儿童抗生素相关性腹泻中西医治疗进展
Progress in the Treatment of Pediatric Antibiotic-Associated Diarrhea with Traditional Chinese Medicine and Western Medicine
DOI: 10.12677/acm.2024.14113016, PDF, HTML, XML,   
作者: 吕文慧:湖北民族大学医学部,湖北 恩施;刘景珍*, 王刚祚:恩施土家族苗族自治州中心医院儿童血液消化肾病科,湖北 恩施
关键词: 抗生素相关性腹泻儿童西医治疗中医治疗Antibiotic-Associated Diarrhea Children Western Medicine Treatment Traditional Chinese Medicine Treatment
摘要: 抗生素相关性腹泻(antibiotic-associated diarrhea, AAD)是使用抗生素治疗后的常见不良反应,儿童尤其常见,艰难梭菌(Clostridium difficile, CD)是重要条件致病菌。由于抗生素在临床中被广泛使用,AAD的发病率呈上升趋势,延长了患儿的疾病治疗时长,增加了医疗费用。AAD发病机制复杂,肠道菌群失调是基本机制。AAD通常是自限性疾病,但少数可危及生命,合理规范治疗意义重大。本文将从抗生素应用、益生菌的使用、粪菌移植、活体生物药等西医治疗及单味中药及其活性成分、中药复方、中医外治法等中医治疗以及中西医结合治疗儿童AAD做一综述,以期为临床治疗儿童AAD提供一定的帮助。
Abstract: Antibiotic-associated diarrhea (AAD) is a common adverse reaction after antibiotic treatment, especially in children. Clostridium difficile (CD) is an important opportunistic pathogen. Due to the widespread use of antibiotics in clinical practice, the incidence of AAD is on the rise, extending the duration of disease treatment for children and increasing medical costs. The pathogenesis of AAD is complex, and the basic mechanism is the imbalance of intestinal flora. AAD is usually a self-limiting disease, but a few can be life-threatening. Reasonable and standardized treatment is of great significance. In this paper, Western medicine treatments such as antibiotic application, the use of probiotics, fecal bacteria transplantation, living biological drugs and traditional Chinese medicine treatments including single traditional Chinese medicine and its active ingredients, compound traditional Chinese medicine, traditional Chinese medicine external treatment, as well as the combination of Chinese and Western medicine will be reviewed to treat AAD in children, in order to provide certain help for the clinical treatment of children’s AAD.
文章引用:吕文慧, 刘景珍, 王刚祚. 儿童抗生素相关性腹泻中西医治疗进展[J]. 临床医学进展, 2024, 14(11): 1308-1317. https://doi.org/10.12677/acm.2024.14113016

1. 引言

抗生素是儿童最常用的处方药,且使用率呈上升趋势[1] [2]。抗生素在抑制或杀灭致病菌的同时也会对机体尤其是肠道菌群平衡造成影响,腹泻是最常见的症状[3]。抗生素的使用会对肠道微生物菌群产生多种负面影响,包括物种多样性降低、代谢活性改变和耐药菌的选择。研究表明,儿童早期接触抗生素会使肠道微生物群发育延迟、物种多样性减少,这会削弱宿主的免疫系统,并会影响微生物群–肠道–大脑轴,可导致多种胃肠道、免疫和神经认知疾病[4] [5]。抗生素相关性腹泻是抗生素开始使用后数小时至停用抗生素后8周的时间内发生,引起肠道菌群紊乱,不能用其他原因解释的腹泻,是儿童抗菌治疗最常见的不良反应之一,艰难梭菌感染(Clostridium difficile infection, CDI)是其常见原因[6] [7]。AAD通常是一种良性的自限性疾病,大多数的AAD病例是轻度和自限性的,但少数会出现严重腹泻或假膜性结肠炎,并且可能进展为中毒性巨结肠甚至死亡[8]

