[1]
|
Chen, L., Li, W., Fan, L., Nan, C. and Zhang, Q. (2019) Intercalated Electrolyte with High Transference Number for Dendrite‐Free Solid‐State Lithium Batteries. Advanced Functional Materials, 29, Article 1901047. https://doi.org/10.1002/adfm.201901047
|
[2]
|
Xu, Y., Li, T., Wang, L. and Kang, Y. (2019) Interlayered Dendrite‐Free Lithium Plating for High‐Performance Lithium‐Metal Batteries. Advanced Materials, 31, Article 1901662. https://doi.org/10.1002/adma.201901662
|
[3]
|
Wu, B., Wang, S., Lochala, J., Desrochers, D., Liu, B., Zhang, W., et al. (2018) The Role of the Solid Electrolyte Interphase Layer in Preventing Li Dendrite Growth in Solid-State Batteries. Energy & Environmental Science, 11, 1803-1810. https://doi.org/10.1039/c8ee00540k
|
[4]
|
Ming, J., Guo, J., Xia, C., Wang, W. and Alshareef, H.N. (2019) Zinc-Ion Batteries: Materials, Mechanisms, and Applications. Materials Science and Engineering: R: Reports, 135, 58-84. https://doi.org/10.1016/j.mser.2018.10.002
|
[5]
|
Zheng, J., Zhao, Q., Tang, T., Yin, J., Quilty, C.D., Renderos, G.D., et al. (2019) Reversible Epitaxial Electrodeposition of Metals in Battery Anodes. Science, 366, 645-648. https://doi.org/10.1126/science.aax6873
|
[6]
|
Zhu, M., Wang, X., Tang, H., Wang, J., Hao, Q., Liu, L., et al. (2019) Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Advanced Functional Materials, 30, Article 1907218. https://doi.org/10.1002/adfm.201907218
|
[7]
|
Liu, X., Yang, F., Xu, W., Zeng, Y., He, J. and Lu, X. (2020) Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite‐free Zn Anodes. Advanced Science, 7, Article 2002173. https://doi.org/10.1002/advs.202002173
|
[8]
|
Li, C., Sun, Z., Yang, T., Yu, L., Wei, N., Tian, Z., et al. (2020) Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes. Advanced Materials, 32, Article 2003425. https://doi.org/10.1002/adma.202003425
|
[9]
|
Kim, J.Y., Liu, G., Shim, G.Y., Kim, H. and Lee, J.K. (2020) Functionalized Zn@ZnO Hexagonal Pyramid Array for Dendrite‐Free and Ultrastable Zinc Metal Anodes. Advanced Functional Materials, 30, Article 2004210. https://doi.org/10.1002/adfm.202004210
|
[10]
|
Jiang, L., Lu, Y., Zhao, C., Liu, L., Zhang, J., Zhang, Q., et al. (2019) Building Aqueous K-Ion Batteries for Energy Storage. Nature Energy, 4, 495-503. https://doi.org/10.1038/s41560-019-0388-0
|
[11]
|
Nian, Q., Liu, S., Liu, J., Zhang, Q., Shi, J., Liu, C., et al. (2019) All-Climate Aqueous Dual-Ion Hybrid Battery with Ultrahigh Rate and Ultralong Life Performance. ACS Applied Energy Materials, 2, 4370-4378. https://doi.org/10.1021/acsaem.9b00566
|
[12]
|
You, Y., Yao, H., Xin, S., Yin, Y., Zuo, T., Yang, C., et al. (2016) Subzero‐Temperature Cathode for a Sodium‐Ion Battery. Advanced Materials, 28, 7243-7248. https://doi.org/10.1002/adma.201600846
|
[13]
|
Nian, Q., Wang, J., Liu, S., Sun, T., Zheng, S., Zhang, Y., et al. (2019) Aqueous Batteries Operated at −50˚C. Angewandte Chemie International Edition, 58, 16994-16999. https://doi.org/10.1002/anie.201908913
|
[14]
|
Guo, Z., Wang, T., Wei, H., Long, Y., Yang, C., Wang, D., et al. (2019) Ice as Solid Electrolyte to Conduct Various Kinds of Ions. Angewandte Chemie International Edition, 58, 12569-12573. https://doi.org/10.1002/anie.201907832
|
[15]
|
