[1]
|
Tanaka, M., Takashima, R., Mori, S. and Oyama, T. (2017) Special Issue on Developing Sustainable Energy and Environmental Systems in Japan: Energy Crisis and Challenges. Journal of Energy Engineering, 143, 1-2. https://doi.org/10.1061/(asce)ey.1943-7897.0000457
|
[2]
|
Maeda, K. and Domen, K. (2010) Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 1, 2655-2661. https://doi.org/10.1021/jz1007966
|
[3]
|
Du, P. and Eisenberg, R. (2012) Catalysts Made of Earth-Abundant Elements (Co, Ni, Fe) for Water Splitting: Recent Progress and Future Challenges. Energy & Environmental Science, 5, 6012-6021. https://doi.org/10.1039/c2ee03250c
|
[4]
|
Gong, A. and Verstraete, D. (2017) Fuel Cell Propulsion in Small Fixed-Wing Unmanned Aerial Vehicles: Current Status and Research Needs. International Journal of Hydrogen Energy, 42, 21311-21333. https://doi.org/10.1016/j.ijhydene.2017.06.148
|
[5]
|
Razi, F. and Dincer, I. (2022) Renewable Energy Development and Hydrogen Economy in MENA Region: A Review. Renewable and Sustainable Energy Reviews, 168, 112763. https://doi.org/10.1016/j.rser.2022.112763
|
[6]
|
Midilli, A., Ay, M., Dincer, I. and Rosen, M.A. (2005) On Hydrogen and Hydrogen Energy Strategies. Renewable and Sustainable Energy Reviews, 9, 255-271. https://doi.org/10.1016/j.rser.2004.05.003
|
[7]
|
Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., et al. (2015) Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Pathway. Science, 347, 970-974. https://doi.org/10.1126/science.aaa3145
|
[8]
|
Lu, X., Du, B., Zhou, S., Zhu, W., Li, Y., Yang, Y., et al. (2023) Optimization of Power Allocation for Wind-Hydrogen System Multi-Stack PEM Water Electrolyzer Considering Degradation Conditions. International Journal of Hydrogen Energy, 48, 5850-5872. https://doi.org/10.1016/j.ijhydene.2022.11.092
|
[9]
|
Winter, C. (2005) Into the Hydrogen Energy Economy? Milestones. International Journal of Hydrogen Energy, 30, 681-685. https://doi.org/10.1016/j.ijhydene.2004.12.011
|
[10]
|
Abbasi, R., Setzler, B.P., Wang, J., Zhao, Y., Wang, T., Gottesfeld, S., et al. (2020) Low-Temperature Direct Ammonia Fuel Cells: Recent Developments and Remaining Challenges. Current Opinion in Electrochemistry, 21, 335-344. https://doi.org/10.1016/j.coelec.2020.03.021
|
[11]
|
Ntais, S., Serov, A., Andersen, N.I., Roy, A.J., Cossar, E., Allagui, A., et al. (2016) Promotion of Ammonia Electrooxidation on Pt Nanoparticles by Nickel Oxide Support. Electrochimica Acta, 222, 1455-1463. https://doi.org/10.1016/j.electacta.2016.11.124
|
[12]
|
Kang, Y., Wang, W., Li, J., Hua, C., Xue, S. and Lei, Z. (2017) High Performance Ptxeu Alloys as Effective Electrocatalysts for Ammonia Electro-Oxidation. International Journal of Hydrogen Energy, 42, 18959-18967. https://doi.org/10.1016/j.ijhydene.2017.05.216
|
[13]
|
Schrock, R.R. (2006) Reduction of Dinitrogen. Proceedings of the National Academy of Sciences, 103, Article 17087. https://doi.org/10.1073/pnas.0603633103
|
[14]
|
de Levie, R. (1999) The Electrolysis of Water. Journal of Electroanalytical Chemistry, 476, 92-93. https://doi.org/10.1016/s0022-0728(99)00365-4
|
[15]
|
Okanishi, T., Okura, K., Srifa, A., Muroyama, H., Matsui, T., Kishimoto, M., et al. (2017) Comparative Study of Ammonia-Fueled Solid Oxide Fuel Cell Systems. Fuel Cells, 17, 383-390. https://doi.org/10.1002/fuce.201600165
|
[16]
|
