[1]
|
Gruber, N. and Galloway, J.N. (2008) An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451, 293-296. https://doi.org/10.1038/nature06592
|
[2]
|
Wu, T., Fan, W., Zhang, Y. and Zhang, F. (2021) Electrochemical Synthesis of Ammonia: Progress and Challenges. Materials Today Physics, 16, Article ID: 100310. https://doi.org/10.1016/j.mtphys.2020.100310
|
[3]
|
Chu, S. and Majumdar, A. (2012) Opportunities and Challenges for a Sustainable Energy Future. Nature, 488, 294-303. https://doi.org/10.1038/nature11475
|
[4]
|
Martín, A.J. and Pérez-Ramírez, J. (2019) Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers. Joule, 3, 2602-2621. https://doi.org/10.1016/j.joule.2019.09.007
|
[5]
|
Brewis, I., Shahzad, R., Field, R.W., Jedidi, A. and Rasul, S. (2022) Combining Experimental and Theoretical Insights for Reduction of CO2 to Multi-Carbon Compounds. Discover Chemical Engineering, 2, Article No. 2. https://doi.org/10.1007/s43938-022-00009-y
|
[6]
|
Raciti, D. and Wang, C. (2018) Recent Advances in Co2 Reduction Electrocatalysis on Copper. ACS Energy Letters, 3, 1545-1556. https://doi.org/10.1021/acsenergylett.8b00553
|
[7]
|
Lee, H.K., Koh, C.S.L., Lee, Y.H., Liu, C., Phang, I.Y., Han, X., et al. (2018) Favoring the Unfavored: Selective Electrochemical Nitrogen Fixation Using a Reticular Chemistry Approach. Science Advances, 4, eaar3208. https://doi.org/10.1126/sciadv.aar3208
|
[8]
|
Stamenkovic, V.R., Strmcnik, D., Lopes, P.P. and Markovic, N.M. (2016) Energy and Fuels from Electrochemical Interfaces. Nature Materials, 16, 57-69. https://doi.org/10.1038/nmat4738
|
[9]
|
Chu, S., Cui, Y. and Liu, N. (2016) The Path towards Sustainable Energy. Nature Materials, 16, 16-22. https://doi.org/10.1038/nmat4834
|
[10]
|
Liu, S., Wang, M., Cheng, Q., He, Y., Ni, J., Liu, J., et al. (2022) Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 16, 17911-17930. https://doi.org/10.1021/acsnano.2c09168
|
[11]
|
Aneja, V.P., Blunden, J., James, K., Schlesinger, W.H., Knighton, R., Gilliam, W., et al. (2008) Ammonia Assessment from Agriculture: U.S. Status and Needs. Journal of Environmental Quality, 37, 515-520. https://doi.org/10.2134/jeq2007.0002in
|
[12]
|
Cui, X., Tang, C. and Zhang, Q. (2018) A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 8, Article ID: 1800369. https://doi.org/10.1002/aenm.201800369
|
[13]
|
Jiao, F. and Xu, B. (2018) Electrochemical Ammonia Synthesis and Ammonia Fuel Cells. Advanced Materials, 31, Article ID: 1805173. https://doi.org/10.1002/adma.201805173
|
[14]
|
MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H.R., Hodgetts, R.Y., Bakker, J.M., et al. (2020) A Roadmap to the Ammonia Economy. Joule, 4, 1186-1205. https://doi.org/10.1016/j.joule.2020.04.004
|
[15]
|
Smith, C., Hill, A.K. and Torrente-Murciano, L. (2020) Current and Future Role of Haber-Bosch Ammonia in a Carbon-Free Energy Landscape. Energy & Environmental Science, 13, 331-344. https://doi.org/10.1039/c9ee02873k
|
[16]
|
Vojvodic, A., Medford, A.J., Studt, F., Abild-Pedersen, F., Khan, T.S., Bligaard, T., et al. (2014) Exploring the Limits: A Low-Pressure, Low-Temperature Haber-Bosch Process. Chemical Physics Letters, 598, 108-112. https://doi.org/10.1016/j.cplett.2014.03.003
|
[17]
|
Kandemir, T., Schuster, M.E., Senyshyn, A., Behrens, M. and Schlögl, R. (2013) The Haber-Bosch Process Revisited: On the Real Structure and Stability of “Ammonia Iron” under Working Conditions. Angewandte Chemie International Edition, 52, 12723-12726. https://doi.org/10.1002/anie.201305812
|
[18]
|
Shipman, M.A. and Symes, M.D. (2017) Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources. Catalysis Today, 286, 57-68. https://doi.org/10.1016/j.cattod.2016.05.008
|
[19]
|
Sun, J., Alam, D., Daiyan, R., Masood, H., Zhang, T., Zhou, R., et al. (2021) A Hybrid Plasma Electrocatalytic Process for Sustainable Ammonia Production. Energy & Environmental Science, 14, 865-872. https://doi.org/10.1039/d0ee03769a