Fang, G., Zhou, J., Pan, A. and Liang, S. (2018) Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 3, 2480-2501. https://doi.org/10.1021/acsenergylett.8b01426
|
[16]
|
Yamamoto, T. and Shoji, T. (1986) Rechargeable Zn|ZnSO4|MnO2-Type Cells. Inorganica Chimica Acta, 117, L27-L28. https://doi.org/10.1016/s0020-1693(00)82175-1
|
[17]
|
Xu, C., Li, B., Du, H. and Kang, F. (2011) Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie, 124, 957-959. https://doi.org/10.1002/ange.201106307
|
[18]
|
Mathew, V., Sambandam, B., Kim, S., Kim, S., Park, S., Lee, S., et al. (2020) Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 5, 2376-2400. https://doi.org/10.1021/acsenergylett.0c00740
|
[19]
|
Zhang, L., Chen, L., Zhou, X. and Liu, Z. (2014) Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Advanced Energy Materials, 5, Article 1400930. https://doi.org/10.1002/aenm.201400930
|
[20]
|
Kundu, D., Adams, B.D., Duffort, V., Vajargah, S.H. and Nazar, L.F. (2016) A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. Nature Energy, 1, Article No. 16119. https://doi.org/10.1038/nenergy.2016.119
|
[21]
|
Konarov, A., Voronina, N., Jo, J.H., Bakenov, Z., Sun, Y. and Myung, S. (2018) Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 3, 2620-2640. https://doi.org/10.1021/acsenergylett.8b01552
|
[22]
|
Huang, S., Wan, F., Bi, S., Zhu, J., Niu, Z. and Chen, J. (2019) A Self‐Healing Integrated All‐in‐One Zinc‐Ion Battery. Angewandte Chemie, 131, 4357-4361. https://doi.org/10.1002/ange.201814653
|
[23]
|
Wan, F. and Niu, Z. (2019) Design Strategies for Vanadium‐Based Aqueous Zinc‐Ion Batteries. Angewandte Chemie, 131, 16508-16517. https://doi.org/10.1002/ange.201903941
|
[24]
|
Jia, X., Liu, C., Neale, Z.G., Yang, J. and Cao, G. (2020) Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120, 7795-7866. https://doi.org/10.1021/acs.chemrev.9b00628
|
[25]
|
Liao, M., Wang, J., Ye, L., Sun, H., Wen, Y., Wang, C., et al. (2019) A Deep‐Cycle Aqueous Zinc‐Ion Battery Containing an Oxygen‐Deficient Vanadium Oxide Cathode. Angewandte Chemie, 132, 2293-2298. https://doi.org/10.1002/ange.201912203
|
[26]
|
Zhang, Y., Tao, L., Xie, C., Wang, D., Zou, Y., Chen, R., et al. (2020) Defect Engineering on Electrode Materials for Rechargeable Batteries. Advanced Materials, 32, Article 1905923. https://doi.org/10.1002/adma.201905923
|
[27]
|
He, P., Yan, M., Zhang, G., Sun, R., Chen, L., An, Q., et al. (2017) Layered VS2 Nanosheet‐Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 7, Article 1601920. https://doi.org/10.1002/aenm.201601920
|
[28]
|
Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K.S., Nie, Z., et al. (2016) Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions. Nature Energy, 1, Article No. 16039. https://doi.org/10.1038/nenergy.2016.39
|
[29]
|
Zhang, N., Cheng, F., Liu, J., Wang, L., Long, X., Liu, X., et al. (2017) Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. Nature Communications, 8, Article No. 405. https://doi.org/10.1038/s41467-017-00467-x
|
[30]
|
Wu, B., Zhang, G., Yan, M., Xiong, T., He, P., He, L., et al. (2018) Graphene Scroll‐Coated α‐MnO2 Nanowires as High‐Performance Cathode Materials for Aqueous Zn‐Ion Battery. Small, 14, Article 1703850. https://doi.org/10.1002/smll.201703850
|
[31]
|
