丹参及其主要成分对肺纤维化作用机制的研究进展
Research Progress on the Mechanism of Action of Salvia miltiorrhiza and Its Main Components on Pulmonary Fibrosis
DOI: 10.12677/acm.2024.14113006, PDF, HTML, XML,   
作者: 张少琪, 杨善军*:黑龙江中医药大学附属第二医院肺病科,黑龙江 哈尔滨
关键词: 丹参肺纤维化作用机制Salvia miltiorrhiza Pulmonary Fibrosis Mechanism of Action
摘要: 肺纤维化是由于肺组织遭到破坏,正常结构被大量纤维细胞所取代,并产生由胶原蛋白等组成的细胞外基质,影响肺通气功能,导致呼吸困难等一系列症状,极大地影响了人体健康与日常生活。其病因未完全明确,且目前临床治疗手段较为有限,效果不佳。因此,寻找有效且安全的治疗药物是研究的主要方向。丹参是一味活血化瘀的佳品,现已从中提取出多种有效药理成分如丹参素、丹参酮IIA、丹参酚酸、隐丹参酮等,可通过作用于多种信号机制,以此抑制肺纤维化的形成。本文对现有相关研究进行综合整理,以期为今后丹参应用于肺纤维化的临床治疗提供可靠的理论依据。
Abstract: Pulmonary fibrosis is caused by the destruction of lung tissue, where the normal structure is replaced by a large number of fibroblasts and an extracellular matrix composed of collagen is produced, which affects lung ventilation function and leads to a series of symptoms such as breathing difficulties, greatly affecting human health and daily life. The etiology is not fully understood, and currently clinical treatment methods are limited, resulting in poor efficacy. Therefore, finding effective and safe therapeutic drugs is the main direction of research. Salvia miltiorrhiza is a great herb for promoting blood circulation and removing blood stasis. Various effective pharmacological components have been extracted from it, such as danshensu, tanshinone IIA, salvianolic acid, cryptotanshinone, etc. It can inhibit the formation of pulmonary fibrosis by acting on various signaling mechanisms. This article comprehensively summarizes existing relevant research in order to provide reliable theoretical basis for the clinical treatment of pulmonary fibrosis using Danshen in the future.
文章引用:张少琪, 杨善军. 丹参及其主要成分对肺纤维化作用机制的研究进展[J]. 临床医学进展, 2024, 14(11): 1228-1234. https://doi.org/10.12677/acm.2024.14113006

1. 引言

肺纤维化(pulmonary fibrosis)是一种临床常见的肺间质性疾病。其主要病理结构是肺泡炎症、肺泡结构和功能破坏,最终导致不可逆的纤维化瘢痕增生,引起以呼吸困难为主的一系列症状,对人体产生严重的影响[1]。据统计,50岁以上人群发病率较高,预后差,多数生存期为2~5年,并且随着环境变化和年龄增长发病率逐渐增高[2]。目前临床医学治疗手段主要包括免疫抑制剂、糖皮质激素、新型抗纤维化药物及肺移植,尼达尼布与吡非尼酮是最常用的治疗药物,可有效提高肺通气功能,但其价格昂贵且不良反应较多[3] [4]。因此,开发出更为安全、有效的药物是临床亟待解决的问题。

丹参作为临床常用的中药,最早见于《神农本草经》,其性味苦、微寒。具有活血祛瘀、通络止痛、清心除烦、凉血消痈的功效,广泛用于治疗心脑血管与肺部疾病[5]。研究表明,丹参化学成分主要分为脂溶性和水溶性两大类。现已提取出的成分主要包括丹参酮I、丹参酮IIA、丹参醇A/B、隐丹参酮、丹酚酸A/B/C/D/E/F/G、丹参素、石精酸镁B、迷迭香酸等[6]。目前多数成分已被证实对肺纤维化形成有抑制作用。