|
[20]
|
Hawtof, R., Ghosh, S., Guarr, E., Xu, C., Mohan Sankaran, R. and Renner, J.N. (2019) Catalyst-Free, Highly Selective Synthesis of Ammonia from Nitrogen and Water by a Plasma Electrolytic System. Science Advances, 5, eaat5778. https://doi.org/10.1126/sciadv.aat5778
|
[21]
|
Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Darensbourg, M.Y., et al. (2018) Beyond Fossil Fuel-Driven Nitrogen Transformations. Science, 360, eaar6611. https://doi.org/10.1126/science.aar6611
|
[22]
|
Soloveichik, G. (2019) Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber-Bosch Process. Nature Catalysis, 2, 377-380. https://doi.org/10.1038/s41929-019-0280-0
|
[23]
|
Cheng, H., Ding, L., Chen, G., Zhang, L., Xue, J. and Wang, H. (2018) Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Advanced Materials, 30, Article ID: 1803694. https://doi.org/10.1002/adma.201803694
|
[24]
|
Liu, S., Wang, M., Ji, H., Shen, X., Yan, C. and Qian, T. (2020) Altering the Rate-Determining Step over Cobalt Single Clusters Leading to Highly Efficient Ammonia Synthesis. National Science Review, 8, nwaa136. https://doi.org/10.1093/nsr/nwaa136
|
[25]
|
Wang, M., Liu, S., Qian, T., Liu, J., Zhou, J., Ji, H., et al. (2019) Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nature Communications, 10, Article No. 341. https://doi.org/10.1038/s41467-018-08120-x
|
[26]
|
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998. https://doi.org/10.1126/science.aad4998
|
[27]
|
Deng, J., Iñiguez, J.A. and Liu, C. (2018) Electrocatalytic Nitrogen Reduction at Low Temperature. Joule, 2, 846-856. https://doi.org/10.1016/j.joule.2018.04.014
|
[28]
|
Qiu, W., Xie, X., Qiu, J., Fang, W., Liang, R., Ren, X., et al. (2018) High-Performance Artificial Nitrogen Fixation at Ambient Conditions Using a Metal-Free Electrocatalyst. Nature Communications, 9, Article No. 3485. https://doi.org/10.1038/s41467-018-05758-5
|
[29]
|
Tang, C. and Qiao, S. (2019) How to Explore Ambient Electrocatalytic Nitrogen Reduction Reliably and Insightfully. Chemical Society Reviews, 48, 3166-3180. https://doi.org/10.1039/c9cs00280d
|
[30]
|
Suryanto, B.H.R., Du, H., Wang, D., Chen, J., Simonov, A.N. and MacFarlane, D.R. (2019) Challenges and Prospects in the Catalysis of Electroreduction of Nitrogen to Ammonia. Nature Catalysis, 2, 290-296. https://doi.org/10.1038/s41929-019-0252-4
|
[31]
|
Foster, S.L., Bakovic, S.I.P., Duda, R.D., Maheshwari, S., Milton, R.D., Minteer, S.D., et al. (2018) Catalysts for Nitrogen Reduction to Ammonia. Nature Catalysis, 1, 490-500. https://doi.org/10.1038/s41929-018-0092-7
|
[32]
|
Jia, H. and Quadrelli, E.A. (2014) Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen. Chemical Society Reviews, 43, 547-564. https://doi.org/10.1039/c3cs60206k
|
[33]
|
Luo, Y., Chen, G., Ding, L., Chen, X., Ding, L. and Wang, H. (2019) Efficient Electrocatalytic N2 Fixation with Mxene under Ambient Conditions. Joule, 3, 279-289. https://doi.org/10.1016/j.joule.2018.09.011
|
[34]
|
Wang, L., Xia, M., Wang, H., Huang, K., Qian, C., Maravelias, C.T., et al. (2018) Greening Ammonia toward the Solar Ammonia Refinery. Joule, 2, 1055-1074. https://doi.org/10.1016/j.joule.2018.04.017
|
[35]
|
Gambarotta, S. and Scott, J. (2004) Multimetallic Cooperative Activation of N2. Angewandte Chemie International Edition, 43, 5298-5308. https://doi.org/10.1002/anie.200301669
|
[36]
|
Pool, J.A., Lobkovsky, E. and Chirik, P.J. (2004) Hydrogenation and Cleavage of Dinitrogen to Ammonia with a Zirconium Complex. Nature, 427, 527-530. https://doi.org/10.1038/nature02274
|
[37]
|
Zhang, S., Han, M., Shi, T., Zhang, H., Lin, Y., Zheng, X., et al. (2022) Atomically Dispersed Bimetallic Fe-Co Electrocatalysts for Green Production of Ammonia. Nature Sustainability, 6, 169-179. https://doi.org/10.1038/s41893-022-00993-7
