交叉迁移训练对脑卒中患者的康复疗效研究:基于功能性近红外光谱
Study on the Rehabilitation Effect of Cross-Education Training on Stroke Patients: Based on Functional Near-Infrared Spectroscopy
摘要: 目的:通过功能性近红外光谱技术(fNIRS)及临床量表评估交叉迁移训练对脑卒中患者的康复疗效。方法:将于40例脑卒中偏瘫患者随机分为实验组(n = 20)和对照组20 (n = 20)。两组均进行常规的康复训练,实验组每天除了常规康复训练外再进行交叉迁移训练。治疗前和治疗2周后分别采用Fugl-Meyer量表进行上肢功能的评定、NIHSS量表评定神经功能损伤程度、运用fNIRS技术分析大脑皮层血氧浓度的变化。结果:与治疗前对比,治疗后两组FMA-UE量表评分均显著改善(|t| > 4.568, P < 0.05),试验组优于对照组(t = 3.308, P < 0.05);治疗后两组NIHSS量表评分均显著降低(|t| > 4.570, P < 0.05),试验组优于对照组(t = 4.578, P < 0.05)。fNIRS血氧浓度结果显示,治疗后试验组cPFC及iM1脑区血氧浓度明显增加(|t| > 2.186, P < 0.05),且优于对照组(t = 2.170, P < 0.05)。结论:交叉迁移训练能提高脑卒中患者上肢运动功能、改善神经功能损伤程度、增强大脑皮质激活程度。
Abstract: Objective: To evaluate the rehabilitation effect of cross-education training on stroke patients by functional near-infrared spectroscopy (fNIRS) and clinical scale. Methods: 40 patients with hemiplegia after stroke were randomly divided into test group (n = 20) and control group (n = 20). Both groups received routine rehabilitation training, and the test group received cross-education training in addition to routine rehabilitation training every day. Fugl-Meyer scale was used to evaluate the upper limb function before treatment and 2 weeks after treatment, NIHSS scale was used to evaluate the degree of nerve function injury, and fNIRS was used to analyze the changes of cerebral cortex blood oxygen concentration. Results: Compared with before treatment, the scores of FMA-UE in both groups were significantly improved after treatment (|t| > 4.568, P < 0.05), and the test group was better than the control group (t = 3.308, P < 0.05). NIHSS scale scores of both groups were significantly decreased after treatment (|t| > 4.570, P < 0.05), and the test group was better than the control group (t = 4.578, P < 0.05). The results of blood oxygen concentration of fNIRS showed that the cerebral oxygen concentrations of cPFC and iM1 in test group were significantly increased after treatment (|t| > 2.186, P < 0.05), and were better than those in control group (t = 2.170, P < 0.05). Conclusion: Cross-education training can improve upper limb motor function, improve nerve function injury and enhance cerebral cortex activation in stroke patients.
文章引用:谢东炎, 洪永峰. 交叉迁移训练对脑卒中患者的康复疗效研究:基于功能性近红外光谱[J]. 临床医学进展, 2024, 14(11): 1292-1300. https://doi.org/10.12677/acm.2024.14113014

1. 引言

脑卒中是造成全球残疾的一个重要因素。脑卒中后会引起肢体的偏瘫,这会严重影响患者的日常生活活动能力[1]。针对脑卒中患者偏瘫肢体的康复方法中,有研究主张加强患者患侧手训练[2];有研究主张双手同步训练[3]。但是对于偏瘫患者来说,患侧肢体的训练会引起肌肉及大脑皮层的疲劳反映,因此过度的高强度的患侧手训练会影响患者康复进程,并且严重偏瘫患者并不能主动完成患侧手的训练[4]。交叉迁移训练能够为上述问题提供新的康复思路。