Wang, X., Li, Y., Wang, S., Zhou, F., Das, P., Sun, C., et al. (2020) 2D Amorphous V2O5/Graphene Heterostructures for High‐Safety Aqueous Zn‐Ion Batteries with Unprecedented Capacity and Ultrahigh Rate Capability. Advanced Energy Materials, 10, Article 2000081. https://doi.org/10.1002/aenm.202000081
|
[32]
|
Ni, G., Han, B., Li, Q., Ji, Z., Huang, B. and Zhou, C. (2016) Instability of Zinc Hexacyanoferrate Electrode in an Aqueous Environment: Redox‐Induced Phase Transition, Compound Dissolution, and Inhibition. ChemElectroChem, 3, 798-804. https://doi.org/10.1002/celc.201500538
|
[33]
|
Driscoll, D.M., Lavan, S.N., Zorko, M., Redfern, P.C., Ilic, S., Agarwal, G., et al. (2023) Emergent Solvation Phenomena in Non-Aqueous Electrolytes with Multiple Anions. Chem, 9, 1955-1971. https://doi.org/10.1016/j.chempr.2023.03.021
|
[34]
|
Kundu, D., Hosseini Vajargah, S., Wan, L., Adams, B., Prendergast, D. and Nazar, L.F. (2018) Aqueous vs. Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface. Energy & Environmental Science, 11, 881-892. https://doi.org/10.1039/c8ee00378e
|
[35]
|
Hou, Z., Dong, M., Xiong, Y., Zhang, X., Ao, H., Liu, M., et al. (2020) A High‐Energy and Long‐Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn2+ Coinsertion. Small, 16, Article 2001228. https://doi.org/10.1002/smll.202001228
|
[36]
|
Zhang, X., Li, J., Ao, H., Liu, D., Shi, L., Wang, C., et al. (2020) Appropriately Hydrophilic/Hydrophobic Cathode Enables High-Performance Aqueous Zinc-Ion Batteries. Energy Storage Materials, 30, 337-345. https://doi.org/10.1016/j.ensm.2020.05.021
|
[37]
|
Liu, Z., Huang, Y., Huang, Y., Yang, Q., Li, X., Huang, Z., et al. (2020) Voltage Issue of Aqueous Rechargeable Metal-Ion Batteries. Chemical Society Reviews, 49, 180-232. https://doi.org/10.1039/c9cs00131j
|
[38]
|
Jia, H., Wang, Z., Tawiah, B., Wang, Y., Chan, C., Fei, B., et al. (2020) Recent Advances in Zinc Anodes for High-Performance Aqueous Zn-Ion Batteries. Nano Energy, 70, Article 104523. https://doi.org/10.1016/j.nanoen.2020.104523
|
[39]
|
Zhang, Q., Luan, J., Tang, Y., Ji, X. and Wang, H. (2020) Interfacial Design of Dendrite‐Free Zinc Anodes for Aqueous Zinc‐Ion Batteries. Angewandte Chemie International Edition, 59, 13180-13191. https://doi.org/10.1002/anie.202000162
|
[40]
|
May, G.J., Davidson, A. and Monahov, B. (2018) Lead Batteries for Utility Energy Storage: A Review. Journal of Energy Storage, 15, 145-157. https://doi.org/10.1016/j.est.2017.11.008
|
[41]
|
Zhao, C., Liu, J., Yao, N., Wang, J., Ren, D., Chen, X., et al. (2021) Can Aqueous Zinc-Air Batteries Work at Sub‐Zero Temperatures? Angewandte Chemie, 133, 15409-15413. https://doi.org/10.1002/ange.202104171
|
[42]
|
Zhang, W., Dong, Q., Wang, J., Han, X. and Hu, W. (2023) Failure Mechanism, Electrolyte Design, and Electrolyte/Electrode Interface Regulation for Low‐Temperature Zinc‐Based Batteries. Small Methods, 7, Article 2300324. https://doi.org/10.1002/smtd.202300324
|
[43]
|
Liu, S., Zhang, R., Mao, J., Zhao, Y., Cai, Q. and Guo, Z. (2022) From Room Temperature to Harsh Temperature Applications: Fundamentals and Perspectives on Electrolytes in Zinc Metal Batteries. Science Advances, 8, eabn5097. https://doi.org/10.1126/sciadv.abn5097
|
[44]
|
