[1]
|
Noble, P.W., Barkauskas, C.E. and Jiang, D. (2012) Pulmonary Fibrosis: Patterns and Perpetrators. Journal of Clinical Investigation, 122, 2756-2762. https://doi.org/10.1172/jci60323
|
[2]
|
Maher, T.M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J.M., et al. (2021) Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respiratory Research, 22, Article No. 197. https://doi.org/10.1186/s12931-021-01791-z
|
[3]
|
Rivera-Ortega, P., Hayton, C., Blaikley, J., Leonard, C. and Chaudhuri, N. (2018) Nintedanib in the Management of Idiopathic Pulmonary Fibrosis: Clinical Trial Evidence and Real-World Experience. Therapeutic Advances in Respiratory Disease, 12, Article 1753466618800618. https://doi.org/10.1177/1753466618800618
|
[4]
|
Singh, S. and Wairkar, S. (2023) Long-circulating Thiolated Chitosan Nanoparticles of Nintedanib with N-Acetyl Cysteine for Treating Idiopathic Pulmonary Fibrosis: In Vitro Assessment of Cytotoxicity, Antioxidant, and Antifibrotic Potential. International Journal of Pharmaceutics, 644, Article 123322. https://doi.org/10.1016/j.ijpharm.2023.123322
|
[5]
|
国家药典委员会. 中华人民共和国药典(第3部) [M]. 北京: 中国医药科技出版社, 2010.
|
[6]
|
Yang, Z., Qi, J., Ping, D., Sun, X., Tao, Y., Liu, C., et al. (2022) Salvia Miltiorrhiza in Thorax and Abdominal Organ Fibrosis: A Review of Its Pharmacology. Frontiers in Pharmacology, 13, Article 999604. https://doi.org/10.3389/fphar.2022.999604
|
[7]
|
Xu, Y., Lan, P. and Wang, T. (2023) The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina, 59, Article 1984. https://doi.org/10.3390/medicina59111984
|
[8]
|
Gandhi, S., Tonelli, R., Murray, M., Samarelli, A.V. and Spagnolo, P. (2023) Environmental Causes of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 24, Article 16481. https://doi.org/10.3390/ijms242216481
|
[9]
|
Ma, Y., Cui, F., Li, D., Wang, J., Tang, L., Xie, J., et al. (2023) Lifestyle, Genetic Susceptibility, and the Risk of Idiopathic Pulmonary Fibrosis. Chest, 164, 929-938. https://doi.org/10.1016/j.chest.2023.04.008
|
[10]
|
张仲景. 金匮要略方论[M]. 北京: 人民卫生出版社, 1978.
|
[11]
|
陈云凤, 刘洪, 李群英, 等. 补肺益肾、化瘀通络法治疗特发性肺间质纤维化的临床研究[J]. 中华中医药杂志, 2014, 29(9): 3030-3032.
|
[12]
|
杨善军, 祝鹏宇, 王玥, 等. 基于NF-κB信号转导通路探讨加味补阳还五汤对肺纤维化小鼠的治疗作用[J]. 新疆医科大学学报, 2020, 43(3): 329-334.
|
[13]
|
King, T.E., Pardo, A. and Selman, M. (2011) Idiopathic Pulmonary Fibrosis. The Lancet, 378, 1949-1961. https://doi.org/10.1016/s0140-6736(11)60052-4
|
[14]
|
Tang, H., He, H., Ji, H., Gao, L., Mao, J., Liu, J., et al. (2015) Tanshinone IIA Ameliorates Bleomycin-Induced Pulmonary Fibrosis and Inhibits Transforming Growth Factor-Beta-Β-Dependent Epithelial to Mesenchymal Transition. Journal of Surgical Research, 197, 167-175. https://doi.org/10.1016/j.jss.2015.02.062
|
[15]
|
李金莲, 张海静, 高云航, 等. 丹参有效成分对TGF-β_1诱导的肺上皮细胞间质转化的影响[J]. 中国实验方剂学杂志, 2020, 26(5): 54-59.