|
[38]
|
Jin, H., Li, L., Liu, X., Tang, C., Xu, W., Chen, S., et al. (2019) Nitrogen Vacancies on 2D Layered W2N3: A Stable and Efficient Active Site for Nitrogen Reduction Reaction. Advanced Materials, 31, Article ID: 1902709. https://doi.org/10.1002/adma.201902709
|
[39]
|
Lazouski, N., Chung, M., Williams, K., Gala, M.L. and Manthiram, K. (2020) Non-Aqueous Gas Diffusion Electrodes for Rapid Ammonia Synthesis from Nitrogen and Water-Splitting-Derived Hydrogen. Nature Catalysis, 3, 463-469. https://doi.org/10.1038/s41929-020-0455-8
|
[40]
|
Ni, J., Cheng, Q., Liu, S., Wang, M., He, Y., Qian, T., et al. (2023) Deciphering Electrolyte Selection for Electrochemical Reduction of Carbon Dioxide and Nitrogen to High-Value-Added Chemicals. Advanced Functional Materials, 33, Article ID: 2212483. https://doi.org/10.1002/adfm.202212483
|
[41]
|
Garagounis, I., Vourros, A., Stoukides, D., Dasopoulos, D. and Stoukides, M. (2019) Electrochemical Synthesis of Ammonia: Recent Efforts and Future Outlook. Membranes, 9, Article No. 112. https://doi.org/10.3390/membranes9090112
|
[42]
|
Wang, Y., Gordon, E. and Ren, H. (2020) Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-electrolyte Interface via a Grain-by-Grain Approach. Analytical Chemistry, 92, 2859-2865. https://doi.org/10.1021/acs.analchem.9b05502
|
[43]
|
Wang, Y., Cui, X., Zhao, J., Jia, G., Gu, L., Zhang, Q., et al. (2018) Rational Design of Fe-N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 9, 336-344. https://doi.org/10.1021/acscatal.8b03802
|
[44]
|
Chittibabu, D.K.D., Sathishkumar, N., Wu, S. and Chen, H. (2023) Single-Atom Metal Anchored Penta-Graphene for Highly Efficient and Selective Electroreduction of Nitrogen into Ammonia. ACS Applied Energy Materials, 6, 6636-6645. https://doi.org/10.1021/acsaem.3c00677
|
[45]
|
Kim, J.H., Ju, H., An, B., An, Y., Cho, K., Kim, S.H., et al. (2021) Comparison between Fe2O3/C and Fe3C/Fe2O3/Fe/C Electrocatalysts for N2 Reduction in an Alkaline Electrolyte. ACS Applied Materials & Interfaces, 13, 61316-61323. https://doi.org/10.1021/acsami.1c20807
|
[46]
|
Xia, L., Wang, Z. and Zhao, Y. (2022) Novel Two-Dimensional Metal-Based Π-D Conjugated Nanosheets as Photocatalyst for Nitrogen Reduction Reaction: The First-Principle Investigation. ACS Applied Materials & Interfaces, 14, 5384-5394. https://doi.org/10.1021/acsami.1c21789
|
[47]
|
Li, L., Tang, C., Jin, H., Davey, K. and Qiao, S. (2021) Main-Group Elements Boost Electrochemical Nitrogen Fixation. Chem, 7, 3232-3255. https://doi.org/10.1016/j.chempr.2021.10.008
|
[48]
|
Guo, C., Ran, J., Vasileff, A. and Qiao, S. (2018) Rational Design of Electrocatalysts and Photo(electro)catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions. Energy & Environmental Science, 11, 45-56. https://doi.org/10.1039/c7ee02220d
|
[49]
|
Yao, D., Tang, C., Wang, P., Cheng, H., Jin, H., Ding, L., et al. (2022) Electrocatalytic Green Ammonia Production Beyond Ambient Aqueous Nitrogen Reduction. Chemical Engineering Science, 257, Article ID: 117735. https://doi.org/10.1016/j.ces.2022.117735
|
[50]
|
Tao, H., Lian, C., Jiang, H., Li, C., Liu, H. and van Roij, R. (2021) Enhancing Electrocatalytic N2 Reduction via Tailoring the Electric Double Layers. AIChE Journal, 68, e17549. https://doi.org/10.1002/aic.17549
|
[51]
|
Mahmood, N., Yao, Y., Zhang, J., Pan, L., Zhang, X. and Zou, J. (2017) Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Advanced Science, 5, Article ID: 1700464. https://doi.org/10.1002/advs.201700464
|
[52]
|
Zhang, Q., Liu, B., Yu, L., Bei, Y. and Tang, B. (2019) Synergistic Promotion of the Electrochemical Reduction of Nitrogen to Ammonia by Phosphorus and Potassium. ChemCatChem, 12, 334-341. https://doi.org/10.1002/cctc.201901519
|
[53]
|
