|
[1]
|
Gruber, N. and Galloway, J.N. (2008) An Earth-System Perspective of the Global Nitrogen Cycle. Nature, 451, 293-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wu, T., Fan, W., Zhang, Y. and Zhang, F. (2021) Electrochemical Synthesis of Ammonia: Progress and Challenges. Materials Today Physics, 16, Article ID: 100310. [Google Scholar] [CrossRef]
|
|
[3]
|
Chu, S. and Majumdar, A. (2012) Opportunities and Challenges for a Sustainable Energy Future. Nature, 488, 294-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Martín, A.J. and Pérez-Ramírez, J. (2019) Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers. Joule, 3, 2602-2621. [Google Scholar] [CrossRef]
|
|
[5]
|
Brewis, I., Shahzad, R., Field, R.W., Jedidi, A. and Rasul, S. (2022) Combining Experimental and Theoretical Insights for Reduction of CO2 to Multi-Carbon Compounds. Discover Chemical Engineering, 2, Article No. 2. [Google Scholar] [CrossRef]
|
|
[6]
|
Raciti, D. and Wang, C. (2018) Recent Advances in Co2 Reduction Electrocatalysis on Copper. ACS Energy Letters, 3, 1545-1556. [Google Scholar] [CrossRef]
|
|
[7]
|
Lee, H.K., Koh, C.S.L., Lee, Y.H., Liu, C., Phang, I.Y., Han, X., et al. (2018) Favoring the Unfavored: Selective Electrochemical Nitrogen Fixation Using a Reticular Chemistry Approach. Science Advances, 4, eaar3208. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Stamenkovic, V.R., Strmcnik, D., Lopes, P.P. and Markovic, N.M. (2016) Energy and Fuels from Electrochemical Interfaces. Nature Materials, 16, 57-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chu, S., Cui, Y. and Liu, N. (2016) The Path towards Sustainable Energy. Nature Materials, 16, 16-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, S., Wang, M., Cheng, Q., He, Y., Ni, J., Liu, J., et al. (2022) Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 16, 17911-17930. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Aneja, V.P., Blunden, J., James, K., Schlesinger, W.H., Knighton, R., Gilliam, W., et al. (2008) Ammonia Assessment from Agriculture: U.S. Status and Needs. Journal of Environmental Quality, 37, 515-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cui, X., Tang, C. and Zhang, Q. (2018) A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advanced Energy Materials, 8, Article ID: 1800369. [Google Scholar] [CrossRef]
|
|
[13]
|
Jiao, F. and Xu, B. (2018) Electrochemical Ammonia Synthesis and Ammonia Fuel Cells. Advanced Materials, 31, Article ID: 1805173. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H.R., Hodgetts, R.Y., Bakker, J.M., et al. (2020) A Roadmap to the Ammonia Economy. Joule, 4, 1186-1205. [Google Scholar] [CrossRef]
|
|
[15]
|
Smith, C., Hill, A.K. and Torrente-Murciano, L. (2020) Current and Future Role of Haber-Bosch Ammonia in a Carbon-Free Energy Landscape. Energy & Environmental Science, 13, 331-344. [Google Scholar] [CrossRef]
|
|
[16]
|
Vojvodic, A., Medford, A.J., Studt, F., Abild-Pedersen, F., Khan, T.S., Bligaard, T., et al. (2014) Exploring the Limits: A Low-Pressure, Low-Temperature Haber-Bosch Process. Chemical Physics Letters, 598, 108-112. [Google Scholar] [CrossRef]
|
|
[17]
|
Kandemir, T., Schuster, M.E., Senyshyn, A., Behrens, M. and Schlögl, R. (2013) The Haber-Bosch Process Revisited: On the Real Structure and Stability of “Ammonia Iron” under Working Conditions. Angewandte Chemie International Edition, 52, 12723-12726. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shipman, M.A. and Symes, M.D. (2017) Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources. Catalysis Today, 286, 57-68. [Google Scholar] [CrossRef]
|
|
[19]
|
Sun, J., Alam, D., Daiyan, R., Masood, H., Zhang, T., Zhou, R., et al. (2021) A Hybrid Plasma Electrocatalytic Process for Sustainable Ammonia Production. Energy & Environmental Science, 14, 865-872. [Google Scholar] [CrossRef]