2. 儿童AAD的流行病学

近几年AAD的发病率呈上升趋势,特别是与CDI相关的假膜性结肠炎,造成患者医疗费用增加、住院时长延长、死亡风险及获得其他院内感染风险增加[9]。Elseviers等[10]研究显示79%的AAD患者接受了额外的实验室检查,42%接受了额外的药物治疗,AAD使每天的护理时间延长51分钟,增加了医疗负担。Goodman等[11]研究统计AAD导致住院时间增加3.6~21.3天。Ilic等[12]发现从1990年到2019年,在欧洲国家CDI导致的死亡率呈显著增加趋势,男性每年增加2.1%,女性每年增加2.8%。国外研究显示儿童AAD发病率为4.3%~80%,中位发病率为22%,儿科门诊AAD的患病率在6.2%~62% [6] [13]。我国住院患儿的AAD发病率在16.8%~70.59%,暂无门诊统计资料[14]。大约25%的AAD病例是由CD引起,在不同地区这一比例有所不同,最高的是欧洲占32.5%,非洲最低占13.5%,发展中国家为15% [15] [16]。儿童的年龄和抗生素类型是影响发病率的两个主要因素[13],研究发现男性、年龄在1个月至3岁、使用布洛芬、较晚使用抗生素、静脉给药和既往AAD发作是小儿AAD发生的危险因素[17] [18]。除妥布霉素和米诺环素外,几乎所有抗生素都与AAD显著相关,林可霉素、第三代头孢菌素和第一代、第二代头孢菌素位居前三[19]

3. 儿童AAD发病机制

人体肠道是数万亿微生物的宿主,这些微生物产生影响宿主代谢、免疫、内分泌和其他生理过程的功能基因和代谢物[20]-[22]。抗生素会严重破坏肠道微生物菌群的正常组成和功能属性,会使胃肠道中微生物分类丰富度、多样性和均匀度降低,即菌群失调[20] [22]。肠道菌群的破坏会导致机会性致病菌的生长增加,除艰难梭菌外,导致患儿发生AAD的还有产气荚膜梭菌、产酸克雷伯菌和金黄色葡萄球菌等条件致病菌[16]。菌群失调后,肠道代谢也会被影响,未消化碳水化合物累积、短链脂肪酸和次级胆汁酸的水平降低,会导致渗透性及分泌性腹泻的发生[23]

抗生素直接影响肠上皮细胞代谢,并且会使肠上皮的加速和不适当成熟[24] [25]。抗生素可以抑制结肠黏液分泌,导致结肠黏液屏障破坏,使细菌进入黏液层[26]。喹诺酮类、氨基糖苷类和β-内酰胺类抗生素会诱导细胞产生有毒活性氧(ROS),从而导致DNA、蛋白质和脂质氧化损伤[27]。红霉素等抗生素还会直接刺激肠道,加速肠道蠕动从而导致腹泻[28]

4. 西医治疗

4.1. 一般治疗

对于AAD的患儿,需调整饮食,避免高脂、高糖、高粗纤维饮食,并纠正脱水及电解质与酸碱失衡,可补充锌剂调节免疫、保护肠道黏膜,同时,应避免使用抑制肠道蠕动药物,以免肠道内容物在体内停留过久,不利于毒素的排出。

4.2. 抗生素

停用抗生素后,大多数AAD患儿能自愈,部分CDI患儿症状也会减轻,甚至恢复,故在不影响原发疾病治疗的情况下,应立即停用抗生素[29]。如病情需要,不能停用抗生素,可调整抗生素为窄谱或更敏感的抗生素,以减少对肠道菌群的影响。

对于CDI患儿,国内专家共识推荐甲硝唑或万古霉素作为轻中度CDI患儿一线治疗方法,重度CDI患儿使用万古霉素,万古霉素治疗无效或复发患儿使用非达霉素治疗[14]。非达霉素属于大环内酯类抗生素,对革兰氏阳性需氧菌和厌氧菌的抗菌谱较窄,对正常肠道菌群的影响较小,其无复发临床反应率显著高于万古霉素,但价格高昂,无法常规使用[29] [30]