Wang, N., Dong, X., Wang, B., Guo, Z., Wang, Z., Wang, R., et al. (2020) Zinc-Organic Battery with a Wide Operation‐temperature Window from −70 to 150˚C. Angewandte Chemie International Edition, 59, 14577-14583. https://doi.org/10.1002/anie.202005603
|
[45]
|
Xie, C., Li, Y., Wang, Q., Sun, D., Tang, Y. and Wang, H. (2020) Issues and Solutions toward Zinc Anode in Aqueous Zinc‐Ion Batteries: A Mini Review. Carbon Energy, 2, 540-560. https://doi.org/10.1002/cey2.67
|
[46]
|
Li, F. and Hu, X. (2020) Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries & Supercaps, 4, 389-406. https://doi.org/10.1002/batt.202000243
|
[47]
|
Zhang, Q., Tong, Z. and Tong, S. (2021) Research on the Influence of Electrolytes on the Low‐Temperature Start‐Up Performance of Zinc‐Air Battery for Forklifts. International Journal of Energy Research, 46, 10169-10181. https://doi.org/10.1002/er.7296
|
[48]
|
Li, M., Li, Z., Wang, X., Meng, J., Liu, X., Wu, B., et al. (2021) Comprehensive Understanding of the Roles of Water Molecules in Aqueous Zn-Ion Batteries: From Electrolytes to Electrode Materials. Energy & Environmental Science, 14, 3796-3839. https://doi.org/10.1039/d1ee00030f
|
[49]
|
Jaguemont, J., Boulon, L. and Dubé, Y. (2016) A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures. Applied Energy, 164, 99-114. https://doi.org/10.1016/j.apenergy.2015.11.034
|
[50]
|
Jiang, L., Dong, D. and Lu, Y. (2022) Design Strategies for Low Temperature Aqueous Electrolytes. Nano Research Energy, 1, e9120003. https://doi.org/10.26599/nre.2022.9120003
|
[51]
|
Zhang, N., Deng, T., Zhang, S., Wang, C., Chen, L., Wang, C., et al. (2022) Critical Review on Low‐Temperature Li‐Ion/Metal Batteries. Advanced Materials, 34, Article 2107899. https://doi.org/10.1002/adma.202107899
|
[52]
|
Zhang, S.S., Xu, K. and Jow, T.R. (2002) Low Temperature Performance of Graphite Electrode in Li-Ion Cells. Electrochimica Acta, 48, 241-246. https://doi.org/10.1016/s0013-4686(02)00620-5
|
[53]
|
Zhang, Q., Ma, Y., Lu, Y., Li, L., Wan, F., Zhang, K., et al. (2020) Modulating Electrolyte Structure for Ultralow Temperature Aqueous Zinc Batteries. Nature Communications, 11, Article No. 4463. https://doi.org/10.1038/s41467-020-18284-0
|
[54]
|
Selvakumaran, D., Pan, A., Liang, S. and Cao, G. (2019) A Review on Recent Developments and Challenges of Cathode Materials for Rechargeable Aqueous Zn-Ion Batteries. Journal of Materials Chemistry A, 7, 18209-18236. https://doi.org/10.1039/c9ta05053a
|
[55]
|
Zuo, S., Xu, X., Ji, S., Wang, Z., Liu, Z. and Liu, J. (2020) Cathodes for Aqueous Zn‐Ion Batteries: Materials, Mechanisms, and Kinetics. Chemistry—A European Journal, 27, 830-860. https://doi.org/10.1002/chem.202002202
|
[56]
|
Ding, J., Gao, H., Ji, D., Zhao, K., Wang, S. and Cheng, F. (2021) Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: From Crystal Structures, Diffusion Channels to Storage Mechanisms. Journal of Materials Chemistry A, 9, 5258-5275. https://doi.org/10.1039/d0ta10336e
|
[57]
|
Yang, Y., Tang, Y., Liang, S., Wu, Z., Fang, G., Cao, X., et al. (2019) Transition Metal Ion-Preintercalated V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode with Broad Temperature Adaptability. Nano Energy, 61, 617-625. https://doi.org/10.1016/j.nanoen.2019.05.005
|
[58]
|