|
|
[20]
|
Hawtof, R., Ghosh, S., Guarr, E., Xu, C., Mohan Sankaran, R. and Renner, J.N. (2019) Catalyst-Free, Highly Selective Synthesis of Ammonia from Nitrogen and Water by a Plasma Electrolytic System. Science Advances, 5, eaat5778. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Darensbourg, M.Y., et al. (2018) Beyond Fossil Fuel-Driven Nitrogen Transformations. Science, 360, eaar6611. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Soloveichik, G. (2019) Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber-Bosch Process. Nature Catalysis, 2, 377-380. [Google Scholar] [CrossRef]
|
|
[23]
|
Cheng, H., Ding, L., Chen, G., Zhang, L., Xue, J. and Wang, H. (2018) Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Advanced Materials, 30, Article ID: 1803694. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, S., Wang, M., Ji, H., Shen, X., Yan, C. and Qian, T. (2020) Altering the Rate-Determining Step over Cobalt Single Clusters Leading to Highly Efficient Ammonia Synthesis. National Science Review, 8, nwaa136. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, M., Liu, S., Qian, T., Liu, J., Zhou, J., Ji, H., et al. (2019) Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nature Communications, 10, Article No. 341. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Deng, J., Iñiguez, J.A. and Liu, C. (2018) Electrocatalytic Nitrogen Reduction at Low Temperature. Joule, 2, 846-856. [Google Scholar] [CrossRef]
|
|
[28]
|
Qiu, W., Xie, X., Qiu, J., Fang, W., Liang, R., Ren, X., et al. (2018) High-Performance Artificial Nitrogen Fixation at Ambient Conditions Using a Metal-Free Electrocatalyst. Nature Communications, 9, Article No. 3485. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Tang, C. and Qiao, S. (2019) How to Explore Ambient Electrocatalytic Nitrogen Reduction Reliably and Insightfully. Chemical Society Reviews, 48, 3166-3180. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suryanto, B.H.R., Du, H., Wang, D., Chen, J., Simonov, A.N. and MacFarlane, D.R. (2019) Challenges and Prospects in the Catalysis of Electroreduction of Nitrogen to Ammonia. Nature Catalysis, 2, 290-296. [Google Scholar] [CrossRef]
|
|
[31]
|
Foster, S.L., Bakovic, S.I.P., Duda, R.D., Maheshwari, S., Milton, R.D., Minteer, S.D., et al. (2018) Catalysts for Nitrogen Reduction to Ammonia. Nature Catalysis, 1, 490-500. [Google Scholar] [CrossRef]
|
|
[32]
|
Jia, H. and Quadrelli, E.A. (2014) Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen. Chemical Society Reviews, 43, 547-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Luo, Y., Chen, G., Ding, L., Chen, X., Ding, L. and Wang, H. (2019) Efficient Electrocatalytic N2 Fixation with Mxene under Ambient Conditions. Joule, 3, 279-289. [Google Scholar] [CrossRef]
|
|
[34]
|
Wang, L., Xia, M., Wang, H., Huang, K., Qian, C., Maravelias, C.T., et al. (2018) Greening Ammonia toward the Solar Ammonia Refinery. Joule, 2, 1055-1074. [Google Scholar] [CrossRef]
|
|
[35]
|
Gambarotta, S. and Scott, J. (2004) Multimetallic Cooperative Activation of N2. Angewandte Chemie International Edition, 43, 5298-5308. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pool, J.A., Lobkovsky, E. and Chirik, P.J. (2004) Hydrogenation and Cleavage of Dinitrogen to Ammonia with a Zirconium Complex. Nature, 427, 527-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, S., Han, M., Shi, T., Zhang, H., Lin, Y., Zheng, X., et al. (2022) Atomically Dispersed Bimetallic Fe-Co Electrocatalysts for Green Production of Ammonia. Nature Sustainability, 6, 169-179. [Google Scholar] [CrossRef]
|
|
[38]
|