4.3. 益生菌

世界卫生组织将益生菌定义为“活的微生物,当给予足够量时,会给宿主带来健康益处”,《益生菌儿科临床应用循证指南》表明在使用抗生素的同时使用益生菌能够明显减少AAD发生,并且减轻AAD的严重程度[31]。益生菌可有效预防AAD,使用益生菌可将AAD的风险降低51% [32]。研究发现益生菌治疗组的AAD发生率为8%,而对照组为19%。应用高剂量的益生菌(每天≥50亿CFU)可降低AAD的发病率。益生菌通常耐受性良好,偶有轻微的副作用。在众多益生菌中,鼠李糖乳杆菌和布拉氏酵母菌预防儿童AAD的效果最好[33]。有研究通过Meta分析发现,干酪乳杆菌是益生菌中降低艰难梭菌相关性腹泻发病率的最佳干预措施[34]

复合益生菌也被应用在AAD的治疗中,Li等[35]动物实验结果显示由乳双歧杆菌XLTG11、干酪乳杆菌、植物乳杆菌CCFM8661和鼠李糖乳杆菌Probio-M9组成的复合益生菌可以缓解小鼠AAD,降低IL-6、IL-1β、TNF-α等促炎细胞因子的水平,增加抗炎细胞因子IL-10的水平,丰富肠道菌群多样性。但LUKASIK等[36]一项350名患儿参与的随机临床试验发现由8种益生菌组成的多物种益生菌制剂并没有降低儿童AAD的患病风险。在对这项试验的二次分析中发现,与安慰剂相比,所研究的复合益生菌对微生物群的影响很小且作用时间短暂[37]。复合益生菌对儿童AAD的疗效目前存在疑问,未来还需要更多大样本、随机、多中心的临床研究来证实其效果。

临床研究已对许多菌株进行了减轻AAD的实验,包括芽孢杆菌属、双歧杆菌属、梭状芽胞杆菌属、乳酸菌属、乳球菌属、明串珠菌属、链球菌属和酵母菌属的成员[23] [32]。有新的菌株也在尝试应用治疗AAD,研究发现从幼犬粪便样本中分离出的屎肠球菌DC-K7和DC-K9显示出潜在的益生菌效果,可以改善抗生素治疗诱导的肠道菌群失调[38]

益生菌在膳食和非处方药中以酸奶、片剂和胶囊的形式存在。这使得益生菌成为一种容易获得且相对简单的AAD预防方法,且价格相对低廉,与AAD导致增加的医疗费用相比可以说是少之又少[11]。但对免疫功能低下患儿,使用布拉氏酵母菌等益生菌有入血的风险,会导致真菌血症[39]

4.4. 粪菌移植

粪菌移植(fecal microbiota transplantation, FMT)是从健康的供体粪便中收集微生物并移植到受体的肠道中以恢复肠道微生物,研究证明非常有效,因为它可以重建更多样化、“健康”的微生物菌群[40]。FMT可有效治疗CDI患儿及复发患儿,一项多中心研究显示81% CDI患儿在单次FMT后成功,86.6%在首次或重复FMT后成功[41] [42]。而对于FMT的长期疗效,有研究使用Strainer算法,结合多个时间点对13对供体和受体的高通量菌株培养和宏基因组测序,表明大于70%FMT供体菌株和小于25%受体菌株在非复发患者FMT后至少保留5年,这表明FMT长期治疗是有效的[43],但还需大样本临床证据及更长时间的随访,才能证明其长期安全性及有效性。

FMT是一种侵入性手术,供体菌株可以通过鼻胃管或十二指肠管、结肠镜或灌肠给药,但FMT缺乏标准化的治疗方案,并且存在传染疾病的风险,传染源可能是致命的,尤其是对免疫功能低下的患儿[44]-[46]

4.5. 活体生物药

对于复发艰难梭菌感染(recurrent Clostridium difficile infection, rCDI),还可以使用活体生物药(live biotherapeutic products, LBP),与FMT相比,LBP具有提高标准化、安全性和实用性的潜力,操作方便[47] [48]。其中REBYOTA是美国食品药品监督管理局(FDA)于2022年11月批准的首个用于预防成人rCDI的直肠给药微生物群产品。对REBYOTA疗效进行Meta分析显示,治疗8周后,与对照组相比,接受REBYOTA治疗的患者复发的几率显著降低,接种一剂或两剂药物均有效果,治疗成功的参与者中,超过90%在6个月内没有复发[49]