2. 肺纤维化发病机制

肺纤维化的机制较为复杂,尚未完全明确。现代医学认为,在遗传、生活方式、环境及免疫等因素的影响下[7]-[9],肺部正常结构损伤,在巨噬细胞和淋巴细胞等免疫细胞的作用下,产生炎症与氧化应激反应,激活凝血纤溶系统进行修复。在危险因素持续存在下,损伤与修复反复进行。使肺泡上皮细胞及内皮细胞经一系列信号传导机制的作用,转为间充质细胞,进而激活成纤维细胞和肌成纤维细胞,并产生胶原蛋白沉积,最终形成肺纤维化,阻碍肺通气功能的正常进行。而根据肺纤维化的临床症状,可将其归为传统中医“肺痿”、“肺痹”的范畴。关于“肺痿”的描述最早见于《金匮要略》[10]。其主要病机为肺气虚损,痰瘀阻络。补肺益肾,化瘀通络法在临床取得了显著疗效[11] [12]。目前国内对丹参治疗肺纤维化无统一认识,所以现对其进行综合概述。

2.1. 抑制上皮–间充质转化(EMT)

肺泡正常功能由I型呼吸道上皮细胞和血管内皮细胞相互融合来维持,使氧气与二氧化碳气体交换得以进行。异常活化的肺泡上皮细胞转化为间充质细胞,是肺纤维化形成的早期病理变化[13]。因此,抑制EMT是治疗肺纤维化的重要途径。TANG等[14]通过对博来霉素诱导的肺纤维化大鼠模型腹膜给予丹参酮IIA (15 mg/kg)的试验研究发现,丹参酮IIA抑制了转化生长因子β1 (TGF-β1)触发的EMT。李金莲等[15]将丹参部分有效成分对肺部纤维化细胞的影响进行对比,发现丹酚酸A与丹酚酸B对EMT的抑制作用相较其他成分更强,其主要作用为抑制TGF-β1诱导的肺上皮细胞(A549细胞)病理性增殖及I型胶原蛋白的形成。同时,丹参酚酸B可通过抑制A549细胞增殖与MAPK通路,减少成纤维细胞与肌成细胞的形成[16]。隐丹参酮及丹参素经试验证实均可通过抑制TGF-β1阻止成纤维细胞的生成与EMT的发生[17] [18]。以上试验均证实了丹参有效成分可作用于TGF-β1等信号因子,使α-平滑肌肌动蛋白(α-SMA)和波形蛋白(vimentin)以及细胞间粘附分子E-钙粘蛋白的表达被部分逆转,从而减少肺上皮细胞受损,阻断其向间质细胞的转化。

2.2. 抑制内皮细胞–间充质转化(E(nd)MT)

现代研究表明,肺血管内皮细胞是间充质细胞增殖的来源之一[19]。纤维化的状态下,肺泡的完整性被破坏,取而代之的是大面积的血管集聚[20]。在各种致病因素影响及多种信号通路介导下,血管屏障被破坏,由大量炎症细胞、免疫细胞以及巨噬细胞浸润,阻止了血管内皮细胞修复,并通过多种信号通路转化为成纤维细胞–肌成纤维细胞,从而形成肺纤维化[21] [22]。Yuan等[23]的试验证实丹酚酸A可增加Smad1/5的磷酸化水平,抑制Smad2/3的磷酸化水平,抑制因缺氧导致的肺血管内皮–间充质的转化过程。Liu等[24]经研究发现丹参酸B可抑制炎症细胞的浸润和炎性细胞因子的产生,对博来霉素诱导的大鼠模型有很强的抗炎作用。并且可保护内皮细胞不受氧化应激反应损伤,减少细胞凋亡。张[25]的研究发现,隐丹参酮可以使脂多糖诱导的肺纤维化小鼠中内皮相关标志物升高,而间质细胞标志物降低,但其具体发生机制有待进一步探究。同时丹参可抑制内皮细胞因子VEGF的上调,减少受损血管内皮增殖转化为间质细胞[26]