Jin, H., Li, L., Liu, X., Tang, C., Xu, W., Chen, S., et al. (2019) Nitrogen Vacancies on 2D Layered W2N3: A Stable and Efficient Active Site for Nitrogen Reduction Reaction. Advanced Materials, 31, Article ID: 1902709. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lazouski, N., Chung, M., Williams, K., Gala, M.L. and Manthiram, K. (2020) Non-Aqueous Gas Diffusion Electrodes for Rapid Ammonia Synthesis from Nitrogen and Water-Splitting-Derived Hydrogen. Nature Catalysis, 3, 463-469. [Google Scholar] [CrossRef]
|
|
[40]
|
Ni, J., Cheng, Q., Liu, S., Wang, M., He, Y., Qian, T., et al. (2023) Deciphering Electrolyte Selection for Electrochemical Reduction of Carbon Dioxide and Nitrogen to High-Value-Added Chemicals. Advanced Functional Materials, 33, Article ID: 2212483. [Google Scholar] [CrossRef]
|
|
[41]
|
Garagounis, I., Vourros, A., Stoukides, D., Dasopoulos, D. and Stoukides, M. (2019) Electrochemical Synthesis of Ammonia: Recent Efforts and Future Outlook. Membranes, 9, Article No. 112. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, Y., Gordon, E. and Ren, H. (2020) Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal-electrolyte Interface via a Grain-by-Grain Approach. Analytical Chemistry, 92, 2859-2865. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wang, Y., Cui, X., Zhao, J., Jia, G., Gu, L., Zhang, Q., et al. (2018) Rational Design of Fe-N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 9, 336-344. [Google Scholar] [CrossRef]
|
|
[44]
|
Chittibabu, D.K.D., Sathishkumar, N., Wu, S. and Chen, H. (2023) Single-Atom Metal Anchored Penta-Graphene for Highly Efficient and Selective Electroreduction of Nitrogen into Ammonia. ACS Applied Energy Materials, 6, 6636-6645. [Google Scholar] [CrossRef]
|
|
[45]
|
Kim, J.H., Ju, H., An, B., An, Y., Cho, K., Kim, S.H., et al. (2021) Comparison between Fe2O3/C and Fe3C/Fe2O3/Fe/C Electrocatalysts for N2 Reduction in an Alkaline Electrolyte. ACS Applied Materials & Interfaces, 13, 61316-61323. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xia, L., Wang, Z. and Zhao, Y. (2022) Novel Two-Dimensional Metal-Based Π-D Conjugated Nanosheets as Photocatalyst for Nitrogen Reduction Reaction: The First-Principle Investigation. ACS Applied Materials & Interfaces, 14, 5384-5394. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, L., Tang, C., Jin, H., Davey, K. and Qiao, S. (2021) Main-Group Elements Boost Electrochemical Nitrogen Fixation. Chem, 7, 3232-3255. [Google Scholar] [CrossRef]
|
|
[48]
|
Guo, C., Ran, J., Vasileff, A. and Qiao, S. (2018) Rational Design of Electrocatalysts and Photo(electro)catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions. Energy & Environmental Science, 11, 45-56. [Google Scholar] [CrossRef]
|
|
[49]
|
Yao, D., Tang, C., Wang, P., Cheng, H., Jin, H., Ding, L., et al. (2022) Electrocatalytic Green Ammonia Production Beyond Ambient Aqueous Nitrogen Reduction. Chemical Engineering Science, 257, Article ID: 117735. [Google Scholar] [CrossRef]
|
|
[50]
|
Tao, H., Lian, C., Jiang, H., Li, C., Liu, H. and van Roij, R. (2021) Enhancing Electrocatalytic N2 Reduction via Tailoring the Electric Double Layers. AIChE Journal, 68, e17549. [Google Scholar] [CrossRef]
|
|
[51]
|
Mahmood, N., Yao, Y., Zhang, J., Pan, L., Zhang, X. and Zou, J. (2017) Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Advanced Science, 5, Article ID: 1700464. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhang, Q., Liu, B., Yu, L., Bei, Y. and Tang, B. (2019) Synergistic Promotion of the Electrochemical Reduction of Nitrogen to Ammonia by Phosphorus and Potassium. ChemCatChem, 12, 334-341. [Google Scholar] [CrossRef]
|
|
[53]
|