SER-109是一种由纯化的厚壁菌门孢子组成的微生物组治疗剂,在2023年被FDA批准使用治疗rCDI。试验显示rCDI患者在SER-109组中为12%,在安慰剂组中为40%,SER-109的安全性与安慰剂相似,大多数不良事件为轻至中度胃肠道反应[50] [51]

尽管这些生物治疗药物非常有效,但由于缺乏儿童临床试验,并且治疗儿童rCDI的生物治疗药物不能很快上市,儿科患者在短时间内无法从中受益[48]

5. 中医治疗

5.1. 单味中药及其活性成分

从中医角度来看,儿童AAD可归属“泄泻”范畴,主要病机是脾虚湿盛、脾阳不足、脾胃运化水湿和升清降浊功能失常[52]。大量基础及临床研究证实了中医药对AAD的治疗效果。动物实验结果显示,使用发酵人参治疗小鼠AAD可以有效缓解腹泻,恢复肠道菌群平衡,并减少结肠浆膜组织的炎症,从而减轻抗生素诱导的肠道损伤[53]。山药可以加快AAD小鼠腹泻等症状的恢复,修复肠道菌群紊乱,丰富拟杆菌属和梭状芽胞杆菌属的丰度,增加短链脂肪酸的含量[54]。部分中药的多糖组分具有益生元作用,可以发挥止泻作用,调节肠道菌群,促进有益细菌生长并抑制致病菌的定植[55] [56]。高丽红参衍生多糖对小鼠AAD有改善作用,可以使变形菌减少和厚壁菌门增加,改善微生物菌群失衡及增加短链脂肪酸的含量[57]。有研究证明茯苓多糖可以改善AAD小鼠的症状,提高结肠紧密连接蛋白zonula-occludens 1 (ZO-1)及其mRNA的表达水平,显著改善肠道结构。此外,茯苓多糖还增加了AAD小鼠肠道菌群的丰度及α多样性和β多样性[58]。韩天雨[59]等研究表明肉苁蓉及肉苁蓉的成分多糖和松果菊苷可以改善腹泻等症状,减轻肠道炎症,调节AAD小鼠的肠道菌群,其中松果菊苷的治疗效果更好。生姜提取物增强了肠道屏障,使短链脂肪酸水平正常化,表明生姜提取物具有增强肠道功能的作用[60]。丹皮酚是从牡丹根皮中提取的有机物,有抗炎和抗菌的作用,有动物实验证实丹皮酚可以缓解AAD的腹泻症状并减少炎症介质[61]

5.2. 中药复方

许多中药复方被研究用于治疗AAD,参苓白术散源自古代医学典籍《太平惠民和剂局方》,以活脾、祛湿、缓腹而闻名,有研究通过网络药理学证明参苓白术散对AAD的治疗效果部分是通过抑制PI3K-AKT通路实现的[62]。七味白术散是出自《小儿药征直诀》的中医方剂,常用于治疗儿童腹泻,在临床中也被证实对AAD有效。动物实验显示七味白术散可以影响AAD小鼠肠道菌群的多样性、群落结构,调节肠道细菌的相对丰度及某些肠道细菌的生长[63]。此外,七味白术散还可以提高AAD小鼠糖苷水解酶的活性,促进食物和药物的代谢吸收,从而治疗腹泻[64]。生姜泻心汤可以恢复胆汁酸及氨基酸代谢,调节肠道菌群,降低CD小鼠的粪便毒素水平,减轻结肠损伤。人参二醇等10种成分是生姜泻心汤治疗CD的关键潜在药效学物质基础[65] [66]。苏钢等[67]对大鼠粪便进行16S rRNA测序发现葛根芩连汤可以改善肠道菌群,在门水平增加厚壁菌门、拟杆菌门的丰度,在属水平增加乳酸杆菌属、拟杆菌属的丰度,并可以保护肠道黏膜。香连丸出自《太平惠民和剂局方》,广泛用于治疗湿热痢疾等胃肠道疾病,研究显示可以恢复AAD小鼠肠道菌群的多样性和丰富度[68]。补土雅解方是傣医在临床实践中总结而成,肖湉等[69]通过动物实验证明其可以修复ADD大鼠受损的肠道屏障,恢复肠道菌群的多样性。