|
[16]
|
Liu, Q., Chu, H., Ma, Y., Wu, T., Qian, F., Ren, X., et al. (2016) Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-Β Signaling Pathway. Scientific Reports, 6, Article No. 27610. https://doi.org/10.1038/srep27610
|
[17]
|
Zhang, Q., Gan, C., Liu, H., Wang, L., Li, Y., Tan, Z., et al. (2020) Cryptotanshinone Reverses the Epithelial-Mesenchymal Transformation Process and Attenuates Bleomycin-Induced Pulmonary Fibrosis. Phytotherapy Research, 34, 2685-2696. https://doi.org/10.1002/ptr.6699
|
[18]
|
Liu, H., Zhang, X., Shao, Y., Lin, X., Dong, F. and Liu, X. (2021) Danshensu Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Lung Fibroblast-to-Myofibroblast Transition via the MEK/ERK Signaling Pathway. Bioengineered, 12, 3113-3124. https://doi.org/10.1080/21655979.2021.1944020
|
[19]
|
Gaikwad, A.V., Lu, W., Dey, S., Bhattarai, P., Haug, G., Larby, J., et al. (2023) Endothelial-to-Mesenchymal Transition: A Precursor to Pulmonary Arterial Remodelling in Patients with Idiopathic Pulmonary Fibrosis. ERJ Open Research, 9, 1-16. https://doi.org/10.1183/23120541.00487-2022
|
[20]
|
Ackermann, M., Kim, Y.O., Wagner, W.L., Schuppan, D., Valenzuela, C.D., Mentzer, S.J., et al. (2017) Effects of Nintedanib on the Microvascular Architecture in a Lung Fibrosis Model. Angiogenesis, 20, 359-372. https://doi.org/10.1007/s10456-017-9543-z
|
[21]
|
Cao, Z., Lis, R., Ginsberg, M., Chavez, D., Shido, K., Rabbany, S.Y., et al. (2016) Targeting of the Pulmonary Capillary Vascular Niche Promotes Lung Alveolar Repair and Ameliorates Fibrosis. Nature Medicine, 22, 154-162. https://doi.org/10.1038/nm.4035
|
[22]
|
Wang, R., Wang, Y., Hu, L., Lu, Z. and Wang, X. (2021) Inhibition of Complement C5a Receptor Protects Lung Cells and Tissues against Lipopolysaccharide-Induced Injury via Blocking Pyroptosis. Aging, 13, 8588-8598. https://doi.org/10.18632/aging.202671
|
[23]
|
Yuan, T., Chen, Y., Zhang, H., Fang, L. and Du, G. (2017) Salvianolic Acid A, a Component of salvia Miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of Hpaecs Induced by Hypoxia. The American Journal of Chinese Medicine, 45, 1185-1200. https://doi.org/10.1142/s0192415x17500653
|
[24]
|
Liu, Q., Shi, X., Tang, L., Xu, W., Jiang, S., Ding, W., et al. (2018) Salvianolic Acid B Attenuates Experimental Pulmonary Inflammation by Protecting Endothelial Cells against Oxidative Stress Injury. European Journal of Pharmacology, 840, 9-19. https://doi.org/10.1016/j.ejphar.2018.09.030
|
[25]
|
张人子, 李晟, 王导新. 隐丹参酮减轻LPS诱导的ARDS小鼠早期肺纤维化及机制研究[J]. 陆军军医大学学报, 2022, 44(18): 1819-1825+1834.
|
[26]
|
燕小宁, 张娜. 丹参下调早中期肺间质纤维化模型大鼠肺组织中VEGF的表达[J]. 临床医药实践, 2015, 24(6): 438-441.
|
[27]
|
Boutros, M. and Ray, S. (2023) Oxidative Stress. Reference Module in Biomedical Sciences. Elsevier.
|
[28]
|
Cameli, P., Carleo, A., Bergantini, L., Landi, C., Prasse, A. and Bargagli, E. (2019) Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation, 43, 1-7. https://doi.org/10.1007/s10753-019-01059-1
|
[29]
|
Peng, L., An, L., Sun, N., Ma, Y., Zhang, X., Liu, W., et al. (2019) salvia Miltiorrhiza Restrains Reactive Oxygen Species-Associated Pulmonary Fibrosis via Targeting Nrf2-Nox4 Redox Balance. The American Journal of Chinese Medicine, 47, 1113-1131. https://doi.org/10.1142/s0192415x19500575
|
[30]
|
刘晓莹. 基于Notch1信号通路探讨丹酚酸A对人胚肺成纤维细胞MRC-5抗纤维化作用机制的研究[D]: [硕士学位论文]. 济南: 山东中医药大学, 2020.