Wang, X., Peng, X., Chen, W., Liu, G., Zheng, A., Zheng, L., et al. (2020) Insight into Dynamic and Steady-State Active Sites for Nitrogen Activation to Ammonia by Cobalt-Based Catalyst. Nature Communications, 11, Article No. 653. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Liu, J., Ma, X., Li, Y., Wang, Y., Xiao, H. and Li, J. (2018) Heterogeneous Fe3 Single-Cluster Catalyst for Ammonia Synthesis via an Associative Mechanism. Nature Communications, 9, Article No. 1610. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liu, D., Chen, M., Du, X., Ai, H., Lo, K.H., Wang, S., et al. (2020) Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Advanced Functional Materials, 31, Article ID: 2008983. [Google Scholar] [CrossRef]
|
|
[56]
|
Zeinalipour-Yazdi, C.D., Hargreaves, J.S.J., Laassiri, S. and Catlow, C.R.A. (2018) The Integration of Experiment and Computational Modelling in Heterogeneously Catalysed Ammonia Synthesis over Metal Nitrides. Physical Chemistry Chemical Physics, 20, 21803-21808. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wang, D., Azofra, L.M., Harb, M., Cavallo, L., Zhang, X., Suryanto, B.H.R., et al. (2018) Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem, 11, 3416-3422. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
van der Ham, C.J.M., Koper, M.T.M. and Hetterscheid, D.G.H. (2014) Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chemical Society Reviews, 43, 5183-5191. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wan, Y., Xu, J. and Lv, R. (2019) Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions. Materials Today, 27, 69-90. [Google Scholar] [CrossRef]
|
|
[60]
|
Wang, Z., Hu, X., Liu, Z., Zou, G., Wang, G. and Zhang, K. (2019) Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. ACS Catalysis, 9, 10260-10278. [Google Scholar] [CrossRef]
|
|
[61]
|
Li, M., Huang, H., Low, J., Gao, C., Long, R. and Xiong, Y. (2018) Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction. Small Methods, 3, Article ID: 1800388. [Google Scholar] [CrossRef]
|
|
[62]
|
Zhou, J. and Zhang, Y. (2018) Metal-based Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide and Nitrogen: Mechanisms, Recent Advances and Perspective. Reaction Chemistry & Engineering, 3, 591-625. [Google Scholar] [CrossRef]
|
|
[63]
|
Li, X., Li, Q., Cheng, J., Liu, L., Yan, Q., Wu, Y., et al. (2016) Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. Journal of the American Chemical Society, 138, 8706-8709. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Guo, D., Wang, S., Xu, J., Zheng, W. and Wang, D. (2022) Defect and Interface Engineering for Electrochemical Nitrogen Reduction Reaction under Ambient Conditions. Journal of Energy Chemistry, 65, 448-468. [Google Scholar] [CrossRef]
|
|
[65]
|
Patil, S.B. and Wang, D. (2020) Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction. Small, 16, Article ID: 2002885. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zeinalipour-Yazdi, C.D. (2019) Mechanisms of Ammonia and Hydrazine Synthesis on Η-Mn3N2-(100) Surfaces. Physical Chemistry Chemical Physics, 21, 19365-19377. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Abghoui, Y. and Skúlason, E. (2017) Onset Potentials for Different Reaction Mechanisms of Nitrogen Activation to Ammonia on Transition Metal Nitride Electro-Catalysts. Catalysis Today, 286, 69-77. [Google Scholar] [CrossRef]
|
|
[68]
|
Mars, P. and van Krevelen, D.W. (1954) Oxidations Carried out by Means of Vanadium Oxide Catalysts. Chemical Engineering Science, 3, 41-59. [Google Scholar] [CrossRef]
|
|
[69]
|