早在1984年Scripture EW等人就提出了交叉迁移训练的交叉迁移理论,又称Cross-education (CE)训练理论[5],其原理是通过对一侧肢体进行训练后,力量可转移至对侧即未训练的肢体上。在一项Sun Y等人进行meta分析研究中,95名健康人在进行单侧肢体的训练后,未锻炼的一侧肢体肌力增加了约18% [6],近些年交叉迁移理论也被逐渐运用到脑卒中患者的康复治疗上,Ma等人曾对20名脑卒中偏瘫患者行交叉迁移训练,研究表明:在行最大健侧手握力的50%交叉迁移训练时,受损侧大脑半球被强烈激活,这有利于梗死部位周围神经的重建,促进患侧手的康复疗效[7]。但是现在交叉迁移理论的神经机制尚未研究成熟。交叉迁移训练对于亚急性期严重偏瘫的卒中患者来说,训练安全且简便,是一种低风险的辅助康复方法。

功能性近红外光谱技术(functional near-infrared spectroscopy, fNIRS)作为一种非侵入式的神经成像方式。它运用“神经血管耦合”[8]理论机制作为成像技术的基础,该理论认为脑神经元激活程度和脑血流量成正比。fNIRS设备通过向大脑皮质发射一定数量的近红外光子,这些光子中一部分被大脑皮质中的氧合血红蛋白(Oxygenated hemoglobin, HbO)、脱氧血红蛋白(Deoxyhemoglobin, HbR)吸收,未被吸收的近红外光子则在大脑皮质中沿着一条近似“香蕉型”的通道返回颅外,被fNIRS设备的接收探头所接收,设备则通过发射、接收到的近红外光子数量计算出所经通道的氧合血红蛋白、脱氧血红蛋白浓度,以此检测出该通道的脑血流量,并凭此间接评估该通道中的脑神经兴奋性。近年来,已经有越来越多的研究利用其来关注肢体力量变化与大脑皮层血氧变化之间的关系。Kenichi Shibuya等人[9]使用fNIRS观察了单手完成最大自主收缩任务时两侧大脑半球M1区血氧浓度的变化,认为力量的增加会引起M1脑区的激活。

本研究采用Fugl-Meyer量表、NIHSS量表评定交叉迁移训练对上肢功能的改善情况和减轻神经功能损伤程度,运用fNIRS客观评估交叉迁移训练对脑卒中患者大脑皮层的血氧浓度变化的效果。

2. 资料与方法

2.1. 一般资料

选入2023年5月至2024年5月在安徽医科大学第二附属医院康复医学科40例脑卒中患者。

2.1.1. 诊断标准

所有患者均符合《中国急性缺血性脑卒中诊治指南2018》[10]或《中国脑出血诊治指南(2019)》[11]中缺血性脑卒中、出血性脑卒中的诊断标准,经头颅CT或MRI检查明确诊断。

2.1.2. 纳入标准

(1) 无脊髓损伤、外周神经疾病等神经系统病史;(2) 四肢健全、无感觉及运动障碍;(3) 认知水平正常(MMSE > 21分),能够理解并执行任务指令;(4) 近期未服用精神类药物;(5) 愿意签署知情同意书。

2.1.3. 排除标准

(1) 有任何神经系统疾病者;(2) 有肿瘤、结核、新发骨折等的患者;(3) 正在感冒发热、咳嗽者;(4) 认知障碍,无法理解并执行任务者;(5) 不愿意签署知情同意书者。

2.1.4. 剔除与脱落标准

(1) 患者依从性差;(2) 干预对患者肢体功能恢复没有任何改善,患者要求终止干预;(3) 患者在康复治疗过程中病情加重,不适合继续参与实验;(4) 受试者自己不愿意再继续参与康复治疗;(5) 失访者。

患者按随机数字表法分为对照组和试验组,各20例。所有患者入组前均采集其基础信息,包括性别、年龄、偏瘫侧肢体、病程时间、糖尿病病史、高血压病史、简易精神检查Mini-mental State Examination (MMSE)、Fugl-Meyer assessment for upper-extremity (FMA-UE)、the National Institutes of Health Stroke Scale (NIHSS)。见表1