|
[31]
|
Xiao, Z., Liu, W., Mu, Y., Zhang, H., Wang, X., Zhao, C., et al. (2020) Pharmacological Effects of Salvianolic Acid B against Oxidative Damage. Frontiers in Pharmacology, 11, Article 572373. https://doi.org/10.3389/fphar.2020.572373
|
[32]
|
An, L., Peng, L., Sun, N., Yang, Y., Zhang, X., Li, B., et al. (2019) Tanshinone IIA Activates Nuclear Factor-Erythroid 2-Related Factor 2 to Restrain Pulmonary Fibrosis via Regulation of Redox Homeostasis and Glutaminolysis. Antioxidants & Redox Signaling, 30, 1831-1848. https://doi.org/10.1089/ars.2018.7569
|
[33]
|
徐华, 夏彬, 欧阳玉珍, 等. 丹参酮ⅡA通过iNOS缓解小鼠肺纤维化[J]. 基础医学与临床, 2016, 36(8): 1113-1117.
|
[34]
|
郭飞, 赵铭山. 丹参素对博莱霉素致大鼠肺纤维化的治疗作用[J]. 山东医药, 2011, 51(13): 24-25.
|
[35]
|
Karamanos, N.K., Theocharis, A.D., Piperigkou, Z., Manou, D., Passi, A., Skandalis, S.S., et al. (2021) A Guide to the Composition and Functions of the Extracellular Matrix. The FEBS Journal, 288, 6850-6912. https://doi.org/10.1111/febs.15776
|
[36]
|
Wynn, T. (2007) Cellular and Molecular Mechanisms of Fibrosis. The Journal of Pathology, 214, 199-210. https://doi.org/10.1002/path.2277
|
[37]
|
Meng, Y., Li, T., Zhou, G., Chen, Y., Yu, C., Pang, M., et al. (2015) The Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Axis Protects against Lung Fibroblast Migration and Lung Fibrosis by Inhibiting the Nox4-Derived Ros-Mediated Rhoa/rho Kinase Pathway. Antioxidants & Redox Signaling, 22, 241-258. https://doi.org/10.1089/ars.2013.5818
|
[38]
|
Meng, Y., Yu, C., Li, W., Li, T., Luo, W., Huang, S., et al. (2014) Angiotensin-Converting Enzyme 2/angiotensin-(1-7)/Mas Axis Protects against Lung Fibrosis by Inhibiting the MAPK/NF-κB Pathway. American Journal of Respiratory Cell and Molecular Biology, 50, 723-736. https://doi.org/10.1165/rcmb.2012-0451oc
|
[39]
|
Wu, H., Li, Y., Wang, Y., Xu, D., Li, C., Liu, M., et al. (2014) Tanshinone IIA Attenuates Bleomycin-Induced Pulmonary Fibrosis via Modulating Angiotensin-Converting Enzyme 2/Angiotensin-(1-7) Axis in Rats. International Journal of Medical Sciences, 11, 578-586. https://doi.org/10.7150/ijms.8365
|
[40]
|
Pan, Y., Fu, H., Kong, Q., Xiao, Y., Shou, Q., Chen, H., et al. (2014) Prevention of Pulmonary Fibrosis with Salvianolic Acid a by Inducing Fibroblast Cell Cycle Arrest and Promoting Apoptosis. Journal of Ethnopharmacology, 155, 1589-1596. https://doi.org/10.1016/j.jep.2014.07.049
|
[41]
|
Luo, X., Deng, Q., Xue, Y., Zhang, T., Wu, Z., Peng, H., et al. (2021) Anti-Fibrosis Effects of Magnesium Lithospermate B in Experimental Pulmonary Fibrosis: By Inhibiting TGF-Βri/Smad Signaling. Molecules, 26, Article 1715. https://doi.org/10.3390/molecules26061715
|
[42]
|
Zhang, Y., Lu, W., Zhang, X., Lu, J., Xu, S., Chen, S., et al. (2019) Cryptotanshinone Protects against Pulmonary Fibrosis through Inhibiting Smad and STAT3 Signaling Pathways. Pharmacological Research, 147, Article 104307. https://doi.org/10.1016/j.phrs.2019.104307
|
[43]
|
Jiang, Y., You, F., Zhu, J., Zheng, C., Yan, R. and Zeng, J. (2019) Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. Evidence-Based Complementary and Alternative Medicine, 2019, 1-14. https://doi.org/10.1155/2019/1908416
|
[44]
|
Mahalanobish, S., Saha, S., Dutta, S. and Sil, P.C. (2020) Matrix Metalloproteinase: An Upcoming Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Pharmacological Research, 152, Article 104591. https://doi.org/10.1016/j.phrs.2019.104591