Abghoui, Y., Garden, A.L., Hlynsson, V.F., Björgvinsdóttir, S., Ólafsdóttir, H. and Skúlason, E. (2015) Enabling Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions through Rational Catalyst Design. Physical Chemistry Chemical Physics, 17, 4909-4918. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zhao, X., Hu, G., Chen, G., Zhang, H., Zhang, S. and Wang, H. (2021) Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 33, Article ID: 2007650. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Vasileiou, E., Kyriakou, V., Garagounis, I., Vourros, A., Manerbino, A., Coors, W.G., et al. (2016) Electrochemical Enhancement of Ammonia Synthesis in a BaZr0.7Ce0.2Y0.1O2.9 Solid Electrolyte Cell. Solid State Ionics, 288, 357-362. [Google Scholar] [CrossRef]
|
|
[72]
|
Cheng, Q., Wang, M., Ni, J., Zhang, L., Cheng, Y., Zhou, X., et al. (2023) Comprehensive Understanding and Rational Regulation of Microenvironment for Gas-Involving Electrochemical Reactions. Carbon Energy, 5, Article No. 7. [Google Scholar] [CrossRef]
|
|
[73]
|
Choi, C., Back, S., Kim, N., Lim, J., Kim, Y. and Jung, Y. (2018) Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline. ACS Catalysis, 8, 7517-7525. [Google Scholar] [CrossRef]
|
|
[74]
|
Qian, S., Cao, H., Chen, J., Chen, J., Wang, Y. and Li, J. (2022) Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction. ACS Catalysis, 12, 11530-11540. [Google Scholar] [CrossRef]
|
|
[75]
|
Ghoshal, S., Ghosh, A., Roy, P., Ball, B., Pramanik, A. and Sarkar, P. (2022) Recent Progress in Computational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N2 Fixation. ACS Catalysis, 12, 15541-15575. [Google Scholar] [CrossRef]
|
|
[76]
|
Kani, N.C., Prajapati, A., Collins, B.A., Goodpaster, J.D. and Singh, M.R. (2020) Competing Effects of Ph, Cation Identity, H2O Saturation, and N2 Concentration on the Activity and Selectivity of Electrochemical Reduction of N2 to Nh3 on Electrodeposited Cu at Ambient Conditions. ACS Catalysis, 10, 14592-14603. [Google Scholar] [CrossRef]
|
|
[77]
|
Amar, I.A., Lan, R., Petit, C.T.G. and Tao, S. (2011) Solid-State Electrochemical Synthesis of Ammonia: A Review. Journal of Solid State Electrochemistry, 15, 1845-1860. [Google Scholar] [CrossRef]
|
|
[78]
|
Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A. and Stoukides, M. (2017) Progress in the Electrochemical Synthesis of Ammonia. Catalysis Today, 286, 2-13. [Google Scholar] [CrossRef]
|
|
[79]
|
Moon, Y.H., Kim, N.Y., Kim, S.M. and Jang, Y.J. (2022) Recent Advances in Electrochemical Nitrogen Reduction Reaction to Ammonia from the Catalyst to the System. Catalysts, 12, Article No. 1015. [Google Scholar] [CrossRef]
|
|
[80]
|
Huang, Z., Rafiq, M., Woldu, A.R., Tong, Q., Astruc, D. and Hu, L. (2023) Recent Progress in Electrocatalytic Nitrogen Reduction to Ammonia (NRR). Coordination Chemistry Reviews, 478, Article ID: 214981. [Google Scholar] [CrossRef]
|
|
[81]
|
Yao, Y., Wang, J., Shahid, U.B., Gu, M., Wang, H., Li, H., et al. (2020) Electrochemical Synthesis of Ammonia from Nitrogen under Mild Conditions: Current Status and Challenges. Electrochemical Energy Reviews, 3, 239-270. [Google Scholar] [CrossRef]
|
|
[82]
|
Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D. and Centi, G. (2017) Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in a Gas-Liquid-Solid Three-Phase Reactor. ACS Sustainable Chemistry & Engineering, 5, 7393-7400. [Google Scholar] [CrossRef]
|
|
[83]
|
Zhang, R., Ren, X., Shi, X., Xie, F., Zheng, B., Guo, X., et al. (2018) Enabling Effective Electrocatalytic N2 Conversion to Nh3 by the TiO2 Nanosheets Array under Ambient Conditions. ACS Applied Materials & Interfaces, 10, 28251-28255. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Song, Y., Johnson, D., Peng, R., Hensley, D.K., Bonnesen, P.V., Liang, L., et al. (2018) A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia. Science Advances, 4, e1700336. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Verdouw, H., Van Echteld, C.J.A. and Dekkers, E.M.J. (1978) Ammonia Determination Based on Indophenol Formation with Sodium Salicylate. Water Research, 12, 399-402. [Google Scholar] [CrossRef]