2.3. 抗炎抗氧化应激

肺中过量产生的自由氧和抗氧化剂减少之间的不平衡是氧化应激产生的原因,生理水平的氧化应激反应受到机体自我防御机制的保护,但过量产生可导致肺组织发生一系列病理反应,包括炎症反应、组织坏死、凋亡,衍变为纤维化。活化氧(ROS)是其发生的主要原因之一,并且在细胞信号传导过程中有调节炎症的作用[27]。因此,抗炎抗氧化应激对于肺纤维化的治疗起到关键作用[28]。Peng等[29]的试验证实丹参乙酸乙酯提取物可稳定Nrf2蛋白并促进Keap1蛋白降解来减少成纤维细胞中活化氧的产生,同时下调氧化酶Nox4,缓解博来霉素诱导大鼠的氧化应激反应。刘晓莹等[30]的试验发现丹酚酸A可以调控Notch1信号通路来减少活性氧及自由基的产生,抑制氧化应激反应对肺组织产生的影响,有效抑制胶原蛋白沉积。丹酚酸B可通过调节抗氧化酶的表达减少活化氧的产生,主要通过调节Nef2/Keap1通路实现[31]。同时,丹酚酸B通过抑制MAPK和NF-κB两种信号通路来降低肺内皮细胞通透性并减少促炎症细胞因子的表达[24]。丹参酮IIA可激活Nfr2蛋白来抑制ROS生成,阻断PKCδ/Smad3信号传导,恢复氧化还原平衡,有效阻止肌成纤维活化[32]。徐华等[33]的研究发现丹参IIA可以抑制iN OS通路从而减少相关炎症因子TNF-α、IL-1β及IL-6的分泌,阻止因炎性反应形成的肺部结构的纤维化。郭飞等[34]经试验证实丹参素可以清除过量的自由基,恢复氧化平衡,减轻炎症对肺组织细胞产生的损伤。

2.4. 减少细胞外基质沉积(ECM)

细胞外基质以胶原蛋白为主要成分,同时由蛋白聚糖、弹性蛋白、纤连蛋白等物质构成[35]。由于感染、自身免疫等因素引起的间充质细胞增多,导致肌成纤维细胞的形成,经过多种机制激活后,分泌大量胶原蛋白,其过度沉积是肺纤维化的主要病理结构[36]。已有研究证明,血管紧张素转换酶2/血管紧张素-(1-7)/Mas轴(ACE-2/ANG-(1-7)/Mars轴)可以通过多种通路减少炎症与细胞外基质的形成[37] [38]。Wu等[39]经研究证实,丹参酮IIA可以使纤维化大鼠体内ACE-2与ANG-(1-7)水平显著升高,以此减低血管紧张素II引起的炎症反应,并明显降低TGF-β水平1,阻止胶原沉积。丹酚酸A可增加纤维化大鼠肺部细胞中p53和p21的表达,诱导细胞周期凋亡,抑制成纤维细胞粘附、增殖及迁移,显著减弱肺泡壁厚度及细胞外胶原沉积[40]。石精酸镁B能够调节TGF-β/Smad通路,抑制肺成纤维细胞分化和II型肺泡上皮细胞胶原蛋白的生成[41]。Zhang等[42]研究发现隐丹参酮通过抑制TGF-β/Smad信号通路,减少了肺纤维化大鼠中I型胶原、Ⅲ型胶原及纤连蛋白的沉积,且其作用效果与用药浓度有关,低浓度隐丹参酮抑制效果更为明显。隐丹参酮还可以通过增加一种抗纤维化形成的基质金属酶MMP-1的形成,减少细胞外基质的沉积[43] [44]。Liu等[18]研究发现丹参素可作用于MEK/ERK信号通路,抑制肺间质胶原蛋白沉积及成纤维细胞的增殖,从而延缓肺纤维化的发展。