Wang, X., Peng, X., Chen, W., Liu, G., Zheng, A., Zheng, L., et al. (2020) Insight into Dynamic and Steady-State Active Sites for Nitrogen Activation to Ammonia by Cobalt-Based Catalyst. Nature Communications, 11, Article No. 653. https://doi.org/10.1038/s41467-020-14287-z
|
[54]
|
Liu, J., Ma, X., Li, Y., Wang, Y., Xiao, H. and Li, J. (2018) Heterogeneous Fe3 Single-Cluster Catalyst for Ammonia Synthesis via an Associative Mechanism. Nature Communications, 9, Article No. 1610. https://doi.org/10.1038/s41467-018-03795-8
|
[55]
|
Liu, D., Chen, M., Du, X., Ai, H., Lo, K.H., Wang, S., et al. (2020) Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Advanced Functional Materials, 31, Article ID: 2008983. https://doi.org/10.1002/adfm.202008983
|
[56]
|
Zeinalipour-Yazdi, C.D., Hargreaves, J.S.J., Laassiri, S. and Catlow, C.R.A. (2018) The Integration of Experiment and Computational Modelling in Heterogeneously Catalysed Ammonia Synthesis over Metal Nitrides. Physical Chemistry Chemical Physics, 20, 21803-21808. https://doi.org/10.1039/c8cp04216k
|
[57]
|
Wang, D., Azofra, L.M., Harb, M., Cavallo, L., Zhang, X., Suryanto, B.H.R., et al. (2018) Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem, 11, 3416-3422. https://doi.org/10.1002/cssc.201801632
|
[58]
|
van der Ham, C.J.M., Koper, M.T.M. and Hetterscheid, D.G.H. (2014) Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chemical Society Reviews, 43, 5183-5191. https://doi.org/10.1039/c4cs00085d
|
[59]
|
Wan, Y., Xu, J. and Lv, R. (2019) Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions. Materials Today, 27, 69-90. https://doi.org/10.1016/j.mattod.2019.03.002
|
[60]
|
Wang, Z., Hu, X., Liu, Z., Zou, G., Wang, G. and Zhang, K. (2019) Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. ACS Catalysis, 9, 10260-10278. https://doi.org/10.1021/acscatal.9b03015
|
[61]
|
Li, M., Huang, H., Low, J., Gao, C., Long, R. and Xiong, Y. (2018) Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction. Small Methods, 3, Article ID: 1800388. https://doi.org/10.1002/smtd.201800388
|
[62]
|
Zhou, J. and Zhang, Y. (2018) Metal-based Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide and Nitrogen: Mechanisms, Recent Advances and Perspective. Reaction Chemistry & Engineering, 3, 591-625. https://doi.org/10.1039/c8re00111a
|
[63]
|
Li, X., Li, Q., Cheng, J., Liu, L., Yan, Q., Wu, Y., et al. (2016) Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. Journal of the American Chemical Society, 138, 8706-8709. https://doi.org/10.1021/jacs.6b04778
|
[64]
|
Guo, D., Wang, S., Xu, J., Zheng, W. and Wang, D. (2022) Defect and Interface Engineering for Electrochemical Nitrogen Reduction Reaction under Ambient Conditions. Journal of Energy Chemistry, 65, 448-468. https://doi.org/10.1016/j.jechem.2021.06.012
|
[65]
|
Patil, S.B. and Wang, D. (2020) Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction. Small, 16, Article ID: 2002885. https://doi.org/10.1002/smll.202002885
|
[66]
|
Zeinalipour-Yazdi, C.D. (2019) Mechanisms of Ammonia and Hydrazine Synthesis on Η-Mn3N2-(100) Surfaces. Physical Chemistry Chemical Physics, 21, 19365-19377. https://doi.org/10.1039/c9cp03934a
|
[67]
|
Abghoui, Y. and Skúlason, E. (2017) Onset Potentials for Different Reaction Mechanisms of Nitrogen Activation to Ammonia on Transition Metal Nitride Electro-Catalysts. Catalysis Today, 286, 69-77. https://doi.org/10.1016/j.cattod.2016.11.047
|
[68]
|
Mars, P. and van Krevelen, D.W. (1954) Oxidations Carried out by Means of Vanadium Oxide Catalysts. Chemical Engineering Science, 3, 41-59. https://doi.org/10.1016/s0009-2509(54)80005-4
|
[69]
|
Abghoui, Y., Garden, A.L., Hlynsson, V.F., Björgvinsdóttir, S., Ólafsdóttir, H. and Skúlason, E. (2015) Enabling Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions through Rational Catalyst Design. Physical Chemistry Chemical Physics, 17, 4909-4918. https://doi.org/10.1039/c4cp04838e
|
[70]
|