Lin, C., Qi, F., Dong, H., Li, X., Shen, C., Ang, E.H., et al. (2021) Suppressing Vanadium Dissolution of V2O5 via in Situ Polyethylene Glycol Intercalation Towards Ultralong Lifetime Room/Low-Temperature Zinc-Ion Batteries. Nanoscale, 13, 17040-17048. https://doi.org/10.1039/d1nr05334e
|
[59]
|
Yang, H., Zhou, W., Chen, D., Liu, J., Yuan, Z., Lu, M., et al. (2022) The Origin of Capacity Fluctuation and Rescue of Dead Mn-Based Zn-Ion Batteries: A Mn-Based Competitive Capacity Evolution Protocol. Energy & Environmental Science, 15, 1106-1118. https://doi.org/10.1039/d1ee03547a
|
[60]
|
Tang, B., Zhou, J., Fang, G., Liu, F., Zhu, C., Wang, C., et al. (2019) Engineering the Interplanar Spacing of Ammonium Vanadates as a High-Performance Aqueous Zinc-Ion Battery Cathode. Journal of Materials Chemistry A, 7, 940-945. https://doi.org/10.1039/c8ta09338e
|
[61]
|
Su, G., Chen, S., Dong, H., Cheng, Y., Liu, Q., Wei, H., et al. (2021) Tuning the Electronic Structure of Layered Vanadium Pentoxide by Pre-Intercalation of Potassium Ions for Superior Room/Low-Temperature Aqueous Zinc-Ion Batteries. Nanoscale, 13, 2399-2407. https://doi.org/10.1039/d0nr07358j
|
[62]
|
Zuo, S., Liu, J., He, W., Osman, S., Liu, Z., Xu, X., et al. (2021) Direct Detection and Visualization of the H+ Reaction Process in a VO2 Cathode for Aqueous Zinc-Ion Batteries. The Journal of Physical Chemistry Letters, 12, 7076-7084. https://doi.org/10.1021/acs.jpclett.1c01776
|
[63]
|
Xiong, T., Zhang, Y., Lee, W.S.V. and Xue, J. (2020) Defect Engineering in Manganese‐Based Oxides for Aqueous Rechargeable Zinc‐Ion Batteries: A Review. Advanced Energy Materials, 10, Article 2001769. https://doi.org/10.1002/aenm.202001769
|
[64]
|
Yang, W., Dong, L., Yang, W., Xu, C., Shao, G. and Wang, G. (2019) 3D Oxygen‐Defective Potassium Vanadate/Carbon Nanoribbon Networks as High‐Performance Cathodes for Aqueous Zinc‐Ion Batteries. Small Methods, 4, Article 1900670. https://doi.org/10.1002/smtd.201900670
|
[65]
|
Zong, Q., Wang, Q., Liu, C., Tao, D., Wang, J., Zhang, J., et al. (2022) Potassium Ammonium Vanadate with Rich Oxygen Vacancies for Fast and Highly Stable Zn-Ion Storage. ACS Nano, 16, 4588-4598. https://doi.org/10.1021/acsnano.1c11169
|
[66]
|
Zhang, Y., Deng, S., Luo, M., Pan, G., Zeng, Y., Lu, X., et al. (2019) Defect Promoted Capacity and Durability of N‐MnO2–x Branch Arrays via Low‐Temperature NH3 Treatment for Advanced Aqueous Zinc Ion Batteries. Small, 15, Article 1905452. https://doi.org/10.1002/smll.201905452
|
[67]
|
Hu, Y., Huang, H., Yu, D., Wang, X., Li, L., Hu, H., et al. (2021) All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS2@C/CNT Cathode. Nano-Micro Letters, 13, Article No. 159. https://doi.org/10.1007/s40820-021-00682-8
|
[68]
|
Wang, Y., Hou, B., Guo, J., Ning, Q., Pang, W., Wang, J., et al. (2018) An Ultralong Lifespan and Low‐Temperature Workable Sodium‐Ion Full Battery for Stationary Energy Storage. Advanced Energy Materials, 8, Article 1703252. https://doi.org/10.1002/aenm.201703252
|
[69]
|
Gao, N., Zhang, Y., Chen, C., Li, B., Li, W., Lu, H., et al. (2022) Low-Temperature Li-S Battery Enabled by Cofe Bimetallic Catalysts. Journal of Materials Chemistry A, 10, 8378-8389. https://doi.org/10.1039/d2ta00406b
|
[70]
|