Table 1. Comparison of baseline information between two groups

1. 两组基线信息比较

类型

实验组

对照组

P值

人数/n

20

20

/

偏瘫侧肢体(左/右)/n

10/10

11/9

0.75b

年龄/岁

61.6 (9.8)

62.6 (10.1)

0.74a

性别(男/女)/n

13/7

12/8

0.74b

病程/天

63 (43~101)

66 (49~92)

0.50c

高血压病史(有/无),n%

75%/25%

70%/30%

0.71b

糖尿病病史(有/无),n%

22%/80%

45%/55%

0.09b

注释:a独立样本t检验评估;bFisher精确检验评估;cMann-Whitney U检验评估。

该实验程序获得了安徽医科大学第二附属医院伦理委员会的批准(批准号YX2022-089)。符合赫尔辛基宣言(2008年修订)规定的伦理标准,所有的患者在招募前都已知晓该实验的目的及相关过程,并签署知情同意书。

2.2. 方法

两组均接受常规康复治疗。对照组只接受常规康复训练,试验组接受常规康复训练外再进行交叉迁移训练。

常规康复训练包括肢体按摩,并根据患者病情选择性给予呼吸操、健侧肢体的主动运动、患侧肢体的主/被/助力运动,及偏瘫侧上下肢的神经肌肉电刺激等疗法),各项目均20~40分钟/次,均1次/日,6天/周,总共2周。

试验组接受常规康复训练外进行交叉迁移训练。交叉迁移训练:专业治疗师教会患者健侧手使用握力计,可熟练配合指令将握力保持在50% MVC (50% the maximal voluntary contraction;50%最大握力)。训练期间,患者健侧手进行50% MVC的模块式(block模式)抓握任务,每个block包括10 s的握力任务和15 s的静息任务,每次总共24个block,共10 min,每天1次,每周6 d,共2周。

2.3. 评定方法

分别于治疗前后,由3名有丰富工作经验并且对分组情况不知情的治疗师对两组进行评定。

2.3.1. Fugl-Meyer

Fugl-Meyer评定量表上肢部分(Fugl-Meyer As sessment-Upper Extremities, FMA-UE) FMA [12],包括上肢运动功能评分,包含反射、肩关节、肘关节、腕关节、手功能等9大项。总分66分。分值越高,功能越好。

2.3.2. NIHSS

NIHSS量表评分来评估神经功能损伤程度[13],评分一共有15项,总分42分,最高得分40分,评分越低,病人的神经损伤程度越低。

2.3.3. fNIRS检测与数据处理

治疗前后,所有测试均在安徽医科大学第二附属医院康复科的一个安静房间内进行。在实验开始前,参与者被要求获得充足的睡眠,避免吸烟和喝咖啡,并学会使用握力测力计,研究人员评估了参与者未受影响的手的MVC,并确定了50%的MVC。

实验中,参与者舒适地坐着,调整他们的扶手和靠背,并戴上以外耳道和头尖的参考点的fNIRS帽。参与者将受影响的手放在大腿上,而健侧手握住握力计。实验开始时是5分钟的静息态采集,然后是一段健侧手50% MVC任务采集。在整个过程中,用近红外光谱记录皮质活动。

健侧手50% MVC任务采集采用分组模式,每个分组由10秒抓握任务和15秒放松任务组成,共5个分组,共125秒。在每个分组中,任务开始时,机器提示参与者用健侧手快速抓住抓握装置,以达到50% MVC并保持这种收缩水平10秒时间。随后机器会发出另一个命令,提醒他们充分放松,放松时间为15秒。

首先将所有左侧半球脑卒中患者的数据进行镜像翻转[14],这有助于数据的处理与计算。我们使用NirSpark软件包对原始的血氧曲线进行处理,将设定的信号标准差阈值设置为6,锋阈值为0.5,采用样条插值方法进行校正,识别、去除运动伪迹,采用Homer2中修正的Beer-Lambert定律,将光密度转换为血氧浓度进行血氧浓度分析。