Schüth, F., Palkovits, R., Schlögl, R. and Su, D.S. (2012) Ammonia as a Possible Element in an Energy Infrastructure: Catalysts for Ammonia Decomposition. Energy & Environmental Science, 5, 6278-6289. https://doi.org/10.1039/c2ee02865d
|
[17]
|
Cinti, G., Liso, V., Sahlin, S.L. and Araya, S.S. (2020) System Design and Modeling of a High Temperature PEM Fuel Cell Operated with Ammonia as a Fuel. Energies, 13, Article 4689. https://doi.org/10.3390/en13184689
|
[18]
|
Sigal, C.T. and Vayenas, C.G. (1981) Ammonia Oxidation to Nitric Oxide in a Solid Electrolyte Fuel Cell. Solid State Ionics, 5, 567-570. https://doi.org/10.1016/0167-2738(81)90318-0
|
[19]
|
Sun, H., Chen, L., Lian, Y., Yang, W., Lin, L., Chen, Y., et al. (2020) Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Under-Coordinated Metal Centers for Accelerated Water Dissociation. Advanced Materials, 32, Article 2006784. https://doi.org/10.1002/adma.202006784
|
[20]
|
Liu, X., Liu, F., Yu, J., Xiong, G., Zhao, L., Sang, Y., et al. (2020) Charge Redistribution Caused by S, P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S-Doped Rup Embedded in N, P, S-Doped Carbon. Advanced Science, 7, Article 2001526. https://doi.org/10.1002/advs.202001526
|
[21]
|
Zhu, Y., Chen, H., Hsu, C., Lin, T., Chang, C., Chang, S., et al. (2019) Operando Unraveling of the Structural and Chemical Stability of P-Substituted Cose2 Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Letters, 4, 987-994. https://doi.org/10.1021/acsenergylett.9b00382
|
[22]
|
Liu, H., Guan, J., Yang, S., Yu, Y., Shao, R., Zhang, Z., et al. (2020) Metal-Organic-Framework-Derived Co2P Nanoparticle/Multi-Doped Porous Carbon as a Trifunctional Electrocatalyst. Advanced Materials, 32, Article 2003649. https://doi.org/10.1002/adma.202003649
|
[23]
|
Shan, J., Ling, T., Davey, K., Zheng, Y. and Qiao, S. (2019) Transition-Metal-Doped Ruir Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 31, Article 1900510. https://doi.org/10.1002/adma.201900510
|
[24]
|
Yang, W., Zhang, S., Chen, Q., Zhang, C., Wei, Y., Jiang, H., et al. (2020) Conversion of Intercalated MoO3 to Multi-Heteroatoms-Doped MoS2 with High Hydrogen Evolution Activity. Advanced Materials, 32, Article 2001167. https://doi.org/10.1002/adma.202001167
|
[25]
|
Xiong, Q., Wang, Y., Liu, P., Zheng, L., Wang, G., Yang, H., et al. (2018) Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting. Advanced Materials, 30, Article 1801450. https://doi.org/10.1002/adma.201801450
|
[26]
|
Shi, Y., Zhou, Y., Yang, D., Xu, W., Wang, C., Wang, F., et al. (2017) Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. Journal of the American Chemical Society, 139, 15479-15485. https://doi.org/10.1021/jacs.7b08881
|
[27]
|
Deng, J., Li, H., Xiao, J., Tu, Y., Deng, D., Yang, H., et al. (2015) Triggering the Electrocatalytic Hydrogen Evolution Activity of the Inert Two-Dimensional MoS2 Surface via Single-Atom Metal Doping. Energy & Environmental Science, 8, 1594-1601. https://doi.org/10.1039/c5ee00751h
|
[28]
|
Liu, Y., Hua, X., Xiao, C., Zhou, T., Huang, P., Guo, Z., et al. (2016) Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion to Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 138, 5087-5092. https://doi.org/10.1021/jacs.6b00858
|
[29]
|
Liu, H., Li, X., Ge, L., Peng, C., Zhu, L., Zou, W., et al. (2020) Accelerating Hydrogen Evolution in Ru-Doped Fecop Nanoarrays with Lattice Distortion toward Highly Efficient Overall Water Splitting. Catalysis Science & Technology, 10, 8314-8324. https://doi.org/10.1039/d0cy01727b
|
[30]
|