5.3. 中医外治法

一些中医外治法对AAD也有治疗效果,对AAD患儿进行穴位贴敷治疗(参苓白术散加减而成)的疗效较益生菌治疗明显,可以缩短治疗时间[70]。艾灸可以改善胃肠道动力、调节免疫反应,运用艾灸联合湘西小儿推拿治疗小儿AAD的疗效较佳[71] [72]。中医外治法无需口服给药,患儿及家属易接受。

AAD虽然是现代抗生素应用之后出现的疾病,但抗菌药物作为“寒凉”之物,对其侵袭所致的腹泻,中医研究从《黄帝内经》时代就已经开始,大量基础和临床研究结果也证明单味中药及其活性成分、中药复方和中医外治法对儿童AAD疗效显著,能减轻临床症状,恢复肠道菌群平衡,改善肠道代谢,保护肠道屏障,临床前景广阔。

6. 中西医联合治疗

许多临床研究表明中西医联合治疗AAD较单纯西医治疗具有一定优势,唐泽惟等[73]对15种中药联合益生菌治疗AAD的治疗方案进行网状Meta分析发现中药联合益生菌治疗AAD的疗效均优于单纯使用益生菌,能有效缩短病程。袁潮钢等[74]使用黄芪建中汤加减联合常规西药治疗儿童AAD较单纯使用常规西药有效率提高13.4%,恢复时间缩短。李树枫等[75]使用中药封包联合布拉氏酵母菌较单独使用布拉氏酵母菌治疗儿童AAD的效果明显、恢复时间快。补中益气颗粒与益生菌联用减轻了AAD患儿的症状,缩短治疗时长,减少了患儿痛苦[76]。在服用布拉氏酵母菌散的基础上加用参苓白术颗粒治疗儿童AAD,较单独使用布拉氏酵母菌散起效快,且复发率低[77]

相比单独西医治疗,中西医联合治疗AAD疗效更显著,可以缩短病程,在临床中可以进一步推广应用。

7. 展望

儿童AAD会导致抗生素治疗的依从率降低、家庭担忧和医疗成本增加。减少AAD发生最根本的是减少抗生素的使用,避免滥用,合理、规范使用广谱抗生素,缩短抗菌药物的使用时间,从源头上解决问题,但很多情况下抗生素是临床上治疗感染性疾病的必要选择,所以我们需要对儿童AAD采取预防措施并积极进行治疗。

对于儿童AAD,中西医治疗各有其优缺点。经对症支持治疗及停用抗生素后,轻症AAD可以缓解甚至恢复。在使用抗生素的同时使用益生菌可明显降低儿童AAD的发病率,FMT、LBP等新型治疗方式为AAD的治疗提供了更多的选择和治愈的可能,但抗生素治疗CDI易复发,许多益生菌菌株的有效性及安全性需要更多高质量研究验证,FMT、LBP需要更多大样本的临床试验及更长时间的随访证明其疗效及安全性。

中医药应用悠久,在历史长河中已证明安全性,在减少耐药性方面更具有不可忽视的优势,相关研究也证实了对AAD的疗效,但许多研究为动物实验,临床研究多为单中心研究,样本量小、随访时间短,缺乏高质量的循证依据,影响药物的推荐使用。另外许多药物的作用通路及分子机制尚不明确,未来需要在分子层面进行更深入的研究,以便更精准地使用中医药。此外,中医药治疗小儿AAD过程中容易辨证不准确,影响其疗效,限制了中医药的推广。