2.4. 统计学分析

使用IBM SPSS Statistics version 25和NirSpark软件对数据进行分析和绘图。采用配对本t检验测量各组组内患者大脑皮层血氧浓度变化水平。独立样本t检验用于比较两组组间大脑皮层各区域的血氧变化水平。在进行统计之前,研究人员对样本的方差齐性和正态性进行分析,如果结果不符合正态分布,则使用Mann-Whitney U检验。年龄、性别、发病时间、FMA-UE评分、NIHSS评分分别采用t检验、Fisher精确检验和Mann-Whitney U检验进行统计分析。

3. 结果

3.1. FMA-UE评估

干预前,两组FMA-UE评分比较无显著性差异(P > 0.05)。干预后,两组FMA-UE评分均显著改善 (P < 0.05),试验组优于对照组(P < 0.05)。见表2

Table 2. Comparison of FMA-UE scores before and after treatment in two groups

2. 两组治疗前后FMA-UE评分比较

组别

n

治疗前

治疗后

t值

P值

实验组

20

29.15 ± 3.62

45.35 ± 4.88

−10.52

0.00

对照组

20

28.85 ± 4.88

38.40 ± 8.03

−4.56

0.00

t值

0.221

3.308

P值

0.826

0.002

3.2. NIHSS评估

干预前,两组NIHSS评分比较无显著性差异(P > 0.05)。干预后,两组NIHSS评分均显著改善(P < 0.05),试验组优于对照组(P < 0.05)。见表3

Table 3. Comparison of NIHSS scores before and after treatment between the two groups

3. 两组治疗前后NIHSS评分比较

组别

n

治疗前

治疗后

t值

P值

实验组

20

20.25 ± 2.94

12.60 ± 2.42

7.64

0.00

对照组

20

19.90 ± 2.75

16.50 ± 2.74

4.57

0.00

t值

0.389

−4.578

P值

0.67

0.00

3.3. fNIRS

fNIRS血氧浓度结果显示,治疗后试验组cPFC (contralesional Prefrontal Motor Cortex;健侧前额运动皮层)、iM1 (ipsilesional Primary Motor Cortex;病灶侧初级运动皮层)血氧浓度明显增加(P < 0.05),且优于对照组(P < 0.05)。见图1表4

Table 4. Comparison of blood oxygen concentration before and after treatment between the two groups

4. 两组治疗前后血氧浓度值的比较

脑区

组别

n

治疗前

治疗后

t值

P值

iM1

实验组

20

0.026 ± 0.023

0.034 ± 0.026

−2.707

0.014

对照组

20

0.020 ± 0.024

0.020 ± 0.013

0.111

0.913

F值

0.034

1.728

t值

0.72

2.17

P值

0.476

0.036

cPFC

实验组

20

0.025 ± 0.021

0.037 ± 0.019

−2.186

0.042

对照组

20

0.022 ± 0.016

0.024 ± 0.014

−0.514

0.613

F值

5.584

1.982

t值

0.628

2.583

P值

0.534

0.014

Figure 1. In order to facilitate the experimental comparison of blood oxygen concentration values, the figure shows the blood oxygen concentration maps of the two brain regions of iM1 and cPFC. (A) Blood oxygen concentration of the test group before treatment; (B) Blood oxygen concentration of the test group after treatment; (C) Blood oxygen concentration of the control group before treatment; (D) Blood oxygen concentration in the control group before treatment. The redder the color, the higher the blood oxygen concentration, and the bluer the color, the lower the blood oxygen concentration