2.5. 抑制巨噬细胞极化

巨噬细胞做为机体中的免疫细胞,由于肺组织受损,在多种炎症因子的影响下,巨噬细胞分化为不同的表型,导致原有的功能紊乱,组织修复出现异常[45]。现已发现的表型主要有M1、M2等。其可以产生趋化因子、基质金属酶(MMP)、金属蛋白酶组织抑制剂(TIMPs)和纤连蛋白,从而促进肌成纤维的生成[46] [47]。M1型巨噬细胞可转化为M2型,两者之间的平衡失调也是肺纤维化形成的原因[48] [49]。丹酚酸B与丹参酮IIA磺酸钠可作用于LPS-TLR4/NF-κB信号通路,从而减少M1型巨噬细胞分泌IL-1β与TNF-α蛋白,抑制组织炎症反应[50]。Zhao等[51]通过研究观察到丹参酮IIA减少了LPS诱导的肺损伤大鼠中M1巨噬细胞的水平,同时调节了巨噬细胞极化,阻止炎症分子的产生,使肺泡上皮修复得以正常进行。隐丹参酮可激活腺苷酸活化蛋白激酶(AMPK)信号通路以调节巨噬细胞极化过程,促进M1型转化为M2型,减轻组织炎症反应,抑制肺纤维化的发生[52]

2.6. 调节凝血纤溶系统

多种病理因素引起肺泡上皮与血管内皮细胞受损,肺泡毛细血管正常屏障被破坏,血小板聚集粘附,激活内源与外源凝血纤溶系统,在多种凝血因子、凝血酶及纤溶酶原的作用下,共同修复破损血管壁。但由于纤维化产生的细胞外基质的存在,使凝血–纤溶系统的平衡与免疫系统的稳定被破坏,是纤维化发生的重要诱因[53]。研究发现,尿激酶纤溶酶原激活剂(uPA)及其受体(uPAR)是溶解纤维蛋白的重要因子,可对炎症反应的发生产生影响,血管和免疫系统稳态,在纤溶系统中有着重要作用[54]。缺乏uPA的小鼠高度易出现纤维化,而缺乏纤溶酶原激活剂抑制剂(PAI-1)的小鼠对纤维化的形成具有抵抗力。表明在肺泡毛细血管损伤期间诱导PAI-1和抑制uPA会导致纤维化的形成[55]。李晗等[56]发现博来霉素诱导的纤维化大鼠血浆中凝血因子大量升高,肺组织中t-PA蛋白表达下降,PAR-2、PAI-1表达水平上调,雾化吸入丹参有效成分丹参酚酸盐与丹参酮IIA后,血浆中凝血因子含量降低,t-PA蛋白水平升高,PAR-2、PAI-1水平降低。表明这两种有效成分可以通过调整凝血纤溶系统的平衡减轻肺纤维化的进展。田淑霞等[57]经试验发现丹参酮显著降低了肺组织中PAI-1的表达,调控其与UPA之间的平衡,从而减少细胞外基质的沉积。

3. 结语与展望

肺纤维化的发病过程及其机制较为复杂,虽然丹参及其有效成分治疗肺纤维化的相关研究取得了较大的进展,但仍存在不足。首先,现有研究多为动物实验,缺乏临床试验观察,无法了解其安全性及临床疗效。其次,多数试验只局限于单个成分及其作用机制的研究,对各成分之间的相互作用研究不够充分,且对部分已知发病机制,如内质网应激、铁死亡及细胞自噬等[58]-[60],丹参是否能起到干预作用,需更深刻的探究。此外,由于肺纤维化的发病机制未完全明确,导致中药治疗研究有限,且如何将丹参进一步研制出可供临床使用的新药,是亟待解决的难题。日后研究应基于真实世界,结合药理学与生物信息理论技术,探究更多有效成分及其治疗靶点,并增加临床试验分析,更加全面认识丹参对肺纤维化的治疗效果,研制出更为安全有效的药物。