中西医结合是未来治疗儿童AAD的重要方向,目前中西医结合治疗AAD绝大数局限在单纯中药加西药治疗,如能明确药物各自作用靶点,精准化治疗,才能充分发挥药物疗效,达到1 + 1 > 2的效果。

NOTES

*通讯作者。

参考文献

[1] Allwell-Brown, G., Hussain-Alkhateeb, L., Kitutu, F.E., Strömdahl, S., Mårtensson, A. and Johansson, E.W. (2020) Trends in Reported Antibiotic Use among Children under 5 Years of Age with Fever, Diarrhoea, or Cough with Fast or Difficult Breathing across Low-Income and Middle-Income Countries in 2005-17: A Systematic Analysis of 132 National Surveys from 73 Countries. The Lancet Global Health, 8, e799-e807.
https://doi.org/10.1016/s2214-109x(20)30079-6
[2] Jackson, C., Hsia, Y., Bielicki, J.A., Ellis, S., Stephens, P., Wong, I.C.K., et al. (2019) Estimating Global Trends in Total and Childhood Antibiotic Consumption, 2011-2015. BMJ Global Health, 4, e001241.
https://doi.org/10.1136/bmjgh-2018-001241
[3] Ward, R.M. (2024) Editorial: Research Challenges of Drug Utilization, Data Collection, Data Validation, and Adverse Drug Reactions in Neonates. Frontiers in Pharmacology, 15, Article 1376770.
https://doi.org/10.3389/fphar.2024.1376770
[4] Ramirez, J., Guarner, F., Bustos Fernandez, L., Maruy, A., Sdepanian, V.L. and Cohen, H. (2020) Antibiotics as Major Disruptors of Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 10, Article 572912.
https://doi.org/10.3389/fcimb.2020.572912
[5] Dahiya, D. and Nigam, P.S. (2023) Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. International Journal of Molecular Sciences, 24, Article 3074.
https://doi.org/10.3390/ijms24043074
[6] Tanır Basaranoğlu, S., Karaaslan, A., Salı, E., Çiftçi, E., Gayretli Aydın, Z.G., Aldemir Kocabaş, B., et al. (2023) Antibiotic Associated Diarrhea in Outpatient Pediatric Antibiotic Therapy. BMC Pediatrics, 23, Article No. 121.
https://doi.org/10.1186/s12887-023-03939-w
[7] Ziaei Chamgordani, S., Yadegar, A. and Ghourchian, H. (2024) C. difficile Biomarkers, Pathogenicity and Detection. Clinica Chimica Acta, 558, Article 119674.
https://doi.org/10.1016/j.cca.2024.119674
[8] Choi, M.H., Kim, D., Lee, K.H., Kim, H.J., Sul, W.J. and Jeong, S.H. (2024) Dysbiosis of the Gut Microbiota Is Associated with in-Hospital Mortality in Patients with Antibiotic-Associated Diarrhoea: A Metagenomic Analysis. International Journal of Antimicrobial Agents, 64, Article 107330.
https://doi.org/10.1016/j.ijantimicag.2024.107330
[9] Litao, G., Jingjing, S., Yu, L., Lei, Z., Xiaona, H. and Zhijing, Z. (2018) Risk Factors for Antibiotic-Associated Diarrhea in Critically Ill Patients. Medical Science Monitor, 24, 5000-5007.
https://doi.org/10.12659/msm.911308
[10] Elseviers, M.M., Van Camp, Y., Nayaert, S., Duré, K., Annemans, L., Tanghe, A., et al. (2015) Prevalence and Management of Antibiotic Associated Diarrhea in General Hospitals. BMC Infectious Diseases, 15, Article No. 129.
https://doi.org/10.1186/s12879-015-0869-0
[11] Goodman, C., Keating, G., Georgousopoulou, E., Hespe, C. and Levett, K. (2021) Probiotics for the Prevention of Antibiotic-Associated Diarrhoea: A Systematic Review and Meta-Analysis. BMJ Open, 11, e043054.
https://doi.org/10.1136/bmjopen-2020-043054
