHE; the inset is an enlarged image of the Cu(111) facet; (f) The aggregation mechanism driven by potential and re-dispersion [44]; (g) Schematic illustration of the preparation of the Ru1-TiOx/Ti electrode; (h) FT-EXAFS spectra of the Ru K-edge for different materials [47]

2. TM-N4/C上形成(a) NH3和(b) N2的eNO3RR性能火山图,其中不同的标记物代表不同的PDS;(c) 生成NH3和N2的eNO3RR选择性等高线图[35];(d) Cu-N-C催化剂的HAADF-STEM图像;(e) 在−1.0 V vs. RHE下电解硝酸盐1小时后,氩气保护的Cu-N-C催化剂的HAADF-STEM图像;插图是Cu(111)晶面的放大图像;(f) 电位和再分散驱动的聚集机理[44];(g) Ru1-TiOx/Ti电极的制备示意图;(h) 不同材料Ru K边的FT-EXAFS光谱[47]

通过理论计算研究,Cu,Re,Os,Ti和Zr SACs被预测为有前途的硝酸盐还原合成氨催化剂。Wang等人研究了在TM-N4掺杂石墨烯(TM-N4/C)上的eNO3RR反应机理和性能来源,通过构建用于测量起始电位的–ΔGmax火山图来评估产物选择性[35]。火山图(图2(a)图2(b))显示,Cu-N4/C和Pt-N4/C分别以最高的选择性生成NH3和N2。如等高线图所示(图2(c)),以ΔG*NO和ΔG*N为描述符,Re-N4/C对NH3合成最有效,而Pt-N4/C对N2生成最有效。在另一项理论研究中,Wang等人发现Os SACs是23种TM SACs中最有前途的eNO3RR催化剂[36]。Os SAC突出的eNO3RR活性源于Os原子与 NO 3 之间明显的杂化作用。Os SACs和Fe SACs位于火山图的顶部附近,分别表现出−0.53 V和−0.42 V的优异极限电位。Niu等人通过第一性原理计算,创新地全面研究了石墨碳氮化物(TM/g-CN)上负载的过渡金属单原子(从Ti到Au)的eNO3RR活性趋势[37]。他们得出的结论是,在Zr/g-CN和Ti/g-CN上可以分别以−0.41 V和−0.39 V的低极限电位高效合成NH3。此外,副产物(N2、N2O、NO2和NO)的生成由于需要相当大的能垒而受到抑制,使催化剂具有高选择性。

金属有机骨架(MOF)辅助热解和SiO2模板辅助热解是构建SACs的典型方法。例如,通过热解沸石咪唑骨架-8 (ZIF-8)制备的Cu SAC (Cu-N-C)可以将 NO 3 转化为NH3 [38]。因为Cu-N-C对 NO 2 的吸附增强和N-N偶联受到抑制,所以显著抑制了 NO 2 和N2的生成。通过碳化含Cu的ZIF-8前驱体,Zhao等人合成了单原子铜催化剂(CuSANPC) [39]。与Cu纳米颗粒催化剂相比,CuN4位点赋予CuSANPC相当大的eNO3RR活性。在另一项工作中,Xue等人制备了具有Cu(I)-N3C1位点的Cu SACs并用于高效的氨电合成[40]。*NO3和*H以平衡的吸附能吸附在相邻的Cu和C位点上,因此,eNO3RR和HER之间的位点竞争得到了缓解,促进了中间体加氢生成氨。嵌入氮化碳纳米片中的原子Cu位点(Cu-N-C)在eNO3RR中也表现出优异的性能[41]。Cu-N-C具有较高的 NO 2 转化率和较低的 NO 2 选择性,避免了eNO3RR过程中 NO 2 的污染。Cu与N配位(特别是Cu-N2)是吸附 NO 3 NO 2 的关键。通过结构约束工程制备的原子Cu掺杂BCN (BCN-Cu)被用于硝酸盐还原合成氨,并表现出优异的催化性能[42]。Cu的存在决定了BCN-Cu能否催化eNO3RR,B的存在提高了BCN-Cu的催化性能。

了解催化剂的演变过程有助于理解反应机理。Xu等人开发了一种锚定在抗坍塌MOF上的Cu单原子预催化剂,并将其应用于电催化硝酸盐还原[43],实现了1.12 mg·h1·cm2的氨产率和85.5%的法拉第效率。在eNO3RR过程中,Cu单原子原位重构为均匀的超小纳米团簇(约4 nm),这一点通过原位X射线吸收光谱得到了证实。值得注意的是,抗坍塌MOF提供的有限空间防止了Cu原子的过度聚集。理论计算表明,尺寸效应和主客体相互作用促进了 NO 3 的活化并降低了能垒。通过结合动态现场原位X射线吸收光谱和先进的电子显微镜,Yang等人揭示了eNO3RR过程中Cu-N4单原子位点向Cu0纳米颗粒演变的机理[44]。电解前拍摄的高角度环形暗场扫描透射电镜(HAADF-STEM)图像显示了Cu-N-C的单原子性质,而电解后获得的HAADF-STEM图像出现了大小为5~10 nm的Cu纳米颗粒(图2(d)图2(e)),这表明Cu位点发生聚集。电解后,聚集的Cu纳米颗粒暴露在环境大气中恢复为Cu-N4。动态现场原位X射线吸收光谱也证实了在外加电位的驱动下,Cu-N4结构依次转变为Cu-N3、接近自由的Cu0单原子,并最终转变为聚集的Cu0纳米粒子。因此,他们提出了电位驱动重构和氧化驱动再分散的演变机理(图2(f))。相对于所施加的电位,法拉第效率和Cu0百分比的同时变化表明Cu0纳米粒子是真正的活性位点,而不是Cu-N4

Fe SACs也被证明具有催化硝酸盐还原合成氨的活性。Li等人使用聚合物–水凝胶策略构建了原子均匀分散的Fe SACs [45]。在−0.7 V vs. RHE下,Fe SACs获得了2.75 mg h1·cm2的氨产率。 NO 3 预先占据Fe(II)-Nx被证实作为竞争反应抑制了水的吸附。Fe1/NC-900的主要活性位点为Fe-N3 (三角锥结构),其具有较多的孤对电子和更强的 NO 3 吸附能力,因而表现出高活性。Murphy等人制备了一系列Fe基和Mo基单原子催化剂,通过不同的协同 NO 2 途径将 NO 3 还原为NH3 [46]。FeMo双金属催化剂协同了Fe-N-C和Mo-N-C上的两种反应机理,从而实现了高性能。

其他金属单原子催化剂,如Ru、Rh和Ag单原子催化剂,也被研究作为 NO 3 / NO 2 还原的催化剂。Yao等人报道了一种新颖的氧化物锚定策略,该策略通过调节金属–载体电子相互作用将孤立的Ru原子锚定在Ti片基底上(图2(g)) [47]。傅里叶变换的扩展X射线吸收精细结构(FT-EXAFS)光谱证实了Ru的单原子性质(图2(h))。单原子电极表现出优异的电催化析氯活性和eNO3RR活性。

4.2. 合金材料的研究进展

Figure 3. (a) Fourier transform dynamic in situ Cu K-edge X-ray absorption spectroscopy of Cu50Ni50; (b) Fourier transform dynamic in situ Ni K-edge X-ray absorption spectroscopy of Cu50Ni50; (c) UPS spectrum and position of the d-band center of the catalyst [49]; (d) Activity volcano plot of eNO3RR; The (100) and (111) metal surfaces are represented by squares and circles, respectively; (e) TEM bright-field image of the synthesized ordered CuPd nanocubes [53]; (f) (g) In situ Raman spectra of eNO3RR at different potentials of Ru1Cu10 and Cu in 0.1 M KNO3; (h) Charge density difference and charge transfer after different catalysts adsorb NO 3 and NO 2 , respectively. Yellow and blue represent the aggregation and dispersion of electron density [56]

3. (a) Cu50Ni50的傅里叶变换动态现场原位Cu K边硬X射线吸收光谱;(b) Cu50Ni50傅里叶变换动态现场原位Ni K边硬X射线吸收光谱;(c) 催化剂d带中心的UPS光谱和位置[49];(d) eNO3RR的活性火山图;分别用正方形和圆形表示的(100)和(111)金属表面;(e) 合成的有序CuPd纳米立方体的TEM明场图像[53];(f) Ru1Cu10和(g) Cu在0.1 M KNO3中不同电势下的eNO3RR原位拉曼光谱;(h) 不同催化剂分别吸附 NO 3 NO 2 后的电荷密度差分和电荷转移。分别用黄色和蓝色表示电子密度的聚集和离散[56]

合金化是调节催化剂表面的电子和几何结构的一种独特方法[48]。合金的杂原子集团效应可以稳定中间体或促进多步反应,这使合金成为eNOxRR的合适选择。

作为合成氨的优良催化剂,Cu基合金已经得到了广泛的研究。Wang等人研究了一系列不同Cu/Ni比例合金的吸附能–活性关系[49]。在稳态工作条件和一系列操作电位下,Cu50Ni50催化剂的Ni和Cu的K边光谱都保持了纯金属特征(图3(a)图3(b))。如紫外光电子能谱(UPS)所示(图3(c)),合金中Ni含量的增加导致d带中心向费米能级(Ef)偏移,与X射线光电子能谱(XPS)的结果一致。这表明反键占用减少,吸附质结合更强。因此,Cu和Ni的合金化显著提高了中间产物 * NO 3 、*NO2和*NH2的吸附能,提高了电催化性能。Fang等人[50]和Zhang等人[51]也报道了CuNi合金具有出色的eNO3RR活性。在Fang的研究中,Cu0.43Ni0.57/NC在一系列不同Cu/Ni比例的合金中表现出最好的eNO3RR活性。活性的增强归因于 NO 2 积累的减轻、优化的NO2脱氧和多孔基质。合金相分离引起的元素分布不均匀制约了活性的进一步优化,为了解决这个问题,Zhang等人提出了通过跟踪双金属合金的相态来调控催化活性的设计理念。由于Cu和Pd具有优异的电催化 NO 3 还原性能,Cu和Pd的合金化受到了广泛的关注。Yin等人指出PdCu/Cu2O杂化体中的PdCu合金促进了*N中间体的生成[52]。Pd物种导致了Cu 3d轨道的极化,并提供了吸附 NO 3 的空轨道。基于机器学习和d带理论,Gao等人计算了*N和*NO3在(111)和(100)金属晶面上的吸附能(图3(d)),以筛选出合适的金属间化合物,从而实现 NO 3 高效合成NH3 [53]。他们发现有序B2金属间化合物的(100)型位点实现了非标度行为,其中由于泡利排斥相互作用,*NO3吸附更有利,而*N不稳定,从而打破了*N和*NO3之间的吸附–能量标度关系,加速了含氮物种向氨的转化。根据理论预测,他们制备了有序的金属间化合物B2 CuPd纳米立方体(图3(e)),其实现了高效的氨合成。

铜与其他金属的合金化也被研究者们研究。由于钴易于制备且能有效调节铜的性质,因此常被用于与Cu合金化。例如,Fang等人制备的CuCo合金纳米片模拟了Cu型亚硝酸盐还原酶的双功能特性,并通过两个催化中心的协同还原 NO 2 [54]。Co作为电子/质子提供中心,而Cu促进了 NO x 的吸附/结合。在贵金属中,Ru表现出优异的催化性能,并被用于与Cu形成合金。Chen等人制备了一种Ru分散Cu纳米线(Ru-CuNW),用于在低 NO 3 浓度下的eNO3RR [55]。DFT计算表明,Ru的低 NO 3 活化能垒和Cu的HER抑制能力导致了高eNO3RR性能。eNO3RR与气提相结合可将废水转化为高附加值的氨产品(固体氯化铵和液体氨)。Gao等人使用RuCu合金还原 NO 3 时发现,Ru和Cu的合金上发生了接力催化[56]。他们通过原位拉曼光谱(图3(f)图3(g))验证了接力催化作用,其中Cu是催化 NO 3 生成 NO 2 的唯一有效位点,而Ru是催化 NO 2 生成NH3的高活性位点。DFT计算表明,RuCu合金的生成调节了d带中心,促进了*NO2的吸附和NH3的脱附(图3(h)),从而使催化剂具有高eNO3RR性能。

4.3. 异质结材料的研究进展

设计具有异质结构的催化剂是实现高催化性能的重要策略。异质结构通常由具有不同表面电子环境和功函数的构件组成。大多数异质结构催化剂含有通过莫特–肖特基接触形成的异质结。由于肖特基势垒的存在,异质结处的能带发生扭曲,电子在界面处自发转移,直至功函数达到平衡。界面上电子结构的重新分布改变了材料的电化学性能。可以通过异质结的电子效应有效平衡中间体的吸附能,从而改善反应动力学。

孙等人将CuCl (111)和金红石TiO2 (110)层堆叠在一起,合成用于电化学硝酸盐还原的催化剂(CuCl_BEF) [57]。从图4(a)图4(b)可以看出,纳米梭主要由金红石TiO2的(101)和(110)衍射条纹组成。此外,每个纳米梭的CuCl纳米点上都可以看到CuCl (220)和CuCl (111)的衍射条纹。X射线衍射图(XRD)也证明了TiO2和CuCl的存在(图4(c))。从TiO2到CuCl的电子转移触发了一个内建电场,在催化剂表面附近积聚了较高的 NO 3 浓度。因此,在超低 NO 3 浓度下,eNO3RR的传质速度加快。此外,电场增加了关键反应中间体*NO的能量,从而降低了RDS的能垒。理论计算表明钴掺杂调节了铁的d带中心,从而调节了中间体吸附能并抑制了HER。He等人提出了一种设计串联催化剂的概念,即将不同过渡金属的电位依赖性中间相结合起来,作为级联 NO 3 转化的协同电催化位点[58]。在−0.175 V vs. RHE,法拉第效率和氨产率分别为90.6%和19.891 mg·h1·cm2。他们使用非原位XPS和拉曼光谱来识别表面相组成(图4(d)图4(e)),并使用原位拉曼光谱来监测催化剂的相演变(图4(f))。在该串联催化系统中,内部Cu/CuOx上产生的 NO 2 在附近的Co/CoO壳层上以低过电位快速氢化为NH3。最近Zhu等人构建了一种Ru/Co(OH)2异质结构电催化剂,以削弱d-p轨道与*NH3的杂化能力,从而降低电位决定步骤(PDS)的能垒[59]。催化剂在0.01 V vs. RHE获得了39.1 mg·h−1·cm−2的氨产率。一系列物理表征(图4(g)~(i))表明,Ru掺杂的Co金属纳米片被原位重构为六边形Ru/Co(OH)2异质结构。

Figure 4. (a) TEM image of CuCl_BEF; inset shows the corresponding elemental distribution map of the white dashed rectangle region; (b) Representative HRTEM image of CuCl_BEF; inset shows the representative (220) and (111) planes of CuCl; (c) XRD pattern of CuCl_BEF [57]; (d) High-resolution O 1s XPS spectrum and (e) In situ Raman spectrum of the catalyst; (f) In situ Raman spectrum of CuCoSP in 0.01 M NO 3 solution [58]; physical characterization of reduced nitrate after RuCo; (g) SEM image; (h) “Original” nanosheets and (i) HAADF-STEM images and corresponding elemental distribution maps, selected area electron diffraction patterns, and HRTEM images of the newly formed stacked nanosheets [59]

4. (a) CuCl_BEF的TEM图像;插图为白色虚线矩形区域相应的元素分布图;(b) CuCl_BEF的代表性HRTEM图像;插图为CuCl的代表性(220)和(111)晶面;(c) CuCl_BEF的XRD图谱[57];催化剂的(d) 高分辨率O 1s XPS光谱和(e) 非原位拉曼光谱;(f) CuCoSP在0.01 M NO 3 溶液中的原位拉曼光谱[58];还原硝酸盐后RuCo的物理表征:(g) SEM图像;(h) “原始”纳米片和(i) 新形成堆叠纳米片的HAADF-STEM图像和相应的元素分布图、选区电子衍射图以及HRTEM图像[59]

5. 总结与展望

氨不仅是食品、化工等各个行业的重要原料,还是绿色高效的储能载体,在生产生活中发挥着不可替代的作用。然而,氨生产所依赖的Haber-Bosch工艺消耗大量能源,并释放大量二氧化碳。随着全球能源消耗不断增加和环境污染日益严重,开发绿色环保可持续的合成氨技术具有十分重要的意义。在环境温度和压力下,通过可再生能源驱动的电合成技术被视为最有前景的替代方案。由于农业化肥的滥用和工业废水的排放,水体中的硝酸盐和亚硝酸盐含量迅速增加,带来了严重的生态和环境问题。通过电化学手段将硝酸盐和亚硝酸盐还原为氨,不仅能缓解环境污染和能源危机,还能将污染物转化为高附加值产品。虽然在催化剂的研究方面取得了重大进展,氨的产率和效率不断提高,但直接将硝酸盐/亚硝酸盐转化为氨仍面临较大的挑战。

基金项目

国家自然科学基金(52071226),江苏省杰出青年基金(BK20220061)。

NOTES

*通讯作者。

参考文献

[1] Zhang, S., Wu, J., Zheng, M., Jin, X., Shen, Z., Li, Z., et al. (2023) Fe/Cu Diatomic Catalysts for Electrochemical Nitrate Reduction to Ammonia. Nature Communications, 14, Article No. 3634.
https://doi.org/10.1038/s41467-023-39366-9
[2] Guo, J. and Chen, P. (2017) Catalyst: NH3 as an Energy Carrier. Chem, 3, 709-712.
https://doi.org/10.1016/j.chempr.2017.10.004
[3] Liu, S., Qian, T., Wang, M., Ji, H., Shen, X., Wang, C., et al. (2021) Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Ambient Ammonia Synthesis. Nature Catalysis, 4, 322-331.
https://doi.org/10.1038/s41929-021-00599-w
[4] Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Darensbourg, M.Y., et al. (2018) Beyond Fossil Fuel-Driven Nitrogen Transformations. Science, 360, eaar6611.
https://doi.org/10.1126/science.aar6611
[5] Liu, S., Wang, M., Qian, T., Ji, H., Liu, J. and Yan, C. (2019) Facilitating Nitrogen Accessibility to Boron-Rich Covalent Organic Frameworks via Electrochemical Excitation for Efficient Nitrogen Fixation. Nature Communications, 10, Article No. 3898.
https://doi.org/10.1038/s41467-019-11846-x
[6] Liu, S., Wang, M., Ji, H., Zhang, L., Ni, J., Li, N., et al. (2023) Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. Advanced Materials, 35, Article ID: 2211730.
https://doi.org/10.1002/adma.202211730
[7] Soloveichik, G. (2019) Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber-Bosch Process. Nature Catalysis, 2, 377-380.
https://doi.org/10.1038/s41929-019-0280-0
[8] Chen, W., Yang, X., Chen, Z., Ou, Z., Hu, J., Xu, Y., et al. (2023) Emerging Applications, Developments, Prospects, and Challenges of Electrochemical Nitrate-to-Ammonia Conversion. Advanced Functional Materials, 33, Article ID: 2300512.
https://doi.org/10.1002/adfm.202300512
[9] Ni, J., Cheng, Q., Liu, S., Wang, M., He, Y., Qian, T., et al. (2023) Deciphering Electrolyte Selection for Electrochemical Reduction of Carbon Dioxide and Nitrogen to High-Value-Added Chemicals. Advanced Functional Materials, 33, Article ID: 2212483.
https://doi.org/10.1002/adfm.202212483
[10] He, Y., Liu, S., Wang, M., Cheng, Q., Qian, T. and Yan, C. (2023) Deciphering Engineering Principle of Three-Phase Interface for Advanced Gas-Involved Electrochemical Reactions. Journal of Energy Chemistry, 80, 302-323.
https://doi.org/10.1016/j.jechem.2023.02.002
[11] Qin, D., Song, S., Liu, Y., Wang, K., Yang, B. and Zhang, S. (2023) Enhanced Electrochemical Nitrate-to-Ammonia Performance of Cobalt Oxide by Protic Ionic Liquid Modification. Angewandte Chemie International Edition, 62, e202304935.
https://doi.org/10.1002/anie.202304935
[12] Jiang, Y., Wang, M., Zhang, L., Liu, S., Cao, Y., Qian, S., et al. (2022) Distorted Spinel Ferrite Heterostructure Triggered by Alkaline Earth Metal Substitution Facilitates Nitrogen Localization and Electrocatalytic Reduction to Ammonia. Chemical Engineering Journal, 450, Article ID: 138226.
https://doi.org/10.1016/j.cej.2022.138226
[13] Yang, C., Zhu, Y., Liu, J., Qin, Y., Wang, H., Liu, H., et al. (2020) Defect Engineering for Electrochemical Nitrogen Reduction Reaction to Ammonia. Nano Energy, 77, Article ID: 105126.
https://doi.org/10.1016/j.nanoen.2020.105126
[14] Chang, Z., Meng, G., Chen, Y., Chen, C., Han, S., Wu, P., et al. (2023) Dual-Site W-O-Cop Catalysts for Active and Selective Nitrate Conversion to Ammonia in a Broad Concentration Window. Advanced Materials, 35, Article ID: 2304508.
https://doi.org/10.1002/adma.202304508
[15] He, Y., Wang, M., Liu, S., Zhang, L., Cheng, Q., Yan, C., et al. (2023) A Superaerophilic Gas Diffusion Electrode Enabling Facilitated Nitrogen Feeding through Hierarchical Micro/Nano Channels for Efficient Ambient Synthesis of Ammonia. Chemical Engineering Journal, 454, Article ID: 140106.
https://doi.org/10.1016/j.cej.2022.140106
[16] Liu, S., Wang, M., Cheng, Q., He, Y., Ni, J., Liu, J., et al. (2022) Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 16, 17911-17930.
https://doi.org/10.1021/acsnano.2c09168
[17] Song, Z., Liu, Y., Zhong, Y., Guo, Q., Zeng, J. and Geng, Z. (2022) Efficient Electroreduction of Nitrate into Ammonia at Ultralow Concentrations via an Enrichment Effect. Advanced Materials, 34, Article ID: 2204306.
https://doi.org/10.1002/adma.202204306
[18] Jiang, H., Chen, G., Savateev, O., Xue, J., Ding, L., Liang, Z., et al. (2023) Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc-Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages. Angewandte Chemie International Edition, 62, e202218717.
https://doi.org/10.1002/anie.202218717
[19] He, D., Ooka, H., Li, Y., Kim, Y., Yamaguchi, A., Adachi, K., et al. (2022) Regulation of the Electrocatalytic Nitrogen Cycle Based on Sequential Proton-Electron Transfer. Nature Catalysis, 5, 798-806.
https://doi.org/10.1038/s41929-022-00833-z
[20] Liu, D., Qiao, L., Peng, S., Bai, H., Liu, C., Ip, W.F., et al. (2023) Recent Advances in Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Advanced Functional Materials, 33, Article ID: 2303480.
https://doi.org/10.1002/adfm.202303480
[21] Dima, G.E., de Vooys, A.C.A. and Koper, M.T.M. (2003) Electrocatalytic Reduction of Nitrate at Low Concentration on Coinage and Transition-Metal Electrodes in Acid Solutions. Journal of Electroanalytical Chemistry, 554, 15-23.
https://doi.org/10.1016/s0022-0728(02)01443-2
[22] Bae, S., Stewart, K.L. and Gewirth, A.A. (2007) Nitrate Adsorption and Reduction on Cu(100) in Acidic Solution. Journal of the American Chemical Society, 129, 10171-10180.
https://doi.org/10.1021/ja071330n
[23] Zeng, Y., Priest, C., Wang, G. and Wu, G. (2020) Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. Small Methods, 4, Article ID: 2000672.
https://doi.org/10.1002/smtd.202000672
[24] Gennero de Chialvo, M.R. and Chialvo, A.C. (1998) Kinetics of Hydrogen Evolution Reaction with Frumkin Adsorption: Re-Examination of the Volmer-Heyrovsky and Volmer-Tafel Routes. Electrochimica Acta, 44, 841-851.
https://doi.org/10.1016/s0013-4686(98)00233-3
[25] Shin, H., Jung, S., Bae, S., Lee, W. and Kim, H. (2014) Nitrite Reduction Mechanism on a Pd Surface. Environmental Science & Technology, 48, 12768-12774.
https://doi.org/10.1021/es503772x
[26] Gao, J., Jiang, B., Ni, C., Qi, Y. and Bi, X. (2020) Enhanced Reduction of Nitrate by Noble Metal-Free Electrocatalysis on P Doped Three-Dimensional Co3O4 Cathode: Mechanism Exploration from Both Experimental and DFT Studies. Chemical Engineering Journal, 382, Article ID: 123034.
https://doi.org/10.1016/j.cej.2019.123034
[27] Zou, X., Chen, C., Wang, C., Zhang, Q., Yu, Z., Wu, H., et al. (2021) Combining Electrochemical Nitrate Reduction and Anammox for Treatment of Nitrate-Rich Wastewater: A Short Review. Science of The Total Environment, 800, Article ID: 149645.
https://doi.org/10.1016/j.scitotenv.2021.149645
[28] Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. and Westerhoff, P. (2018) Electrocatalytic Reduction of Nitrate: Fundamentals to Full-Scale Water Treatment Applications. Applied Catalysis B: Environmental, 236, 546-568.
https://doi.org/10.1016/j.apcatb.2018.05.041
[29] Bonner, F.T. and Hughes, M.N. (1988) The Aqueous Solution Chemistry of Nitrogen in Low Positive Oxidation States. Comments on Inorganic Chemistry, 7, 215-234.
https://doi.org/10.1080/02603598808072309
[30] Wang, S., Wang, Y., Fu, Y., Liu, T. and Wang, G. (2023) High-Throughput Mechanistic Study of Highly Selective Hydrogen-Bonded Organic Frameworks for Electrochemical Nitrate Reduction to Ammonia. Journal of Energy Chemistry, 87, 408-415.
https://doi.org/10.1016/j.jechem.2023.08.050
[31] de Vooys, A.C.A., Beltramo, G.L., van Riet, B., van Veen, J.A.R. and Koper, M.T.M. (2004) Mechanisms of Electrochemical Reduction and Oxidation of Nitric Oxide. Electrochimica Acta, 49, 1307-1314.
https://doi.org/10.1016/j.electacta.2003.07.020
[32] Wang, Y., Wang, C., Li, M., Yu, Y. and Zhang, B. (2021) Nitrate Electroreduction: Mechanism Insight, in Situ Characterization, Performance Evaluation, and Challenges. Chemical Society Reviews, 50, 6720-6733.
https://doi.org/10.1039/d1cs00116g
[33] Andersen, S.Z., Čolić, V., Yang, S., Schwalbe, J.A., Nielander, A.C., McEnaney, J.M., et al. (2019) A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature, 570, 504-508.
https://doi.org/10.1038/s41586-019-1260-x
[34] Zhang, Y., Zheng, H., Zhou, K., Ye, J., Chu, K., Zhou, Z., et al. (2023) Conjugated Coordination Polymer as a New Platform for Efficient and Selective Electroreduction of Nitrate into Ammonia. Advanced Materials, 35, Article ID: 2209855.
https://doi.org/10.1002/adma.202209855
[35] Wang, Y. and Shao, M. (2022) Theoretical Screening of Transition Metal-N4-Doped Graphene for Electroreduction of Nitrate. ACS Catalysis, 12, 5407-5415.
https://doi.org/10.1021/acscatal.2c00307
[36] Wang, S., Gao, H., Li, L., Hui, K.S., Dinh, D.A., Wu, S., et al. (2022) High-Throughput Identification of Highly Active and Selective Single-Atom Catalysts for Electrochemical Ammonia Synthesis through Nitrate Reduction. Nano Energy, 100, Article ID: 107517.
https://doi.org/10.1016/j.nanoen.2022.107517
[37] Niu, H., Zhang, Z., Wang, X., Wan, X., Shao, C. and Guo, Y. (2020) Theoretical Insights into the Mechanism of Selective Nitrate-to-Ammonia Electroreduction on Single-Atom Catalysts. Advanced Functional Materials, 31, Article ID: 2008533.
https://doi.org/10.1002/adfm.202008533
[38] Chen, H., Zhang, C., Sheng, L., Wang, M., Fu, W., Gao, S., et al. (2022) Copper Single-Atom Catalyst as a High-Performance Electrocatalyst for Nitrate-Ammonium Conversion. Journal of Hazardous Materials, 434, Article ID: 128892.
https://doi.org/10.1016/j.jhazmat.2022.128892
[39] Zhao, X., Geng, Q., Dong, F., Zhao, K., Chen, S., Yu, H., et al. (2023) Boosting the Selectivity and Efficiency of Nitrate Reduction to Ammonia with a Single-Atom Cu Electrocatalyst. Chemical Engineering Journal, 466, Article ID: 143314.
https://doi.org/10.1016/j.cej.2023.143314
[40] Xue, Y., Yu, Q., Ma, Q., Chen, Y., Zhang, C., Teng, W., et al. (2022) Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N3C1 Sites. Environmental Science & Technology, 56, 14797-14807.
https://doi.org/10.1021/acs.est.2c04456
[41] Zhu, T., Chen, Q., Liao, P., Duan, W., Liang, S., Yan, Z., et al. (2020) Single-Atom Cu Catalysts for Enhanced Electrocatalytic Nitrate Reduction with Significant Alleviation of Nitrite Production. Small, 16, Article ID: 2004526.
https://doi.org/10.1002/smll.202004526
[42] Zhao, X., Jia, X., He, Y., Zhang, H., Zhou, X., Zhang, H., et al. (2021) Two-Dimensional BCN Matrix Inlaid with Single-Atom-Cu Driven Electrochemical Nitrate Reduction Reaction to Achieve Sustainable Industrial-Grade Production of Ammonia. Applied Materials Today, 25, Article ID: 101206.
https://doi.org/10.1016/j.apmt.2021.101206
[43] Xu, Y., Xie, M., Zhong, H. and Cao, Y. (2022) In Situ Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction. ACS Catalysis, 12, 8698-8706.
https://doi.org/10.1021/acscatal.2c02033
[44] Yang, J., Qi, H., Li, A., Liu, X., Yang, X., Zhang, S., et al. (2022) Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia. Journal of the American Chemical Society, 144, 12062-12071.
https://doi.org/10.1021/jacs.2c02262
[45] Li, P., Jin, Z., Fang, Z. and Yu, G. (2021) A Single-Site Iron Catalyst with Preoccupied Active Centers That Achieves Selective Ammonia Electrosynthesis from Nitrate. Energy & Environmental Science, 14, 3522-3531.
https://doi.org/10.1039/d1ee00545f