Huang, Z., Duan, Y., Jing, Q., Sun, M., Tang, B. and Shi, S. (2021) Assembly of Mn3O4 Nanoparticles at Low Temperature on Graphene with Enhanced Electrochemical Property for Zinc-Ion Battery. Journal of Alloys and Compounds, 864, Article 158316. https://doi.org/10.1016/j.jallcom.2020.158316
|
[71]
|
Deng, S., Yuan, Z., Tie, Z., Wang, C., Song, L. and Niu, Z. (2020) Electrochemically Induced Metal-Organic‐Framework‐Derived Amorphous V2O5 for Superior Rate Aqueous Zinc‐Ion Batteries. Angewandte Chemie International Edition, 59, 22002-22006. https://doi.org/10.1002/anie.202010287
|
[72]
|
Wang, F., Li, Y., Zhu, W., Ge, X., Cui, H., Feng, K., et al. (2021) Zn-Ion Batteries: Boosting the Rate Capability and Low-Temperature Performance by Combining Structure and Morphology Engineering. ACS Applied Materials & Interfaces, 13, 34468-34476. https://doi.org/10.1021/acsami.1c09798
|
[73]
|
Chen, Z., Liu, T., Zhao, Z., Zhang, Z., Han, X., Han, P., et al. (2020) Fast Anion Intercalation into Graphite Cathode Enabling High-Rate Rechargeable Zinc Batteries. Journal of Power Sources, 457, Article 227994. https://doi.org/10.1016/j.jpowsour.2020.227994
|
[74]
|
Zhao, Y., Lu, Y., Li, H., Zhu, Y., Meng, Y., Li, N., et al. (2022) Few-Layer Bismuth Selenide Cathode for Low-Temperature Quasi-Solid-State Aqueous Zinc Metal Batteries. Nature Communications, 13, Article No. 752. https://doi.org/10.1038/s41467-022-28380-y
|
[75]
|
Wang, J., Zhang, B., Cai, Z., Zhan, R., Wang, W., Fu, L., et al. (2022) Stable Interphase Chemistry of Textured Zn Anode for Rechargeable Aqueous Batteries. Science Bulletin, 67, 716-724. https://doi.org/10.1016/j.scib.2022.01.010
|
[76]
|
Zhao, J., Ying, Y., Wang, G., Hu, K., Yuan, Y.D., Ye, H., et al. (2022) Covalent Organic Framework Film Protected Zinc Anode for Highly Stable Rechargeable Aqueous Zinc-Ion Batteries. Energy Storage Materials, 48, 82-89. https://doi.org/10.1016/j.ensm.2022.02.054
|
[77]
|
Zhang, Y., Cao, Z., Liu, S., Du, Z., Cui, Y., Gu, J., et al. (2022) Charge‐Enriched Strategy Based on MXene‐Based Polypyrrole Layers toward Dendrite‐Free Zinc Metal Anodes. Advanced Energy Materials, 12, Article 2103979. https://doi.org/10.1002/aenm.202103979
|
[78]
|
Gan, H., Wu, J., Li, R., Huang, B. and Liu, H. (2022) Ultra-Stable and Deeply Rechargeable Zinc Metal Anode Enabled by a Multifunctional Protective Layer. Energy Storage Materials, 47, 602-610. https://doi.org/10.1016/j.ensm.2022.02.040
|
[79]
|
Li, H., Guo, C., Zhang, T., Xue, P., Zhao, R., Zhou, W., et al. (2022) Hierarchical Confinement Effect with Zincophilic and Spatial Traps Stabilized Zn-Based Aqueous Battery. Nano Letters, 22, 4223-4231. https://doi.org/10.1021/acs.nanolett.2c01235
|
[80]
|
Wang, C., Wang, D., Lv, D., Peng, H., Song, X., Yang, J., et al. (2023) Interface Engineering by Hydrophilic and Zincophilic Aluminum Hydroxide Fluoride for Anode‐Free Zinc Metal Batteries at Low Temperature. Advanced Energy Materials, 13, Article 2204388. https://doi.org/10.1002/aenm.202204388
|
[81]
|
Wang, D., Lv, D., Peng, H., Wang, N., Liu, H., Yang, J., et al. (2022) Site-Selective Adsorption on ZnF2/Ag Coated Zn for Advanced Aqueous Zinc-Metal Batteries at Low Temperature. Nano Letters, 22, 1750-1758. https://doi.org/10.1021/acs.nanolett.1c04975
|
[82]
|