Zhao, X., Hu, G., Chen, G., Zhang, H., Zhang, S. and Wang, H. (2021) Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 33, Article ID: 2007650. https://doi.org/10.1002/adma.202007650
|
[71]
|
Vasileiou, E., Kyriakou, V., Garagounis, I., Vourros, A., Manerbino, A., Coors, W.G., et al. (2016) Electrochemical Enhancement of Ammonia Synthesis in a BaZr0.7Ce0.2Y0.1O2.9 Solid Electrolyte Cell. Solid State Ionics, 288, 357-362. https://doi.org/10.1016/j.ssi.2015.12.022
|
[72]
|
Cheng, Q., Wang, M., Ni, J., Zhang, L., Cheng, Y., Zhou, X., et al. (2023) Comprehensive Understanding and Rational Regulation of Microenvironment for Gas-Involving Electrochemical Reactions. Carbon Energy, 5, Article No. 7. https://doi.org/10.1002/cey2.307
|
[73]
|
Choi, C., Back, S., Kim, N., Lim, J., Kim, Y. and Jung, Y. (2018) Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline. ACS Catalysis, 8, 7517-7525. https://doi.org/10.1021/acscatal.8b00905
|
[74]
|
Qian, S., Cao, H., Chen, J., Chen, J., Wang, Y. and Li, J. (2022) Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction. ACS Catalysis, 12, 11530-11540. https://doi.org/10.1021/acscatal.2c03186
|
[75]
|
Ghoshal, S., Ghosh, A., Roy, P., Ball, B., Pramanik, A. and Sarkar, P. (2022) Recent Progress in Computational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N2 Fixation. ACS Catalysis, 12, 15541-15575. https://doi.org/10.1021/acscatal.2c04527
|
[76]
|
Kani, N.C., Prajapati, A., Collins, B.A., Goodpaster, J.D. and Singh, M.R. (2020) Competing Effects of Ph, Cation Identity, H2O Saturation, and N2 Concentration on the Activity and Selectivity of Electrochemical Reduction of N2 to Nh3 on Electrodeposited Cu at Ambient Conditions. ACS Catalysis, 10, 14592-14603. https://doi.org/10.1021/acscatal.0c04864
|
[77]
|
Amar, I.A., Lan, R., Petit, C.T.G. and Tao, S. (2011) Solid-State Electrochemical Synthesis of Ammonia: A Review. Journal of Solid State Electrochemistry, 15, 1845-1860. https://doi.org/10.1007/s10008-011-1376-x
|
[78]
|
Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A. and Stoukides, M. (2017) Progress in the Electrochemical Synthesis of Ammonia. Catalysis Today, 286, 2-13. https://doi.org/10.1016/j.cattod.2016.06.014
|
[79]
|
Moon, Y.H., Kim, N.Y., Kim, S.M. and Jang, Y.J. (2022) Recent Advances in Electrochemical Nitrogen Reduction Reaction to Ammonia from the Catalyst to the System. Catalysts, 12, Article No. 1015. https://doi.org/10.3390/catal12091015
|
[80]
|
Huang, Z., Rafiq, M., Woldu, A.R., Tong, Q., Astruc, D. and Hu, L. (2023) Recent Progress in Electrocatalytic Nitrogen Reduction to Ammonia (NRR). Coordination Chemistry Reviews, 478, Article ID: 214981. https://doi.org/10.1016/j.ccr.2022.214981
|
[81]
|
Yao, Y., Wang, J., Shahid, U.B., Gu, M., Wang, H., Li, H., et al. (2020) Electrochemical Synthesis of Ammonia from Nitrogen under Mild Conditions: Current Status and Challenges. Electrochemical Energy Reviews, 3, 239-270. https://doi.org/10.1007/s41918-019-00061-3
|
[82]
|
Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D. and Centi, G. (2017) Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in a Gas-Liquid-Solid Three-Phase Reactor. ACS Sustainable Chemistry & Engineering, 5, 7393-7400. https://doi.org/10.1021/acssuschemeng.7b01742
|
[83]
|
Zhang, R., Ren, X., Shi, X., Xie, F., Zheng, B., Guo, X., et al. (2018) Enabling Effective Electrocatalytic N2 Conversion to Nh3 by the TiO2 Nanosheets Array under Ambient Conditions. ACS Applied Materials & Interfaces, 10, 28251-28255. https://doi.org/10.1021/acsami.8b06647
|
[84]
|
Song, Y., Johnson, D., Peng, R., Hensley, D.K., Bonnesen, P.V., Liang, L., et al. (2018) A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia. Science Advances, 4, e1700336. https://doi.org/10.1126/sciadv.1700336
|
[85]
|
Verdouw, H., Van Echteld, C.J.A. and Dekkers, E.M.J. (1978) Ammonia Determination Based on Indophenol Formation with Sodium Salicylate. Water Research, 12, 399-402. https://doi.org/10.1016/0043-1354(78)90107-0