|
[45]
|
Yang, H., Cheng, H., Dai, R., Shang, L., Zhang, X. and Wen, H. (2023) Macrophage Polarization in Tissue Fibrosis. Peer Journal, 11, e16092. https://doi.org/10.7717/peerj.16092
|
[46]
|
Wynn, T.A. and Vannella, K.M. (2016) Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44, 450-462. https://doi.org/10.1016/j.immuni.2016.02.015
|
[47]
|
Wang, L., Zhang, Y., Zhang, N., Xia, J., Zhan, Q. and Wang, C. (2019) Potential Role of M2 Macrophage Polarization in Ventilator-Induced Lung Fibrosis. International Immunopharmacology, 75, Article 105795. https://doi.org/10.1016/j.intimp.2019.105795
|
[48]
|
Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. https://doi.org/10.1002/jcp.26429
|
[49]
|
Tarique, A.A., Logan, J., Thomas, E., Holt, P.G., Sly, P.D. and Fantino, E. (2015) Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. American Journal of Respiratory Cell and Molecular Biology, 53, 676-688. https://doi.org/10.1165/rcmb.2015-0012oc
|
[50]
|
王渐鸿. 基于THP-1与MRC-5细胞模型的丹酚酸B与丹参酮ⅡA抗肺纤维化作用研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2020.
|
[51]
|
Zhao, J., Pu, J., Fan, J., Feng, X., Xu, J., Zhang, R., et al. (2022) Tanshinone IIA Prevents Acute Lung Injury by Regulating Macrophage Polarization. Journal of Integrative Medicine, 20, 274-280. https://doi.org/10.1016/j.joim.2022.01.006
|
[52]
|
Ye, Z., Wang, P., Feng, G., Wang, Q., Liu, C., Lu, J., et al. (2023) Cryptotanshinone Attenuates LPS-Induced Acute Lung Injury by Regulating Metabolic Reprogramming of Macrophage. Frontiers in Medicine, 9, Article 1075465. https://doi.org/10.3389/fmed.2022.1075465
|
[53]
|
Schuliga, M., Grainge, C., Westall, G. and Knight, D. (2018) The Fibrogenic Actions of the Coagulant and Plasminogen Activation Systems in Pulmonary Fibrosis. The International Journal of Biochemistry & Cell Biology, 97, 108-117. https://doi.org/10.1016/j.biocel.2018.02.016
|
[54]
|
Kanno, Y. (2023) The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. International Journal of Molecular Sciences, 24, Article 1796. https://doi.org/10.3390/ijms24021796
|
[55]
|
Marudamuthu, A.S., Bhandary, Y.P., Shetty, S.K., Fu, J., Sathish, V., Prakash, Y., et al. (2015) Role of the Urokinase-Fibrinolytic System in Epithelial–mesenchymal Transition during Lung Injury. The American Journal of Pathology, 185, 55-68. https://doi.org/10.1016/j.ajpath.2014.08.027
|
[56]
|
李晗, 高云航, 宋玲, 等. 雾化吸入丹参有效成分对肺纤维化模型大鼠凝血纤溶系统的影响[J]. 时珍国医国药, 2023, 34(6): 1298-1301.
|
[57]
|
田淑霞, 陈珺明, 韩永龙, 等. 丹参酮对肺纤维化大鼠的干预作用及其机制研究[J]. 世界中医药, 2014, 9(12): 1647-1650.
|
[58]
|
Burman, A., Tanjore, H. and Blackwell, T.S. (2018) Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Matrix Biology, 68, 355-365. https://doi.org/10.1016/j.matbio.2018.03.015
|
[59]
|
Cheng, H., Feng, D., Li, X., Gao, L., Tang, S., Liu, W., et al. (2021) Iron Deposition-Induced Ferroptosis in Alveolar Type II Cells Promotes the Development of Pulmonary Fibrosis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article 166204. https://doi.org/10.1016/j.bbadis.2021.166204
|
[60]
|
Zhao, H., Wang, Y., Qiu, T., Liu, W. and Yao, P. (2020) Autophagy, an Important Therapeutic Target for Pulmonary Fibrosis Diseases. Clinica Chimica Acta, 502, 139-147. https://doi.org/10.1016/j.cca.2019.12.016
|