|
|
[86]
|
Zhou, L. and Boyd, C.E. (2016) Comparison of Nessler, Phenate, Salicylate and Ion Selective Electrode Procedures for Determination of Total Ammonia Nitrogen in Aquaculture. Aquaculture, 450, 187-193. [Google Scholar] [CrossRef]
|
|
[87]
|
Watt, G.W. and Chrisp, J.D. (1952) Spectrophotometric Method for Determination of Hydrazine. Analytical Chemistry, 24, 2006-2008. [Google Scholar] [CrossRef]
|
|
[88]
|
Liu, J., Kelley, M.S., Wu, W., Banerjee, A., Douvalis, A.P., Wu, J., et al. (2016) Nitrogenase-Mimic Iron-Containing Chalcogels for Photochemical Reduction of Dinitrogen to Ammonia. Proceedings of the National Academy of Sciences, 113, 5530-5535. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Zhang, S., Li, M., Li, J., Song, Q. and Liu, X. (2022) High-Ammonia Selective Metal-Organic Framework-Derived Co-Doped Fe/Fe2O3 Catalysts for Electrochemical Nitrate Reduction. Proceedings of the National Academy of Sciences, 119, e2115504119. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Andersen, S.Z., Čolić, V., Yang, S., Schwalbe, J.A., Nielander, A.C., McEnaney, J.M., et al. (2019) A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature, 570, 504-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Ye, L., Nayak-Luke, R., Bañares-Alcántara, R. and Tsang, E. (2017) Reaction: “Green” Ammonia Production. Chem, 3, 712-714. [Google Scholar] [CrossRef]
|
|
[92]
|
Cao, N. and Zheng, G. (2018) Aqueous Electrocatalytic N2 Reduction under Ambient Conditions. Nano Research, 11, 2992-3008. [Google Scholar] [CrossRef]
|
|
[93]
|
Arif, M., Yasin, G., Luo, L., Ye, W., Mushtaq, M.A., Fang, X., et al. (2020) Hierarchical Hollow Nanotubes of NiFeV-Layered Double Hydroxides@CoVP Heterostructures Towards Efficient, pH-Universal Electrocatalytical Nitrogen Reduction Reaction to Ammonia. Applied Catalysis B: Environmental, 265, Article ID: 118559. [Google Scholar] [CrossRef]
|
|
[94]
|
Xie, J., Dong, H., Cao, X. and Li, Y. (2020) Computational Insights into Nitrogen Reduction Reaction Catalyzed by Transition Metal Doped Graphene: Comparative Investigations. Materials Chemistry and Physics, 243, Article ID: 122622. [Google Scholar] [CrossRef]
|
|
[95]
|
Wang, M., Liu, S., Ji, H., Yang, T., Qian, T. and Yan, C. (2021) Salting-out Effect Promoting Highly Efficient Ambient Ammonia Synthesis. Nature Communications, 12, Article No. 3198. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Zang, W., Yang, T., Zou, H., Xi, S., Zhang, H., Liu, X., et al. (2019) Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 9, 10166-10173. [Google Scholar] [CrossRef]
|
|
[97]
|
Montoya, J.H., Tsai, C., Vojvodic, A. and Nørskov, J.K. (2015) The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem, 8, 2180-2186. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Zhang, L., Ding, L., Chen, G., Yang, X. and Wang, H. (2019) Ammonia Synthesis under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Angewandte Chemie International Edition, 58, 2612-2616. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Gu, J., Zhang, Y. and Tao, F. (2012) Shape Control of Bimetallic Nanocatalysts through Well-Designed Colloidal Chemistry Approaches. Chemical Society Reviews, 41, Article No. 8050. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Liu, H., Nosheen, F. and Wang, X. (2015) Noble Metal Alloy Complex Nanostructures: Controllable Synthesis and Their Electrochemical Property. Chemical Society Reviews, 44, 3056-3078. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Yao, Y., Zhu, S., Wang, H., Li, H. and Shao, M. (2018) A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces. Journal of the American Chemical Society, 140, 1496-1501. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Wang, X., Wang, W., Qiao. M., Wu, G., Chen, W., Yuan, T., et al. (2018) Atomically Dispersed Au1 Catalyst towards Efficient Electrochemical Synthesis of Ammonia. Science Bulletin, 63, 1246-1253. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Bao, D., Zhang, Q., Meng, F., Zhong, H., Shi, M., Zhang, Y., et al. (2016) Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. Advanced Materials, 29, Article ID: 1604799. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Nazemi, M., Panikkanvalappil, S.R. and El-Sayed, M.A. (2018) Enhancing the Rate of Electrochemical Nitrogen Reduction Reaction for Ammonia Synthesis under Ambient Conditions Using Hollow Gold Nanocages. Nano Energy, 49, 316-323. [Google Scholar] [CrossRef]
|
|
[105]
|
Cao, Y., Gao, Y., Zhou, H., Chen, X., Hu, H., Deng, S., et al. (2018) Highly Efficient Ammonia Synthesis Electrocatalyst: Single Ru Atom on Naturally Nanoporous Carbon Materials. Advanced Theory and Simulations, 1, Article ID: 1800018. [Google Scholar] [CrossRef]
|
|
[106]
|
Kugler, K., Luhn, M., Schramm, J.A., Rahimi, K. and Wessling, M. (2015) Galvanic Deposition of Rh and Ru on Randomly Structured Ti Felts for the Electrochemical Nh3synthesis. Physical Chemistry Chemical Physics, 17, 3768-3782. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Yao, Y., Wang, H., Yuan, X., Li, H. and Shao, M. (2019) Electrochemical Nitrogen Reduction Reaction on Ruthenium. ACS Energy Letters, 4, 1336-1341. [Google Scholar] [CrossRef]
|
|
[108]
|
Skúlason, E., Bligaard, T., Gudmundsdóttir, S., Studt, F., Rossmeisl, J., Abild-Pedersen, F., et al. (2012) A Theoretical Evaluation of Possible Transition Metal Electro-Catalysts for N2reduction. Physical Chemistry Chemical Physics, 14, 1235-1245. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Liu, H., Han, S., Zhao, Y., Zhu, Y., Tian, X., Zeng, J., et al. (2018) Surfactant-Free Atomically Ultrathin Rhodium Nanosheet Nanoassemblies for Efficient Nitrogen Electroreduction. Journal of Materials Chemistry A, 6, 3211-3217. [Google Scholar] [CrossRef]
|
|
[110]
|
Zhang, L., Ji, X., Ren, X., Ma, Y., Shi, X., Tian, Z., et al. (2018) Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Advanced Materials, 30, Article ID: 1800191. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Liu, Q., Zhang, X., Zhang, B., Luo, Y., Cui, G., Xie, F., et al. (2018) Ambient N2 Fixation to NH3 Electrocatalyzed by a Spinel Fe3O4 Nanorod. Nanoscale, 10, 14386-14389. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Zhu, X., Liu, Z., Liu, Q., Luo, Y., Shi, X., Asiri, A.M., et al. (2018) Efficient and Durable N2 Reduction Electrocatalysis under Ambient Conditions: β-FEOOH Nanorods as a Non-Noble-Metal Catalyst. Chemical Communications, 54, 11332-11335. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Fang, W., Zhao, J., Wu, T., Huang, Y., Yang, L., Liu, C., et al. (2020) Hydrophilic Engineering of VOx-Based Nanosheets for Ambient Electrochemical Ammonia Synthesis at Neutral Ph. Journal of Materials Chemistry A, 8, 5913-5918. [Google Scholar] [CrossRef]
|
|
[114]
|
Li, X., Li, T., Ma, Y., Wei, Q., Qiu, W., Guo, H., et al. (2018) Boosted Electrocatalytic N2 Reduction to NH3 by Defect-rich Mos2 Nanoflower. Advanced Energy Materials, 8, Article ID: 1801357. [Google Scholar] [CrossRef]
|
|
[115]
|
Chang, B., Li, L., Shi, D., Jiang, H., Ai, Z., Wang, S., et al. (2021) Metal-Free Boron Carbonitride with Tunable Boron Lewis Acid Sites for Enhanced Nitrogen Electroreduction to Ammonia. Applied Catalysis B: Environmental, 283, Article ID: 119622. [Google Scholar] [CrossRef]
|
|
[116]
|