Yang, S., Gong, Y., Manchanda, P., Zhang, Y., Ye, G., Chen, S., et al. (2018) Rhenium-Doped and Stabilized MoS2 Atomic Layers with Basal-Plane Catalytic Activity. Advanced Materials, 30, Article 1803477. https://doi.org/10.1002/adma.201803477
|
[31]
|
Wang, K., Guo, Y., Chen, Z., Wu, D., Zhang, S., Yang, B., et al. (2021) Regulating Electronic Structure of Two-Dimensional Porous Ni/Ni3N Nanosheets Architecture by Co Atomic Incorporation Boosts Alkaline Water Splitting. InfoMat, 4, e12251. https://doi.org/10.1002/inf2.12251
|
[32]
|
Pan, Y., Sun, K., Lin, Y., Cao, X., Cheng, Y., Liu, S., et al. (2019) Electronic Structure and D-Band Center Control Engineering over M-Doped Cop (M=Ni, Mn, Fe) Hollow Polyhedron Frames for Boosting Hydrogen Production. Nano Energy, 56, 411-419. https://doi.org/10.1016/j.nanoen.2018.11.034
|
[33]
|
Greeley, J. and Nørskov, J.K. (2007) Large-Scale, Density Functional Theory-Based Screening of Alloys for Hydrogen Evolution. Surface Science, 601, 1590-1598. https://doi.org/10.1016/j.susc.2007.01.037
|
[34]
|
Yin, J., Jin, J., Zhang, H., Lu, M., Peng, Y., Huang, B., et al. (2019) Atomic Arrangement in Metal-Doped NiS2 Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie International Edition, 58, 18676-18682. https://doi.org/10.1002/anie.201911470
|
[35]
|
Ling, T., Zhang, T., Ge, B., Han, L., Zheng, L., Lin, F., et al. (2019) Well-Dispersed Nickel and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials, 31, Article 1807771. https://doi.org/10.1002/adma.201807771
|
[36]
|
Zhang, J., Shang, X., Ren, H., Chi, J., Fu, H., Dong, B., et al. (2019) Modulation of Inverse Spinel Fe3O4 by Phosphorus Doping as an Industrially Promising Electrocatalyst for Hydrogen Evolution. Advanced Materials, 31, Article 1905107. https://doi.org/10.1002/adma.201905107
|
[37]
|
Yang, W., Zhang, S., Chen, Q., Zhang, C., Wei, Y., Jiang, H., et al. (2020) Conversion of Intercalated MoO3 to Multi-Heteroatoms-Doped MoS2 with High Hydrogen Evolution Activity. Advanced Materials, 32, Article 2001167. https://doi.org/10.1002/adma.202001167
|
[38]
|
Chen, Z., Fan, T., Yu, X., Wu, Q., Zhu, Q., Zhang, L., et al. (2018) Gradual Carbon Doping of Graphitic Carbon Nitride Towards Metal-Free Visible Light Photocatalytic Hydrogen Evolution. Journal of Materials Chemistry A, 6, 15310-15319. https://doi.org/10.1039/c8ta03303j
|
[39]
|
Wang, Y., Zhang, Y., Liu, Z., Xie, C., Feng, S., Liu, D., et al. (2017) Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie International Edition, 56, 5867-5871. https://doi.org/10.1002/anie.201701477
|
[40]
|
Zhang, T., Wu, M., Yan, D., Mao, J., Liu, H., Hu, W., et al. (2018) Engineering Oxygen Vacancy on Nio Nanorod Arrays for Alkaline Hydrogen Evolution. Nano Energy, 43, 103-109. https://doi.org/10.1016/j.nanoen.2017.11.015
|
[41]
|
Tan, C., Luo, Z., Chaturvedi, A., Cai, Y., Du, Y., Gong, Y., et al. (2018) Preparation of High-Percentage 1T-Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 30, Article 1705509. https://doi.org/10.1002/adma.201705509
|
[42]
|
Tsai, C., Li, H., Park, S., Park, J., Han, H.S., Nørskov, J.K., et al. (2017) Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nature Communications, 8, Article No. 15113. https://doi.org/10.1038/ncomms15113
|
[43]
|
Wu, W., Niu, C., Wei, C., Jia, Y., Li, C. and Xu, Q. (2019) Activation of MoS2 Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie International Edition, 58, 2029-2033. https://doi.org/10.1002/anie.201812475
|