Cao, L., Li, D., Hu, E., Xu, J., Deng, T., Ma, L., et al. (2020) Solvation Structure Design for Aqueous Zn Metal Batteries. Journal of the American Chemical Society, 142, 21404-21409. https://doi.org/10.1021/jacs.0c09794
|
[83]
|
Guo, X., Zhang, Z., Li, J., Luo, N., Chai, G., Miller, T.S., et al. (2021) Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 6, 395-403. https://doi.org/10.1021/acsenergylett.0c02371
|
[84]
|
Sun, P., Ma, L., Zhou, W., Qiu, M., Wang, Z., Chao, D., et al. (2021) Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite‐Free Zn Ion Batteries Achieved by a Low‐Cost Glucose Additive. Angewandte Chemie, 133, 18395-18403. https://doi.org/10.1002/ange.202105756
|
[85]
|
Feng, D., Cao, F., Hou, L., Li, T., Jiao, Y. and Wu, P. (2021) Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small, 17, Article 2103195. https://doi.org/10.1002/smll.202103195
|
[86]
|
Cui, J., Liu, X., Xie, Y., Wu, K., Wang, Y., Liu, Y., et al. (2020) Improved Electrochemical Reversibility of Zn Plating/Stripping: A Promising Approach to Suppress Water-Induced Issues through the Formation of H-Bonding. Materials Today Energy, 18, Article 100563. https://doi.org/10.1016/j.mtener.2020.100563
|
[87]
|
Hao, J., Yuan, L., Ye, C., Chao, D., Davey, K., Guo, Z., et al. (2021) Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low‐Cost Antisolvents. Angewandte Chemie International Edition, 60, 7366-7375. https://doi.org/10.1002/anie.202016531
|
[88]
|
Du, H., Wang, K., Sun, T., Shi, J., Zhou, X., Cai, W., et al. (2022) Improving Zinc Anode Reversibility by Hydrogen Bond in Hybrid Aqueous Electrolyte. Chemical Engineering Journal, 427, Article 131705. https://doi.org/10.1016/j.cej.2021.131705
|
[89]
|
Cao, L., Li, D., Soto, F.A., Ponce, V., Zhang, B., Ma, L., et al. (2021) Highly Reversible Aqueous Zinc Batteries Enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen‐Bond Electrolytes. Angewandte Chemie International Edition, 60, 18845-18851. https://doi.org/10.1002/anie.202107378
|
[90]
|
Li, M., Wang, X., Meng, J., Zuo, C., Wu, B., Li, C., et al. (2023) Comprehensive Understandings of Hydrogen Bond Chemistry in Aqueous Batteries. Advanced Materials, 36, Article 2308628. https://doi.org/10.1002/adma.202308628
|
[91]
|
Brubach, J.-B., Mermet, A., Filabozzi, A., Gerschel, A. and Roy, P. (2005) Signatures of the Hydrogen Bonding in the Infrared Bands of Water. The Journal of Chemical Physics, 122, Article 184509. https://doi.org/10.1063/1.1894929
|
[92]
|
Avireddy, H., Byles, B.W., Pinto, D., Delgado Galindo, J.M., Biendicho, J.J., Wang, X., et al. (2019) Stable High-Voltage Aqueous Pseudocapacitive Energy Storage Device with Slow Self-Discharge. Nano Energy, 64, Article 103961. https://doi.org/10.1016/j.nanoen.2019.103961
|
[93]
|
Sun, T., Zheng, S., Du, H. and Tao, Z. (2021) Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery. Nano-Micro Letters, 13, Article No. 204. https://doi.org/10.1007/s40820-021-00733-0
|
[94]
|
Jaumaux, P., Yang, X., Zhang, B., Safaei, J., Tang, X., Zhou, D., et al. (2021) Localized Water‐in‐Salt Electrolyte for Aqueous Lithium‐Ion Batteries. Angewandte Chemie International Edition, 60, 19965-19973. https://doi.org/10.1002/anie.202107389
|
[95]
|
Han, J., Mariani, A., Passerini, S. and Varzi, A. (2023) A Perspective on the Role of Anions in Highly Concentrated Aqueous Electrolytes. Energy & Environmental Science, 16, 1480-1501. https://doi.org/10.1039/d2ee03682g