1. 为了方便展示有实验意义的血氧浓度值的比较,图中展示了iM1和cPFC两个脑区的血氧浓度图。(A) 治疗前实验组血氧浓度值;(B) 治疗后实验组血氧浓度值;(C) 治疗前对照组血氧浓度值;(D) 治疗前对照组血氧浓度值。颜色越红代表血氧浓度越高,颜色越蓝代表血氧浓度越低

4. 讨论

本研究显示,交叉迁移训练可增强iM1和cPFC两个脑区血氧浓度,提高脑卒中偏瘫患者上肢运动功能、减轻神经功能损伤程度。这结果有以下原因。1) 交叉迁移训练通过健侧手的主动力量训练可以增强患侧手主动训练的运动意图[15];2) 患者通过交叉迁移训练可以激活运动相关相应的脑区(如:M1、PFC),从而加强患者神经重塑重构能力[7];3) 交叉迁移训练通过神经重塑重构能力减轻患者神经损伤程度及提高患者运动表现[16]

fNIRS根据“神经血管耦合”理论机制,通过大脑皮质的血氧浓度变化反映出大脑皮层的活跃程度,从而间接体现出大脑皮层神经元的激活程度。在本研究中,实验组在交叉迁移训练后大脑皮层iM1和cPFC两个脑区血氧浓度相较于训练前有显著的差异,交叉迁移训练后的血氧浓度更高,说明这两个脑区激活程度越高。一般认为PFC负责认知控制和目标导向行为[17]。我们将脑卒中患者的数据进行镜像翻转后,iM1则对应右侧M1 (RM1),cPFC则对应左侧PFC (LPFC)。有文献报道,LPFC在运动准备中比RPFC起更重要作用[18]。LPFC在形成运动意图的运动准备中起着重要作用。Vanderhasselt等人[19]有研究表明,当对即将到来的冲突有预知时,大脑中LPFC会活跃,从而引起主动注意准备。Matias等[20]采用高频重复经颅磁(repetitive transcranial magnetic Stimulation, rTMS)在25名健康女性LPFC进行刺激时可增强主动注意准备能力。综上表明,交叉迁移训练使cPFC激活,提高运动意图准备和认知能力。

另外实验组iM1脑区属于病灶侧脑的运动区在交叉迁移训练后也激活,M1是主要运动信息输出的皮层[21]。有研究[22]表明:保持或提高M1能力可以增加日常生活中使用肢体的频率,进而通过更多锻炼增强大脑神经可塑性改善肢体的运动功能。所以,交叉迁移训练能够使M1激活,可以作为一种提高偏瘫患者运动能力的方法。

在现在主流的康复概念中,对比于被动运动,主动运动的疗效更佳[23],Weili Xia等人在对20名右半球中风患者进行左上肢主动运动和被动运动对脑区皮质激活水平比较时,得出主动运动比被动运动引起的皮质激活更高,更有助于感觉运动区域的恢复[24]。人体的主动运动首先需要产生运动的意图,脑卒中后持续的肢体运动障碍会阻碍患者运动意图的产生,扰乱上肢的使用和恢复。交叉迁移训练可以使iM1和cPFC两个脑区激活。由cPFC产生运动意图,iM1区产生运动神经冲动,冲动信号下传至脊髓,脊髓交叉,控制对侧手臂和手的肌肉,实现运动执行,从而达到康复患侧手的目的。

本研究样本量相对较小,缺乏对各脑区之间脑网络连接的神经机制探讨,fNIRS研究欠缺经验。另外虽然有研究表明,神经皮质激活的变化伴随着参与大脑结构内突触活动的变化[25],但是神经皮质激活毕竟不能直接代表突触活动及动作电位活动。所以需要颅磁刺激用于进一步的电生理研究,以探索交叉迁移训练的神经结构上的机制。