|
[86]
|
Zhou, L. and Boyd, C.E. (2016) Comparison of Nessler, Phenate, Salicylate and Ion Selective Electrode Procedures for Determination of Total Ammonia Nitrogen in Aquaculture. Aquaculture, 450, 187-193. https://doi.org/10.1016/j.aquaculture.2015.07.022
|
[87]
|
Watt, G.W. and Chrisp, J.D. (1952) Spectrophotometric Method for Determination of Hydrazine. Analytical Chemistry, 24, 2006-2008. https://doi.org/10.1021/ac60072a044
|
[88]
|
Liu, J., Kelley, M.S., Wu, W., Banerjee, A., Douvalis, A.P., Wu, J., et al. (2016) Nitrogenase-Mimic Iron-Containing Chalcogels for Photochemical Reduction of Dinitrogen to Ammonia. Proceedings of the National Academy of Sciences, 113, 5530-5535. https://doi.org/10.1073/pnas.1605512113
|
[89]
|
Zhang, S., Li, M., Li, J., Song, Q. and Liu, X. (2022) High-Ammonia Selective Metal-Organic Framework-Derived Co-Doped Fe/Fe2O3 Catalysts for Electrochemical Nitrate Reduction. Proceedings of the National Academy of Sciences, 119, e2115504119. https://doi.org/10.1073/pnas.2115504119
|
[90]
|
Andersen, S.Z., Čolić, V., Yang, S., Schwalbe, J.A., Nielander, A.C., McEnaney, J.M., et al. (2019) A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature, 570, 504-508. https://doi.org/10.1038/s41586-019-1260-x
|
[91]
|
Ye, L., Nayak-Luke, R., Bañares-Alcántara, R. and Tsang, E. (2017) Reaction: “Green” Ammonia Production. Chem, 3, 712-714. https://doi.org/10.1016/j.chempr.2017.10.016
|
[92]
|
Cao, N. and Zheng, G. (2018) Aqueous Electrocatalytic N2 Reduction under Ambient Conditions. Nano Research, 11, 2992-3008. https://doi.org/10.1007/s12274-018-1987-y
|
[93]
|
Arif, M., Yasin, G., Luo, L., Ye, W., Mushtaq, M.A., Fang, X., et al. (2020) Hierarchical Hollow Nanotubes of NiFeV-Layered Double Hydroxides@CoVP Heterostructures Towards Efficient, pH-Universal Electrocatalytical Nitrogen Reduction Reaction to Ammonia. Applied Catalysis B: Environmental, 265, Article ID: 118559. https://doi.org/10.1016/j.apcatb.2019.118559
|
[94]
|
Xie, J., Dong, H., Cao, X. and Li, Y. (2020) Computational Insights into Nitrogen Reduction Reaction Catalyzed by Transition Metal Doped Graphene: Comparative Investigations. Materials Chemistry and Physics, 243, Article ID: 122622. https://doi.org/10.1016/j.matchemphys.2020.122622
|
[95]
|
Wang, M., Liu, S., Ji, H., Yang, T., Qian, T. and Yan, C. (2021) Salting-out Effect Promoting Highly Efficient Ambient Ammonia Synthesis. Nature Communications, 12, Article No. 3198. https://doi.org/10.1038/s41467-021-23360-0
|
[96]
|
Zang, W., Yang, T., Zou, H., Xi, S., Zhang, H., Liu, X., et al. (2019) Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 9, 10166-10173. https://doi.org/10.1021/acscatal.9b02944
|
[97]
|
Montoya, J.H., Tsai, C., Vojvodic, A. and Nørskov, J.K. (2015) The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem, 8, 2180-2186. https://doi.org/10.1002/cssc.201500322
|
[98]
|
Zhang, L., Ding, L., Chen, G., Yang, X. and Wang, H. (2019) Ammonia Synthesis under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Angewandte Chemie International Edition, 58, 2612-2616. https://doi.org/10.1002/anie.201813174
|
[99]
|
Gu, J., Zhang, Y. and Tao, F. (2012) Shape Control of Bimetallic Nanocatalysts through Well-Designed Colloidal Chemistry Approaches. Chemical Society Reviews, 41, Article No. 8050. https://doi.org/10.1039/c2cs35184f
|
[100]
|
Liu, H., Nosheen, F. and Wang, X. (2015) Noble Metal Alloy Complex Nanostructures: Controllable Synthesis and Their Electrochemical Property. Chemical Society Reviews, 44, 3056-3078. https://doi.org/10.1039/c4cs00478g
|
[101]
|
Yao, Y., Zhu, S., Wang, H., Li, H. and Shao, M. (2018) A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces. Journal of the American Chemical Society, 140, 1496-1501. https://doi.org/10.1021/jacs.7b12101