NOTES

*通讯作者。

参考文献

[1] Noble, P.W., Barkauskas, C.E. and Jiang, D. (2012) Pulmonary Fibrosis: Patterns and Perpetrators. Journal of Clinical Investigation, 122, 2756-2762.
https://doi.org/10.1172/jci60323
[2] Maher, T.M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J.M., et al. (2021) Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respiratory Research, 22, Article No. 197.
https://doi.org/10.1186/s12931-021-01791-z
[3] Rivera-Ortega, P., Hayton, C., Blaikley, J., Leonard, C. and Chaudhuri, N. (2018) Nintedanib in the Management of Idiopathic Pulmonary Fibrosis: Clinical Trial Evidence and Real-World Experience. Therapeutic Advances in Respiratory Disease, 12, Article 1753466618800618.
https://doi.org/10.1177/1753466618800618
[4] Singh, S. and Wairkar, S. (2023) Long-circulating Thiolated Chitosan Nanoparticles of Nintedanib with N-Acetyl Cysteine for Treating Idiopathic Pulmonary Fibrosis: In Vitro Assessment of Cytotoxicity, Antioxidant, and Antifibrotic Potential. International Journal of Pharmaceutics, 644, Article 123322.
https://doi.org/10.1016/j.ijpharm.2023.123322
[5] 国家药典委员会. 中华人民共和国药典(第3部) [M]. 北京: 中国医药科技出版社, 2010.
[6] Yang, Z., Qi, J., Ping, D., Sun, X., Tao, Y., Liu, C., et al. (2022) Salvia Miltiorrhiza in Thorax and Abdominal Organ Fibrosis: A Review of Its Pharmacology. Frontiers in Pharmacology, 13, Article 999604.
https://doi.org/10.3389/fphar.2022.999604
[7] Xu, Y., Lan, P. and Wang, T. (2023) The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina, 59, Article 1984.
https://doi.org/10.3390/medicina59111984
[8] Gandhi, S., Tonelli, R., Murray, M., Samarelli, A.V. and Spagnolo, P. (2023) Environmental Causes of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 24, Article 16481.
https://doi.org/10.3390/ijms242216481
[9] Ma, Y., Cui, F., Li, D., Wang, J., Tang, L., Xie, J., et al. (2023) Lifestyle, Genetic Susceptibility, and the Risk of Idiopathic Pulmonary Fibrosis. Chest, 164, 929-938.
https://doi.org/10.1016/j.chest.2023.04.008
[10] 张仲景. 金匮要略方论[M]. 北京: 人民卫生出版社, 1978.
[11] 陈云凤, 刘洪, 李群英, 等. 补肺益肾、化瘀通络法治疗特发性肺间质纤维化的临床研究[J]. 中华中医药杂志, 2014, 29(9): 3030-3032.
[12] 杨善军, 祝鹏宇, 王玥, 等. 基于NF-κB信号转导通路探讨加味补阳还五汤对肺纤维化小鼠的治疗作用[J]. 新疆医科大学学报, 2020, 43(3): 329-334.
[13] King, T.E., Pardo, A. and Selman, M. (2011) Idiopathic Pulmonary Fibrosis. The Lancet, 378, 1949-1961.
https://doi.org/10.1016/s0140-6736(11)60052-4
[14] Tang, H., He, H., Ji, H., Gao, L., Mao, J., Liu, J., et al. (2015) Tanshinone IIA Ameliorates Bleomycin-Induced Pulmonary Fibrosis and Inhibits Transforming Growth Factor-Beta-Β-Dependent Epithelial to Mesenchymal Transition. Journal of Surgical Research, 197, 167-175.
https://doi.org/10.1016/j.jss.2015.02.062
[15] 李金莲, 张海静, 高云航, 等. 丹参有效成分对TGF-β_1诱导的肺上皮细胞间质转化的影响[J]. 中国实验方剂学杂志, 2020, 26(5): 54-59.
[16] Liu, Q., Chu, H., Ma, Y., Wu, T., Qian, F., Ren, X., et al. (2016) Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-Β Signaling Pathway. Scientific Reports, 6, Article No. 27610.
https://doi.org/10.1038/srep27610