5. 结论

通过fNIRS评价大脑皮层的血氧浓度变化情况,发现交叉迁移训练能提高偏瘫肢体上肢运动功能、改善神经功能损伤程度、增强大脑皮质激活程度。

NOTES

*通讯作者。

参考文献

[1] Li, Y., Lian, Y., Chen, X., Zhang, H., Xu, G., Duan, H., et al. (2024) Effect of Task-Oriented Training Assisted by Force Feedback Hand Rehabilitation Robot on Finger Grasping Function in Stroke Patients with Hemiplegia: A Randomised Controlled Trial. Journal of NeuroEngineering and Rehabilitation, 21, Article No. 77.
https://doi.org/10.1186/s12984-024-01372-3
[2] Xu, G., Huo, C., Yin, J., Li, W., Xie, H., Li, X., et al. (2022) Effective Brain Network Analysis in Unilateral and Bilateral Upper Limb Exercise Training in Subjects with Stroke. Medical Physics, 49, 3333-3346.
https://doi.org/10.1002/mp.15570
[3] Chen, S., Mao, M., Zhu, G., Chen, Y., Qiu, Y., Ye, B., et al. (2023) Cortical Activity in Patients with High-Functioning Ischemic Stroke during the Purdue Pegboard Test: Insights into Bimanual Coordinated Fine Motor Skills with Functional Near-Infrared Spectroscopy. Neural Regeneration Research, 19, 1098-1104.
https://doi.org/10.4103/1673-5374.385312
[4] Marque, P., Gasq, D., Castel-Lacanal, E., De Boissezon, X. and Loubinoux, I. (2014) Post-Stroke Hemiplegia Rehabilitation: Evolution of the Concepts. Annals of Physical and Rehabilitation Medicine, 57, 520-529.
https://doi.org/10.1016/j.rehab.2014.08.004
[5] Scripture, E.W., Smith, T.L. and Brown, E.M. (1894) On the Education of Muscular Control and Power. Studies from the Yale Psychological Laboratory, 2, 114-119.
[6] Green, L.A. and Gabriel, D.A. (2018) The Effect of Unilateral Training on Contralateral Limb Strength in Young, Older, and Patient Populations: A Meta-Analysis of Cross Education. Physical Therapy Reviews, 23, 238-249.
https://doi.org/10.1080/10833196.2018.1499272
[7] Ma, Y., Yu, Y., Gao, W., Hong, Y. and Shen, X. (2023) Cerebral Hemodynamic Changes during Unaffected Handgrip Exercises in Stroke Patients: An fNIRS Study. Brain Sciences, 13, Article 141.
https://doi.org/10.3390/brainsci13010141
[8] Tak, S., Yoon, S.J., Jang, J., Yoo, K., Jeong, Y. and Ye, J.C. (2011) Quantitative Analysis of Hemodynamic and Metabolic Changes in Subcortical Vascular Dementia Using Simultaneous Near-Infrared Spectroscopy and fMRI Measurements. NeuroImage, 55, 176-184.
https://doi.org/10.1016/j.neuroimage.2010.11.046
[9] Shibuya, K., Kuboyama, N. and Tanaka, J. (2014) Changes in Ipsilateral Motor Cortex Activity during a Unilateral Isometric Finger Task Are Dependent on the Muscle Contraction Force. Physiological Measurement, 35, 417-428.
https://doi.org/10.1088/0967-3334/35/3/417
[10] 钟迪, 张舒婷, 吴波. 《中国急性缺血性脑卒中诊治指南2018》解读[J]. 中国现代神经疾病杂志, 2019, 19(11): 897-901.
[11] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2019) [J]. 中华神经科杂志, 2019, 52(12): 994-1005.
[12] Woytowicz, E.J., Rietschel, J.C., Goodman, R.N., Conroy, S.S., Sorkin, J.D., Whitall, J., et al. (2017) Determining Levels of Upper Extremity Movement Impairment by Applying a Cluster Analysis to the Fugl-Meyer Assessment of the Upper Extremity in Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 98, 456-462.
https://doi.org/10.1016/j.apmr.2016.06.023