[12] Ilic, I., Zivanovic Macuzic, I. and Ilic, M. (2024) Mortality Attributable to Clostridioides difficile Infection: The Rising Burden of Disease in European Countries. Medicina, 60, Article 1222.
https://doi.org/10.3390/medicina60081222
[13] McFarland, L.V., Ozen, M., Dinleyici, E.C. and Goh, S. (2016) Comparison of Pediatric and Adult Antibiotic-Associated Diarrhea and Clostridium difficile Infections. World Journal of Gastroenterology, 22, 3078-3104.
https://doi.org/10.3748/wjg.v22.i11.3078
[14] 郑跃杰, 武庆斌, 方峰, 等. 儿童抗生素相关性腹泻诊断、治疗和预防专家共识[J]. 中华实用儿科临床杂志, 2021, 36(6): 424-430.
[15] Curcio, D., Cané, A., Fernández, F.A. and Correa, J. (2019) Clostridium difficile-Associated Diarrhea in Developing Countries: A Systematic Review and Meta-Analysis. Infectious Diseases and Therapy, 8, 87-103.
https://doi.org/10.1007/s40121-019-0231-8
[16] Motamedi, H., Fathollahi, M., Abiri, R., Kadivarian, S., Rostamian, M. and Alvandi, A. (2021) A Worldwide Systematic Review and Meta-Analysis of Bacteria Related to Antibiotic-Associated Diarrhea in Hospitalized Patients. PLOS ONE, 16, e0260667.
https://doi.org/10.1371/journal.pone.0260667
[17] Baù, M., Moretti, A., Bertoni, E., Vazzoler, V., Luini, C., Agosti, M., et al. (2020) Risk and Protective Factors for Gastrointestinal Symptoms Associated with Antibiotic Treatment in Children: A Population Study. Pediatric Gastroenterology, Hepatology & Nutrition, 23, 35-48.
https://doi.org/10.5223/pghn.2020.23.1.35
[18] Kaya, G., Usta, D., Sag, E., Aydin, Z.G., Buruk, C.K., Ozkaya, E., et al. (2023) Incidence and Risk Factors for Antibiotic-Associated Diarrhea among Hospitalized Children. Pediatric Infectious Disease Journal, 42, 745-749.
https://doi.org/10.1097/inf.0000000000003994
[19] Huang, H., Li, L., Wu, M., Liu, Z., Zhao, Y., Peng, J., et al. (2023) Antibiotics and Antibiotic-Associated Diarrhea: A Real-World Disproportionality Study of the FDA Adverse Event Reporting System from 2004 to 2022. BMC Pharmacology and Toxicology, 24, Article No. 73.
https://doi.org/10.1186/s40360-023-00710-w
[20] Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, Article 14.
https://doi.org/10.3390/microorganisms7010014
[21] Saul, S., Fuessel, J. and Runde, J. (2021) Pediatric Digestive Health and the Gut Microbiome: Existing Therapies and a Look to the Future. Pediatric Annals, 50, e336-e342.
https://doi.org/10.3928/19382359-20210720-01
[22] Willing, B.P., Russell, S.L. and Finlay, B.B. (2011) Shifting the Balance: Antibiotic Effects on Host-Microbiota Mutualism. Nature Reviews Microbiology, 9, 233-243.
https://doi.org/10.1038/nrmicro2536
[23] Mekonnen, S.A., Merenstein, D., Fraser, C.M. and Marco, M.L. (2020) Molecular Mechanisms of Probiotic Prevention of Antibiotic-Associated Diarrhea. Current Opinion in Biotechnology, 61, 226-234.
https://doi.org/10.1016/j.copbio.2020.01.005
[24] Garcia, T.M., van Roest, M., Vermeulen, J.L.M., Meisner, S., Smit, W.L., Silva, J., et al. (2021) Early Life Antibiotics Influence in Vivo and in Vitro Mouse Intestinal Epithelium Maturation and Functioning. Cellular and Molecular Gastroenterology and Hepatology, 12, 943-981.
https://doi.org/10.1016/j.jcmgh.2021.05.019
[25] Morgun, A., Dzutsev, A., Dong, X., Greer, R.L., Sexton, D.J., