[1]
|
Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S. and Komaba, S. (2018) Towards K‐Ion and Na‐Ion Batteries as “beyond Li‐Ion”. The Chemical Record, 18, 459-479. https://doi.org/10.1002/tcr.201700057
|
[2]
|
Zhang, T. and Ran, F. (2021) Design Strategies of 3D Carbon‐Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Advanced Functional Materials, 31, Article ID: 2010041. https://doi.org/10.1002/adfm.202010041
|
[3]
|
Ma, Z., Chen, J., Vatamanu, J., Borodin, O., Bedrov, D., Zhou, X., et al. (2022) Expanding the Low-Temperature and High-Voltage Limits of Aqueous Lithium-Ion Battery. Energy Storage Materials, 45, 903-910. https://doi.org/10.1016/j.ensm.2021.12.045
|
[4]
|
Velumani, D. and Bansal, A. (2022) Thermal Behavior of Lithium-and Sodium-Ion Batteries: A Review on Heat Generation, Battery Degradation, Thermal Runway—Perspective and Future Directions. Energy & Fuels, 36, 14000-14029. https://doi.org/10.1021/acs.energyfuels.2c02889
|
[5]
|
Lyu, P., Liu, X., Qu, J., Zhao, J., Huo, Y., Qu, Z., et al. (2020) Recent Advances of Thermal Safety of Lithium Ion Battery for Energy Storage. Energy Storage Materials, 31, 195-220. https://doi.org/10.1016/j.ensm.2020.06.042
|
[6]
|
Huang, W., Feng, X., Han, X., Zhang, W. and Jiang, F. (2021) Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Reports Physical Science, 2, Article ID: 100285. https://doi.org/10.1016/j.xcrp.2020.100285
|
[7]
|
Wang, Y., Feng, X., Huang, W., He, X., Wang, L. and Ouyang, M. (2023) Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of High‐Energy Batteries. Advanced Energy Materials, 13, Article ID: 2203841. https://doi.org/10.1002/aenm.202203841
|
[8]
|
Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y. and He, X. (2018) Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Materials, 10, 246-267. https://doi.org/10.1016/j.ensm.2017.05.013
|
[9]
|
Li, Y., An, Y., Tian, Y., Fei, H., Xiong, S., Qian, Y., et al. (2019) Stable and Safe Lithium Metal Batteries with Ni-Rich Cathodes Enabled by a High Efficiency Flame Retardant Additive. Journal of The Electrochemical Society, 166, A2736-A2740. https://doi.org/10.1149/2.0081913jes
|
[10]
|
Liu, K., Liu, Y., Lin, D., Pei, A. and Cui, Y. (2018) Materials for Lithium-Ion Battery Safety. Science Advances, 4, eaas9820. https://doi.org/10.1126/sciadv.aas9820
|
[11]
|
Odom, S.A. (2021) Overcharge Protection of Lithium-Ion Batteries with Phenothiazine Redox Shuttles. New Journal of Chemistry, 45, 3750-3755. https://doi.org/10.1039/d0nj05935h
|
[12]
|
Dai, H., Xi, K., Liu, X., Lai, C. and Zhang, S. (2018) Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms. Journal of the American Chemical Society, 140, 17515-17521. https://doi.org/10.1021/jacs.8b08963
|
[13]
|
Wang, J., Yamada, Y., Sodeyama, K., Chiang, C.H., Tateyama, Y. and Yamada, A. (2016) Superconcentrated Electrolytes for a High-Voltage Lithium-Ion Battery. Nature Communications, 7, Article No. 12032. https://doi.org/10.1038/ncomms12032
|
[14]
|
Yang, S., Hao, M., Wang, Z., Xie, Z., Cai, Z., Hu, M., et al. (2022) 2,2,2-Trifluoroethyl Trifluoroacetate as Effective Electrolyte Additive for Uniform Li Deposition in Lithium Metal Batteries. Chemical Engineering Journal, 435, Article ID: 134897. https://doi.org/10.1016/j.cej.2022.134897
|
[15]
|
Nie, K., Wang, X., Qiu, J., Wang, Y., Yang, Q., Xu, J., et al. (2020) Increasing Poly(ethylene Oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 5, 826-832. https://doi.org/10.1021/acsenergylett.9b02739
|
[16]
|
Kalhoff, J., Eshetu, G.G., Bresser, D. and Passerini, S. (2015) Safer Electrolytes for Lithium‐Ion Batteries: State of the Art and Perspectives. ChemSusChem, 8, 2154-2175. https://doi.org/10.1002/cssc.201500284
|
[17]
|
Chen, X., Zhang, R., Zhao, R., Qi, X., Li, K., Sun, Q., et al. (2020) A “Dendrite-Eating” Separator for High-Areal-Capacity Lithium-Metal Batteries. Energy Storage Materials, 31, 181-186. https://doi.org/10.1016/j.ensm.2020.06.037
|
[18]
|
Yang, Y. and Zhao, J. (2021) Wadsley-Roth Crystallographic Shear Structure Niobium‐Based Oxides: Promising Anode Materials for High‐Safety Lithium‐Ion Batteries. Advanced Science, 8, Article ID: 2004855. https://doi.org/10.1002/advs.202004855
|
[19]
|
Yang, Q., Li, W., Dong, C., Ma, Y., Yin, Y., Wu, Q., et al. (2020) PIM-1 as an Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anode in High-Performance Batteries. Journal of Energy Chemistry, 42, 83-90. https://doi.org/10.1016/j.jechem.2019.06.012
|
[20]
|
Andre, D., Hain, H., Lamp, P., Maglia, F. and Stiaszny, B. (2017) Future High-Energy Density Anode Materials from an Automotive Application Perspective. Journal of Materials Chemistry A, 5, 17174-17198. https://doi.org/10.1039/c7ta03108d
|
[21]
|
Li, G., Yang, Z. and Yang, W. (2008) Effect of Fepo4 Coating on Electrochemical and Safety Performance of LiCoO2 as Cathode Material for Li-Ion Batteries. Journal of Power Sources, 183, 741-748. https://doi.org/10.1016/j.jpowsour.2008.05.047
|
[22]
|
Liu, W., Li, X., Hao, Y., Xiong, D., Shan, H., Wang, J., Xiao, W., Yang, H., Yang, H., Kou, L., Tian, Z., Shao, L. and Zhang, C. (2021) Functional Passivation Interface of LiNi0.8Co0.1Mn0.1O2 toward Superior Lithium Storage. Advanced Functional Materials, 13, Article ID: 2008301.
|
[23]
|
Cho, W., Kim, S., Song, J.H., Yim, T., Woo, S., Lee, K., et al. (2015) Improved Electrochemical and Thermal Properties of Nickel Rich LiNi0.6Co0.2Mn0.2O2 Cathode Materials by SiO2 Coating. Journal of Power Sources, 282, 45-50. https://doi.org/10.1016/j.jpowsour.2014.12.128
|
[24]
|
Wu, X., Song, K., Zhang, X., Hu, N., Li, L., Li, W., et al. (2019) Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Frontiers in Energy Research, 7, Article No. 65. https://doi.org/10.3389/fenrg.2019.00065
|
[25]
|
Liu, Z., Yuan, X., Zhang, S., Wang, J., Huang, Q., Yu, N., et al. (2019) Three-Dimensional Ordered Porous Electrode Materials for Electrochemical Energy Storage. NPG Asia Materials, 11, Article No. 12. https://doi.org/10.1038/s41427-019-0112-3
|
[26]
|
Kong, D., Peng, R., Ping, P., Du, J., Chen, G. and Wen, J. (2020) A Novel Battery Thermal Management System Coupling with PCM and Optimized Controllable Liquid Cooling for Different Ambient Temperatures. Energy Conversion and Management, 204, Article ID: 112280. https://doi.org/10.1016/j.enconman.2019.112280
|
[27]
|
Li, L., Xu, C., Chang, R., Yang, C., Jia, C., Wang, L., et al. (2021) Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials, 40, 329-336. https://doi.org/10.1016/j.ensm.2021.05.018
|
[28]
|
Akbarzadeh, M., Jaguemont, J., Kalogiannis, T., Karimi, D., He, J., Jin, L., et al. (2021) A Novel Liquid Cooling Plate Concept for Thermal Management of Lithium-Ion Batteries in Electric Vehicles. Energy Conversion and Management, 231, Article ID: 113862. https://doi.org/10.1016/j.enconman.2021.113862
|
[29]
|
Behi, H., Karimi, D., Gandoman, F.H., Akbarzadeh, M., Khaleghi, S., Kalogiannis, T., et al. (2021) PCM Assisted Heat Pipe Cooling System for the Thermal Management of an LTO Cell for High-Current Profiles. Case Studies in Thermal Engineering, 25, Article ID: 100920. https://doi.org/10.1016/j.csite.2021.100920
|
[30]
|
Xu, B., Lee, J., Kwon, D., Kong, L. and Pecht, M. (2021) Mitigation Strategies for Li-Ion Battery Thermal Runaway: A Review. Renewable and Sustainable Energy Reviews, 150, Article ID: 111437. https://doi.org/10.1016/j.rser.2021.111437
|
[31]
|
Sun, G., Liu, B., Niu, H., Hao, F., Chen, N., Zhang, M., et al. (2020) In Situ Welding: Superb Strength, Good Wettability and Fire Resistance Tri-Layer Separator with Shutdown Function for High-Safety Lithium Ion Battery. Journal of Membrane Science, 595, Article ID: 117509. https://doi.org/10.1016/j.memsci.2019.117509
|
[32]
|
Baginska, M., Blaiszik, B.J., Rajh, T., Sottos, N.R. and White, S.R. (2014) Enhanced Autonomic Shutdown of Li-Ion Batteries by Polydopamine Coated Polyethylene Microspheres. Journal of Power Sources, 269, 735-739. https://doi.org/10.1016/j.jpowsour.2014.07.048
|
[33]
|
Igoris, M., Artem’evich, M.G., Constantinovich, C.B., Grigorievich, K.R. and Shkolnik, N. (2007) Current Interrupt Device for Batteries. United States, 20070275298.
|
[34]
|
Zhang, M., Du, J., Liu, L., Stefanopoulou, A., Siegel, J., Lu, L., et al. (2017) Internal Short Circuit Trigger Method for Lithium-Ion Battery Based on Shape Memory Alloy. Journal of The Electrochemical Society, 164, A3038-A3044. https://doi.org/10.1149/2.0731713jes
|
[35]
|
Yang, M., Peng, Z., Wang, C. and Fu, X. (2016) Microstructure and Electrical Properties of BaTiO3-(Bi0.5M0.5)TiO3 (M = Li, Na, K, Rb) Ceramics with Positive Temperature Coefficient of Resistivity. Ceramics International, 42, 17792-17797. https://doi.org/10.1016/j.ceramint.2016.08.107
|
[36]
|
The Institute of Electrical and Electronics Engineers (2021) IEEE Standard for Rechargeable Batteries for Mobile Phones. IEEE Std 1725-2021.
|
[37]
|
Lelie, M., Braun, T., Knips, M., Nordmann, H., Ringbeck, F., Zappen, H., et al. (2018) Battery Management System Hardware Concepts: An Overview. Applied Sciences, 8, Article No. 534. https://doi.org/10.3390/app8040534
|
[38]
|
Yuan, S., Chang, C., Yan, S., Zhou, P., Qian, X., Yuan, M., et al. (2021) A Review of Fire-Extinguishing Agent on Suppressing Lithium-Ion Batteries Fire. Journal of Energy Chemistry, 62, 262-280. https://doi.org/10.1016/j.jechem.2021.03.031
|
[39]
|
Meng, X., Li, S., Fu, W., Chen, Y., Duan, Q. and Wang, Q. (2022) Experimental Study of Intermittent Spray Cooling on Suppression for Lithium Iron Phosphate Battery Fires. eTransportation, 11, Article ID: 100142. https://doi.org/10.1016/j.etran.2021.100142
|