[13] Kazi, S.A., Siddiqui, M. and Majid, S. (2021) Stroke Outcome Prediction Using Admission Nihss in Anterior and Posterior Circulation Stroke. Journal of Ayub Medical College Abbottabad, 33, 274-278.
[14] Mihara, M., Fujimoto, H., Hattori, N., Otomune, H., Kajiyama, Y., Konaka, K., et al. (2021) Effect of Neurofeedback Facilitation on Poststroke Gait and Balance Recovery: A Randomized Controlled Trial. Neurology, 96, e2587-e2598.
https://doi.org/10.1212/wnl.0000000000011989
[15] Dai, J., Wu, F., Li, J., Yu, M., Liao, C. and Shou, Y. (2022) Surface Electromyography Analysis of Mirror Movements under Unilateral Movement in Stroke Patients: A Retrospective Study. Frontiers in Human Neuroscience, 16, Article 1079596.
https://doi.org/10.3389/fnhum.2022.1079596
[16] Salehi Dehno, N., Kamali, F., Shariat, A. and Jaberzadeh, S. (2021) Unilateral Strength Training of the Less Affected Hand Improves Cortical Excitability and Clinical Outcomes in Patients with Subacute Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 102, 914-924.
https://doi.org/10.1016/j.apmr.2020.12.012
[17] Moriarty, T., Bourbeau, K., Bellovary, B. and Zuhl, M.N. (2019) Exercise Intensity Influences Prefrontal Cortex Oxygenation during Cognitive Testing. Behavioral Sciences, 9, Article 83.
https://doi.org/10.3390/bs9080083
[18] Fishburn, F.A., Norr, M.E., Medvedev, A.V. and Vaidya, C.J. (2014) Sensitivity of fNIRS to Cognitive State and Load. Frontiers in Human Neuroscience, 8.
https://doi.org/10.3389/fnhum.2014.00076
[19] Vanderhasselt, M., De Raedt, R. and Baeken, C. (2009) Dorsolateral Prefrontal Cortex and Stroop Performance: Tackling the Lateralization. Psychonomic Bulletin & Review, 16, 609-612.
https://doi.org/10.3758/pbr.16.3.609
[20] Pulopulos, M.M., Allaert, J., Vanderhasselt, M., Sanchez-Lopez, A., De Witte, S., Baeken, C., et al. (2020) Effects of HF-rTMS over the Left and Right DLPFC on Proactive and Reactive Cognitive Control. Social Cognitive and Affective Neuroscience, 17, 109-119.
https://doi.org/10.1093/scan/nsaa082
[21] Dai, L., Zhang, W., Zhang, H., Fang, L., Chen, J., Li, X., et al. (2024) Effects of Robot-Assisted Upper Limb Training Combined with Intermittent Theta Burst Stimulation (iTBS) on Cortical Activation in Stroke Patients: A Functional Near-Infrared Spectroscopy Study. NeuroRehabilitation, 54, 421-434.
https://doi.org/10.3233/nre-230355
[22] Sharma, N., Baron, J. and Rowe, J.B. (2009) Motor Imagery after Stroke: Relating Outcome to Motor Network Connectivity. Annals of Neurology, 66, 604-616.
https://doi.org/10.1002/ana.21810
[23] Mulder, T. (2007) Motor Imagery and Action Observation: Cognitive Tools for Rehabilitation. Journal of Neural Transmission, 114, 1265-1278.
https://doi.org/10.1007/s00702-007-0763-z
[24] Xia, W., Dai, R., Xu, X., Huai, B., Bai, Z., Zhang, J., et al. (2022) Cortical Mapping of Active and Passive Upper Limb Training in Stroke Patients and Healthy People: A Functional Near-Infrared Spectroscopy Study. Brain Research, 1788, Article 147935.
https://doi.org/10.1016/j.brainres.2022.147935
[25] Xing, Y. and Bai, Y. (2020) A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Molecular Neurobiology, 57, 4218-4231.
https://doi.org/10.1007/s12035-020-02021-1