Lv, C., Qian, Y., Yan, C., Ding, Y., Liu, Y., Chen, G., et al. (2018) Defect Engineering Metal-free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie International Edition, 57, 10246-10250. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Wang, M., Liu, S., Ji, H., Liu, J., Yan, C. and Qian, T. (2020) Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Advanced Functional Materials, 30, Article ID: 2001244. [Google Scholar] [CrossRef]
|
|
[118]
|
Waegele, M.M., Gunathunge, C.M., Li, J. and Li, X. (2019) How Cations Affect the Electric Double Layer and the Rates and Selectivity of Electrocatalytic Processes. The Journal of Chemical Physics, 151, Article ID: 160902. [Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
Leech, M.C. and Lam, K. (2022) A Practical Guide to Electrosynthesis. Nature Reviews Chemistry, 6, 275-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Cheng, Q., Liu, S., Wang, M., Zhang, L., He, Y., Ni, J., et al. (2023) Li+-Ion Bound Crown Ether Functionalization Enables Dual Promotion of Dynamics and Thermodynamics for Ambient Ammonia Synthesis. Journal of Energy Chemistry, 85, 191-197. [Google Scholar] [CrossRef]
|
|
[121]
|
Hu, L., Xing, Z. and Feng, X. (2020) Understanding the Electrocatalytic Interface for Ambient Ammonia Synthesis. ACS Energy Letters, 5, 430-436. [Google Scholar] [CrossRef]
|
|
[122]
|
Shi, M., Bao, D., Wulan, B., Li, Y., Zhang, Y., Yan, J., et al. (2017) Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. Advanced Materials, 29, Article ID: 1606550. [Google Scholar] [CrossRef] [PubMed]
|
|
[123]
|
Wang, J., Yu, L., Hu, L., Chen, G., Xin, H. and Feng, X. (2018) Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential. Nature Communications, 9, Article No. 1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Shen, P., Li, X., Luo, Y., Guo, Y., Zhao, X. and Chu, K. (2022) High-Efficiency N2 Electroreduction Enabled by Se-Vacancy-Rich WSe2−x in Water-in-Salt Electrolytes. ACS Nano, 16, 7915-7925. [Google Scholar] [CrossRef] [PubMed]
|
|
[125]
|
Liu, M., Zhang, S., Chen, M. and Wu, L. (2022) Boosting Electrochemical Nitrogen Reduction Performance through Water-in-Salt Electrolyte. Applied Catalysis B: Environmental, 319, Article ID: 121925. [Google Scholar] [CrossRef]
|
|
[126]
|
Ren, Y., Yu, C., Han, X., Tan, X., Wei, Q., Li, W., et al. (2021) Methanol-Mediated Electrosynthesis of Ammonia. ACS Energy Letters, 6, 3844-3850. [Google Scholar] [CrossRef]
|
|
[127]
|
Plechkova, N.V. and Seddon, K.R. (2008) Applications of Ionic Liquids in the Chemical Industry. Chemical Society Reviews, 37, 123-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., et al. (2014) Energy Applications of Ionic Liquids. Energy Environ. Sci., 7, 232-250. [Google Scholar] [CrossRef]
|
|
[129]
|
Kang, C.S.M., Zhang, X. and MacFarlane, D.R. (2018) Synthesis and Physicochemical Properties of Fluorinated Ionic Liquids with High Nitrogen Gas Solubility. The Journal of Physical Chemistry C, 122, 24550-24558. [Google Scholar] [CrossRef]
|
|
[130]
|
Zhou, F., Azofra, L.M., Ali, M., Kar, M., Simonov, A.N., McDonnell-Worth, C., et al. (2017) Electro-Synthesis of Ammonia from Nitrogen at Ambient Temperature and Pressure in Ionic Liquids. Energy & Environmental Science, 10, 2516-2520. [Google Scholar] [CrossRef]
|
|
[131]
|
Suryanto, B.H.R., Kang, C.S.M., Wang, D., Xiao, C., Zhou, F., Azofra, L.M., et al. (2018) Rational Electrode-Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Letters, 3, 1219-1224. [Google Scholar] [CrossRef]
|
|
[132]
|
Ampelli, C. (2020) Electrode Design for Ammonia Synthesis. Nature Catalysis, 3, 420-421. [Google Scholar] [CrossRef]
|
|
[133]
|
刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022, 73(1): 32-45.
|
|
[134]
|
Liu, S., Qian, T., Wang, M., Ji, H., Shen, X., Wang, C., et al. (2021) Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Ambient Ammonia Synthesis. Nature Catalysis, 4, 322-331. [Google Scholar] [CrossRef]
|