|
[102]
|
Wang, X., Wang, W., Qiao. M., Wu, G., Chen, W., Yuan, T., et al. (2018) Atomically Dispersed Au1 Catalyst towards Efficient Electrochemical Synthesis of Ammonia. Science Bulletin, 63, 1246-1253. https://doi.org/10.1016/j.scib.2018.07.005
|
[103]
|
Bao, D., Zhang, Q., Meng, F., Zhong, H., Shi, M., Zhang, Y., et al. (2016) Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. Advanced Materials, 29, Article ID: 1604799. https://doi.org/10.1002/adma.201604799
|
[104]
|
Nazemi, M., Panikkanvalappil, S.R. and El-Sayed, M.A. (2018) Enhancing the Rate of Electrochemical Nitrogen Reduction Reaction for Ammonia Synthesis under Ambient Conditions Using Hollow Gold Nanocages. Nano Energy, 49, 316-323. https://doi.org/10.1016/j.nanoen.2018.04.039
|
[105]
|
Cao, Y., Gao, Y., Zhou, H., Chen, X., Hu, H., Deng, S., et al. (2018) Highly Efficient Ammonia Synthesis Electrocatalyst: Single Ru Atom on Naturally Nanoporous Carbon Materials. Advanced Theory and Simulations, 1, Article ID: 1800018. https://doi.org/10.1002/adts.201800018
|
[106]
|
Kugler, K., Luhn, M., Schramm, J.A., Rahimi, K. and Wessling, M. (2015) Galvanic Deposition of Rh and Ru on Randomly Structured Ti Felts for the Electrochemical Nh3synthesis. Physical Chemistry Chemical Physics, 17, 3768-3782. https://doi.org/10.1039/c4cp05501b
|
[107]
|
Yao, Y., Wang, H., Yuan, X., Li, H. and Shao, M. (2019) Electrochemical Nitrogen Reduction Reaction on Ruthenium. ACS Energy Letters, 4, 1336-1341. https://doi.org/10.1021/acsenergylett.9b00699
|
[108]
|
Skúlason, E., Bligaard, T., Gudmundsdóttir, S., Studt, F., Rossmeisl, J., Abild-Pedersen, F., et al. (2012) A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N2reduction. Physical Chemistry Chemical Physics, 14, 1235-1245. https://doi.org/10.1039/c1cp22271f
|
[109]
|
Liu, H., Han, S., Zhao, Y., Zhu, Y., Tian, X., Zeng, J., et al. (2018) Surfactant-Free Atomically Ultrathin Rhodium Nanosheet Nanoassemblies for Efficient Nitrogen Electroreduction. Journal of Materials Chemistry A, 6, 3211-3217. https://doi.org/10.1039/c7ta10866d
|
[110]
|
Zhang, L., Ji, X., Ren, X., Ma, Y., Shi, X., Tian, Z., et al. (2018) Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Advanced Materials, 30, Article ID: 1800191. https://doi.org/10.1002/adma.201800191
|
[111]
|
Liu, Q., Zhang, X., Zhang, B., Luo, Y., Cui, G., Xie, F., et al. (2018) Ambient N2 Fixation to NH3 Electrocatalyzed by a Spinel Fe3O4 Nanorod. Nanoscale, 10, 14386-14389. https://doi.org/10.1039/c8nr04524k
|
[112]
|
Zhu, X., Liu, Z., Liu, Q., Luo, Y., Shi, X., Asiri, A.M., et al. (2018) Efficient and Durable N2 Reduction Electrocatalysis under Ambient Conditions: β-FEOOH Nanorods as a Non-Noble-Metal Catalyst. Chemical Communications, 54, 11332-11335. https://doi.org/10.1039/c8cc06366d
|
[113]
|
Fang, W., Zhao, J., Wu, T., Huang, Y., Yang, L., Liu, C., et al. (2020) Hydrophilic Engineering of VOx-Based Nanosheets for Ambient Electrochemical Ammonia Synthesis at Neutral Ph. Journal of Materials Chemistry A, 8, 5913-5918. https://doi.org/10.1039/d0ta00676a
|
[114]
|
Li, X., Li, T., Ma, Y., Wei, Q., Qiu, W., Guo, H., et al. (2018) Boosted Electrocatalytic N2 Reduction to NH3 by Defect-rich Mos2 Nanoflower. Advanced Energy Materials, 8, Article ID: 1801357. https://doi.org/10.1002/aenm.201801357
|
[115]
|
Chang, B., Li, L., Shi, D., Jiang, H., Ai, Z., Wang, S., et al. (2021) Metal-Free Boron Carbonitride with Tunable Boron Lewis Acid Sites for Enhanced Nitrogen Electroreduction to Ammonia. Applied Catalysis B: Environmental, 283, Article ID: 119622. https://doi.org/10.1016/j.apcatb.2020.119622
|
[116]
|
Lv, C., Qian, Y., Yan, C., Ding, Y., Liu, Y., Chen, G., et al. (2018) Defect Engineering Metal-free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie International Edition, 57, 10246-10250. https://doi.org/10.1002/anie.201806386
|
[117]
|