|
[96]
|
Yang, G., Huang, J., Wan, X., Liu, B., Zhu, Y., Wang, J., et al. (2022) An Aqueous Zinc‐Ion Battery Working at −50˚C Enabled by Low‐Concentration Perchlorate‐Based Chaotropic Salt Electrolyte. EcoMat, 4, e12165. https://doi.org/10.1002/eom2.12165
|
[97]
|
Jin, Y., Han, K.S., Shao, Y., Sushko, M.L., Xiao, J., Pan, H., et al. (2020) Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Advanced Functional Materials, 30, Article 2003932. https://doi.org/10.1002/adfm.202003932
|
[98]
|
Chang, N., Li, T., Li, R., Wang, S., Yin, Y., Zhang, H., et al. (2020) An Aqueous Hybrid Electrolyte for Low-Temperature Zinc-Based Energy Storage Devices. Energy & Environmental Science, 13, 3527-3535. https://doi.org/10.1039/d0ee01538e
|
[99]
|
Wang, N., Yang, Y., Qiu, X., Dong, X., Wang, Y. and Xia, Y. (2020) Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker. ChemSusChem, 13, 5556-5564. https://doi.org/10.1002/cssc.202001750
|
[100]
|
Qin, R., Wang, Y., Zhang, M., Wang, Y., Ding, S., Song, A., et al. (2021) Tuning Zn2+ Coordination Environment to Suppress Dendrite Formation for High-Performance Zn-Ion Batteries. Nano Energy, 80, Article 105478. https://doi.org/10.1016/j.nanoen.2020.105478
|
[101]
|
Wang, A., Zhou, W., Huang, A., Chen, M., Tian, Q. and Chen, J. (2021) Developing Improved Electrolytes for Aqueous Zinc-Ion Batteries to Achieve Excellent Cyclability and Antifreezing Ability. Journal of Colloid and Interface Science, 586, 362-370. https://doi.org/10.1016/j.jcis.2020.10.099
|
[102]
|
Semenov, A.P., Mendgaziev, R.I., Stoporev, A.S., Istomin, V.A., Sergeeva, D.V., Ogienko, A.G., et al. (2021) The Pursuit of a More Powerful Thermodynamic Hydrate Inhibitor than Methanol. Dimethyl Sulfoxide as a Case Study. Chemical Engineering Journal, 423, Article 130227. https://doi.org/10.1016/j.cej.2021.130227
|
[103]
|
Dou, Q., Lei, S., Wang, D., Zhang, Q., Xiao, D., Guo, H., et al. (2018) Safe and High-Rate Supercapacitors Based on an “Acetonitrile/Water in Salt” Hybrid Electrolyte. Energy & Environmental Science, 11, 3212-3219. https://doi.org/10.1039/c8ee01040d
|
[104]
|
Lu, X., Vicent-Luna, J.M., Calero, S., Madero-Castro, R.M., Gutiérrez, M.C., Ferrer, M.L., et al. (2021) EMIMBF4 in Ternary Liquid Mixtures of Water, Dimethyl Sulfoxide and Acetonitrile as “Tri-Solvent-in-Salt” Electrolytes for High-Performance Supercapacitors Operating at −70˚C. Energy Storage Materials, 40, 368-385. https://doi.org/10.1016/j.ensm.2021.05.026
|
[105]
|
Zhou, D., Chen, F., Handschuh‐Wang, S., Gan, T., Zhou, X. and Zhou, X. (2019) Biomimetic Extreme‐Temperature‐ and Environment‐Adaptable Hydrogels. ChemPhysChem, 20, 2139-2154. https://doi.org/10.1002/cphc.201900545
|
[106]
|
Jin, X., Song, L., Dai, C., Ma, H., Xiao, Y., Zhang, X., et al. (2022) A Self-Healing Zinc Ion Battery under −20˚C. Energy Storage Materials, 44, 517-526. https://doi.org/10.1016/j.ensm.2021.11.004
|
[107]
|
Huang, S., He, S., Li, Y., Wang, S. and Hou, X. (2023) Hydrogen Bond Acceptor Lined Hydrogel Electrolyte toward Dendrite-Free Aqueous Zn Ion Batteries with Low Temperature Adaptability. Chemical Engineering Journal, 464, Article 142607. https://doi.org/10.1016/j.cej.2023.142607
|