[46] Murphy, E., Liu, Y., Matanovic, I., Guo, S., Tieu, P., Huang, Y., et al. (2022) Highly Durable and Selective Fe-and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO− 2 Pathways. ACS Catalysis, 12, 6651-6662.
https://doi.org/10.1021/acscatal.2c01367
[47] Yao, Y., Zhao, L., Dai, J., Wang, J., Fang, C., Zhan, G., et al. (2022) Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction. Angewandte Chemie International Edition, 61, e202208215.
https://doi.org/10.1002/anie.202208215
[48] Ji, H., Wang, M., Liu, S., Sun, H., Liu, J., Qian, T., et al. (2020) In-Situ Observation as Activity Descriptor Enables Rational Design of Oxygen Reduction Catalyst for Zinc-Air Battery. Energy Storage Materials, 27, 226-231.
https://doi.org/10.1016/j.ensm.2020.02.002
[49] Wang, Y., Xu, A., Wang, Z., Huang, L., Li, J., Li, F., et al. (2020) Enhanced Nitrate-to-Ammonia Activity on Copper-nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 142, 5702-5708.
https://doi.org/10.1021/jacs.9b13347
[50] Fang, L., Wang, S., Song, C., Yang, X., Li, Y. and Liu, H. (2022) Enhanced Nitrate Reduction Reaction via Efficient Intermediate Nitrite Conversion on Tunable Cuxniy/Nc Electrocatalysts. Journal of Hazardous Materials, 421, Article ID: 126628.
https://doi.org/10.1016/j.jhazmat.2021.126628
[51] Zhang, Z., Liu, Y., Su, X., Zhao, Z., Mo, Z., Wang, C., et al. (2023) Electro-Triggered Joule Heating Method to Synthesize Single-Phase Cuni Nano-Alloy Catalyst for Efficient Electrocatalytic Nitrate Reduction toward Ammonia. Nano Research, 16, 6632-6641.
https://doi.org/10.1007/s12274-023-5402-y
[52] Yin, H., Chen, Z., Xiong, S., Chen, J., Wang, C., Wang, R., et al. (2021) Alloying Effect-Induced Electron Polarization Drives Nitrate Electroreduction to Ammonia. Chem Catalysis, 1, 1088-1103.
https://doi.org/10.1016/j.checat.2021.08.014
[53] Gao, Q., Pillai, H.S., Huang, Y., Liu, S., Mu, Q., Han, X., et al. (2022) Breaking Adsorption-Energy Scaling Limitations of Electrocatalytic Nitrate Reduction on Intermetallic Cupd Nanocubes by Machine-Learned Insights. Nature Communications, 13, Article No. 2338.
https://doi.org/10.1038/s41467-022-29926-w
[54] Fang, J., Zheng, Q., Lou, Y., Zhao, K., Hu, S., Li, G., et al. (2022) Ampere-Level Current Density Ammonia Electrochemical Synthesis Using Cuco Nanosheets Simulating Nitrite Reductase Bifunctional Nature. Nature Communications, 13, Article No. 7899.
https://doi.org/10.1038/s41467-022-35533-6
[55] Chen, F., Wu, Z., Gupta, S., Rivera, D.J., Lambeets, S.V., Pecaut, S., et al. (2022) Efficient Conversion of Low-Concentration Nitrate Sources into Ammonia on a Ru-Dispersed Cu Nanowire Electrocatalyst. Nature Nanotechnology, 17, 759-767.
https://doi.org/10.1038/s41565-022-01121-4
[56] Gao, W., Xie, K., Xie, J., Wang, X., Zhang, H., Chen, S., et al. (2023) Alloying of Cu with Ru Enabling the Relay Catalysis for Reduction of Nitrate to Ammonia. Advanced Materials, 35, e2202952.
https://doi.org/10.1002/adma.202202952
[57] Sun, W., Ji, H., Li, L., Zhang, H., Wang, Z., He, J., et al. (2021) Built-In Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra-Low Concentration and Electroreduction to Ammonia. Angewandte Chemie International Edition, 60, 22933-22939.
https://doi.org/10.1002/anie.202109785
[58] He, W., Zhang, J., Dieckhöfer, S., Varhade, S., Brix, A.C., Lielpetere, A., et al. (2022) Splicing the Active Phases of Copper/Cobalt-Based Catalysts Achieves High-Rate Tandem Electroreduction of Nitrate to Ammonia. Nature Communications, 13, Article No. 1129.
https://doi.org/10.1038/s41467-022-28728-4
[59] Zhu, W., Yao, F., Wu, Q., Jiang, Q., Wang, J., Wang, Z., et al. (2023) Weakened D-P Orbital Hybridization in in Situ Reconstructed Ru/β-Co(OH)2 Heterointerfaces for Accelerated Ammonia Electrosynthesis from Nitrates. Energy & Environmental Science, 16, 2483-2493.
https://doi.org/10.1039/d3ee00371j