Wang, M., Liu, S., Ji, H., Liu, J., Yan, C. and Qian, T. (2020) Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Advanced Functional Materials, 30, Article ID: 2001244. https://doi.org/10.1002/adfm.202001244
|
[118]
|
Waegele, M.M., Gunathunge, C.M., Li, J. and Li, X. (2019) How Cations Affect the Electric Double Layer and the Rates and Selectivity of Electrocatalytic Processes. The Journal of Chemical Physics, 151, Article ID: 160902. https://doi.org/10.1063/1.5124878
|
[119]
|
Leech, M.C. and Lam, K. (2022) A Practical Guide to Electrosynthesis. Nature Reviews Chemistry, 6, 275-286. https://doi.org/10.1038/s41570-022-00372-y
|
[120]
|
Cheng, Q., Liu, S., Wang, M., Zhang, L., He, Y., Ni, J., et al. (2023) Li+-Ion Bound Crown Ether Functionalization Enables Dual Promotion of Dynamics and Thermodynamics for Ambient Ammonia Synthesis. Journal of Energy Chemistry, 85, 191-197. https://doi.org/10.1016/j.jechem.2023.06.012
|
[121]
|
Hu, L., Xing, Z. and Feng, X. (2020) Understanding the Electrocatalytic Interface for Ambient Ammonia Synthesis. ACS Energy Letters, 5, 430-436. https://doi.org/10.1021/acsenergylett.9b02679
|
[122]
|
Shi, M., Bao, D., Wulan, B., Li, Y., Zhang, Y., Yan, J., et al. (2017) Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. Advanced Materials, 29, Article ID: 1606550. https://doi.org/10.1002/adma.201606550
|
[123]
|
Wang, J., Yu, L., Hu, L., Chen, G., Xin, H. and Feng, X. (2018) Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential. Nature Communications, 9, Article No. 1795. https://doi.org/10.1038/s41467-018-04213-9
|
[124]
|
Shen, P., Li, X., Luo, Y., Guo, Y., Zhao, X. and Chu, K. (2022) High-Efficiency N2 Electroreduction Enabled by Se-Vacancy-Rich WSe2−x in Water-in-Salt Electrolytes. ACS Nano, 16, 7915-7925. https://doi.org/10.1021/acsnano.2c00596
|
[125]
|
Liu, M., Zhang, S., Chen, M. and Wu, L. (2022) Boosting Electrochemical Nitrogen Reduction Performance through Water-in-Salt Electrolyte. Applied Catalysis B: Environmental, 319, Article ID: 121925. https://doi.org/10.1016/j.apcatb.2022.121925
|
[126]
|
Ren, Y., Yu, C., Han, X., Tan, X., Wei, Q., Li, W., et al. (2021) Methanol-Mediated Electrosynthesis of Ammonia. ACS Energy Letters, 6, 3844-3850. https://doi.org/10.1021/acsenergylett.1c01893
|
[127]
|
Plechkova, N.V. and Seddon, K.R. (2008) Applications of Ionic Liquids in the Chemical Industry. Chemical Society Reviews, 37, 123-150. https://doi.org/10.1039/b006677j
|
[128]
|
MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., et al. (2014) Energy Applications of Ionic Liquids. Energy Environ. Sci., 7, 232-250. https://doi.org/10.1039/c3ee42099j
|
[129]
|
Kang, C.S.M., Zhang, X. and MacFarlane, D.R. (2018) Synthesis and Physicochemical Properties of Fluorinated Ionic Liquids with High Nitrogen Gas Solubility. The Journal of Physical Chemistry C, 122, 24550-24558. https://doi.org/10.1021/acs.jpcc.8b07752
|
[130]
|
Zhou, F., Azofra, L.M., Ali, M., Kar, M., Simonov, A.N., McDonnell-Worth, C., et al. (2017) Electro-Synthesis of Ammonia from Nitrogen at Ambient Temperature and Pressure in Ionic Liquids. Energy & Environmental Science, 10, 2516-2520. https://doi.org/10.1039/c7ee02716h
|
[131]
|
Suryanto, B.H.R., Kang, C.S.M., Wang, D., Xiao, C., Zhou, F., Azofra, L.M., et al. (2018) Rational Electrode-Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Letters, 3, 1219-1224. https://doi.org/10.1021/acsenergylett.8b00487
|
[132]
|
Ampelli, C. (2020) Electrode Design for Ammonia Synthesis. Nature Catalysis, 3, 420-421. https://doi.org/10.1038/s41929-020-0461-x
|
[133]
|
刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022, 73(1): 32-45.
|
[134]
|
Liu, S., Qian, T., Wang, M., Ji, H., Shen, X., Wang, C., et al. (2021) Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Ambient Ammonia Synthesis. Nature Catalysis, 4, 322-331. https://doi.org/10.1038/s41929-021-00599-w
|