[17] Zhang, Q., Gan, C., Liu, H., Wang, L., Li, Y., Tan, Z., et al. (2020) Cryptotanshinone Reverses the Epithelial-Mesenchymal Transformation Process and Attenuates Bleomycin-Induced Pulmonary Fibrosis. Phytotherapy Research, 34, 2685-2696.
https://doi.org/10.1002/ptr.6699
[18] Liu, H., Zhang, X., Shao, Y., Lin, X., Dong, F. and Liu, X. (2021) Danshensu Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Lung Fibroblast-to-Myofibroblast Transition via the MEK/ERK Signaling Pathway. Bioengineered, 12, 3113-3124.
https://doi.org/10.1080/21655979.2021.1944020
[19] Gaikwad, A.V., Lu, W., Dey, S., Bhattarai, P., Haug, G., Larby, J., et al. (2023) Endothelial-to-Mesenchymal Transition: A Precursor to Pulmonary Arterial Remodelling in Patients with Idiopathic Pulmonary Fibrosis. ERJ Open Research, 9, 1-16.
https://doi.org/10.1183/23120541.00487-2022
[20] Ackermann, M., Kim, Y.O., Wagner, W.L., Schuppan, D., Valenzuela, C.D., Mentzer, S.J., et al. (2017) Effects of Nintedanib on the Microvascular Architecture in a Lung Fibrosis Model. Angiogenesis, 20, 359-372.
https://doi.org/10.1007/s10456-017-9543-z
[21] Cao, Z., Lis, R., Ginsberg, M., Chavez, D., Shido, K., Rabbany, S.Y., et al. (2016) Targeting of the Pulmonary Capillary Vascular Niche Promotes Lung Alveolar Repair and Ameliorates Fibrosis. Nature Medicine, 22, 154-162.
https://doi.org/10.1038/nm.4035
[22] Wang, R., Wang, Y., Hu, L., Lu, Z. and Wang, X. (2021) Inhibition of Complement C5a Receptor Protects Lung Cells and Tissues against Lipopolysaccharide-Induced Injury via Blocking Pyroptosis. Aging, 13, 8588-8598.
https://doi.org/10.18632/aging.202671
[23] Yuan, T., Chen, Y., Zhang, H., Fang, L. and Du, G. (2017) Salvianolic Acid A, a Component of salvia Miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of Hpaecs Induced by Hypoxia. The American Journal of Chinese Medicine, 45, 1185-1200.
https://doi.org/10.1142/s0192415x17500653
[24] Liu, Q., Shi, X., Tang, L., Xu, W., Jiang, S., Ding, W., et al. (2018) Salvianolic Acid B Attenuates Experimental Pulmonary Inflammation by Protecting Endothelial Cells against Oxidative Stress Injury. European Journal of Pharmacology, 840, 9-19.
https://doi.org/10.1016/j.ejphar.2018.09.030
[25] 张人子, 李晟, 王导新. 隐丹参酮减轻LPS诱导的ARDS小鼠早期肺纤维化及机制研究[J]. 陆军军医大学学报, 2022, 44(18): 1819-1825+1834.
[26] 燕小宁, 张娜. 丹参下调早中期肺间质纤维化模型大鼠肺组织中VEGF的表达[J]. 临床医药实践, 2015, 24(6): 438-441.
[27] Boutros, M. and Ray, S. (2023) Oxidative Stress. Reference Module in Biomedical Sciences. Elsevier.
[28] Cameli, P., Carleo, A., Bergantini, L., Landi, C., Prasse, A. and Bargagli, E. (2019) Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation, 43, 1-7.
https://doi.org/10.1007/s10753-019-01059-1
[29] Peng, L., An, L., Sun, N., Ma, Y., Zhang, X., Liu, W., et al. (2019) salvia Miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. The American Journal of Chinese Medicine, 47, 1113-1131.
https://doi.org/10.1142/s0192415x19500575
[30] 刘晓莹. 基于Notch1信号通路探讨丹酚酸A对人胚肺成纤维细胞MRC-5抗纤维化作用机制的研究[D]: [硕士学位论文]. 济南: 山东中医药大学, 2020.
[31] Xiao, Z., Liu, W., Mu, Y., Zhang, H., Wang, X., Zhao, C., et al. (2020) Pharmacological Effects of Salvianolic Acid B against Oxidative Damage. Frontiers in Pharmacology, 11, Article 572373.
https://doi.org/10.3389/fphar.2020.572373
[32] An, L., Peng, L., Sun, N., Yang, Y., Zhang, X., Li, B., et al. (2019) Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxidants & Redox Signaling, 30, 1831-1848.
https://doi.org/10.1089/ars.2018.7569
[33] 徐华, 夏彬, 欧阳玉珍, 等. 丹参酮ⅡA通过iNOS缓解小鼠肺纤维化[J]. 基础医学与临床, 2016, 36(8): 1113-1117.
[34] 郭飞, 赵铭山. 丹参素对博莱霉素致大鼠肺纤维化的治疗作用[J]. 山东医药, 2011, 51(13): 24-25.
[35] Karamanos, N.K., Theocharis, A.D., Piperigkou, Z., Manou, D., Passi, A., Skandalis, S.S., et al. (2021) A Guide to the Composition and Functions of the Extracellular Matrix. The FEBS Journal, 288, 6850-6912.
https://doi.org/10.1111/febs.15776
[36] Wynn, T. (2007) Cellular and Molecular Mechanisms of Fibrosis. The Journal of Pathology, 214, 199-210.
https://doi.org/10.1002/path.2277
[37] Meng, Y., Li, T., Zhou, G., Chen, Y., Yu, C., Pang, M., et al. (2015) The Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Axis Protects against Lung Fibroblast Migration and Lung Fibrosis by Inhibiting the Nox4-Derived Ros-Mediated Rhoa/rho Kinase Pathway. Antioxidants & Redox Signaling, 22, 241-258.
https://doi.org/10.1089/ars.2013.5818
[38] Meng, Y., Yu, C., Li, W., Li, T., Luo, W., Huang, S., et al. (2014) Angiotensin-Converting Enzyme 2/angiotensin-(1-7)/Mas Axis Protects against Lung Fibrosis by Inhibiting the MAPK/NF-κB Pathway. American Journal of Respiratory Cell and Molecular Biology, 50, 723-736.
https://doi.org/10.1165/rcmb.2012-0451oc
[39] Wu, H., Li, Y., Wang, Y., Xu, D., Li, C., Liu, M., et al. (2014) Tanshinone IIA Attenuates Bleomycin-Induced Pulmonary Fibrosis via Modulating Angiotensin-Converting Enzyme 2/Angiotensin-(1-7) Axis in Rats. International Journal of Medical Sciences, 11, 578-586.
https://doi.org/10.7150/ijms.8365
[40] Pan, Y., Fu, H., Kong, Q., Xiao, Y., Shou, Q., Chen, H., et al. (2014) Prevention of Pulmonary Fibrosis with Salvianolic Acid a by Inducing Fibroblast Cell Cycle Arrest and Promoting Apoptosis. Journal of Ethnopharmacology, 155, 1589-1596.
https://doi.org/10.1016/j.jep.2014.07.049
[41] Luo, X., Deng, Q., Xue, Y., Zhang, T., Wu, Z., Peng, H., et al. (2021) Anti-Fibrosis Effects of Magnesium Lithospermate B in Experimental Pulmonary Fibrosis: By Inhibiting TGF-Βri/Smad Signaling. Molecules, 26, Article 1715.
https://doi.org/10.3390/molecules26061715
[42] Zhang, Y., Lu, W., Zhang, X., Lu, J., Xu, S., Chen, S., et al. (2019) Cryptotanshinone Protects against Pulmonary Fibrosis through Inhibiting Smad and STAT3 Signaling Pathways. Pharmacological Research, 147, Article 104307.
https://doi.org/10.1016/j.phrs.2019.104307
[43] Jiang, Y., You, F., Zhu, J., Zheng, C., Yan, R. and Zeng, J. (2019) Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. Evidence-Based Complementary and Alternative Medicine, 2019, 1-14.
https://doi.org/10.1155/2019/1908416
[44] Mahalanobish, S., Saha, S., Dutta, S. and Sil, P.C. (2020) Matrix Metalloproteinase: An Upcoming Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Pharmacological Research, 152, Article 104591.
https://doi.org/10.1016/j.phrs.2019.104591
[45] Yang, H., Cheng, H., Dai, R., Shang, L., Zhang, X. and Wen, H. (2023) Macrophage Polarization in Tissue Fibrosis. Peer Journal, 11, e16092.
https://doi.org/10.7717/peerj.16092
[46] Wynn, T.A. and Vannella, K.M. (2016) Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44, 450-462.
https://doi.org/10.1016/j.immuni.2016.02.015
[47] Wang, L., Zhang, Y., Zhang, N., Xia, J., Zhan, Q. and Wang, C. (2019) Potential Role of M2 Macrophage Polarization in Ventilator-Induced Lung Fibrosis. International Immunopharmacology, 75, Article 105795.
https://doi.org/10.1016/j.intimp.2019.105795
[48] Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440.
https://doi.org/10.1002/jcp.26429
[49] Tarique, A.A., Logan, J., Thomas, E., Holt, P.G., Sly, P.D. and Fantino, E. (2015) Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. American Journal of Respiratory Cell and Molecular Biology, 53, 676-688.
https://doi.org/10.1165/rcmb.2015-0012oc
[50] 王渐鸿. 基于THP-1与MRC-5细胞模型的丹酚酸B与丹参酮ⅡA抗肺纤维化作用研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2020.
[51] Zhao, J., Pu, J., Fan, J., Feng, X., Xu, J., Zhang, R., et al. (2022) Tanshinone IIA Prevents Acute Lung Injury by Regulating Macrophage Polarization. Journal of Integrative Medicine, 20, 274-280.
https://doi.org/10.1016/j.joim.2022.01.006
[52] Ye, Z., Wang, P., Feng, G., Wang, Q., Liu, C., Lu, J., et al. (2023) Cryptotanshinone Attenuates LPS-Induced Acute Lung Injury by Regulating Metabolic Reprogramming of Macrophage. Frontiers in Medicine, 9, Article 1075465.
https://doi.org/10.3389/fmed.2022.1075465
[53] Schuliga, M., Grainge, C., Westall, G. and Knight, D. (2018) The Fibrogenic Actions of the Coagulant and Plasminogen Activation Systems in Pulmonary Fibrosis. The International Journal of Biochemistry & Cell Biology, 97, 108-117.
https://doi.org/10.1016/j.biocel.2018.02.016
[54] Kanno, Y. (2023) The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. International Journal of Molecular Sciences, 24, Article 1796.
https://doi.org/10.3390/ijms24021796
[55] Marudamuthu, A.S., Bhandary, Y.P., Shetty, S.K., Fu, J., Sathish, V., Prakash, Y., et al. (2015) Role of the Urokinase-Fibrinolytic System in Epithelial–mesenchymal Transition during Lung Injury. The American Journal of Pathology, 185, 55-68.
https://doi.org/10.1016/j.ajpath.2014.08.027
[56] 李晗, 高云航, 宋玲, 等. 雾化吸入丹参有效成分对肺纤维化模型大鼠凝血纤溶系统的影响[J]. 时珍国医国药, 2023, 34(6): 1298-1301.
[57] 田淑霞, 陈珺明, 韩永龙, 等. 丹参酮对肺纤维化大鼠的干预作用及其机制研究[J]. 世界中医药, 2014, 9(12): 1647-1650.
[58] Burman, A., Tanjore, H. and Blackwell, T.S. (2018) Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Matrix Biology, 68, 355-365.
https://doi.org/10.1016/j.matbio.2018.03.015
[59] Cheng, H., Feng, D., Li, X., Gao, L., Tang, S., Liu, W., et al. (2021) Iron Deposition-Induced Ferroptosis in Alveolar Type II Cells Promotes the Development of Pulmonary Fibrosis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article 166204.
https://doi.org/10.1016/j.bbadis.2021.166204
[60] Zhao, H., Wang, Y., Qiu, T., Liu, W. and Yao, P. (2020) Autophagy, an Important Therapeutic Target for Pulmonary Fibrosis Diseases. Clinica Chimica Acta, 502, 139-147.
https://doi.org/10.1016/j.cca.2019.12.016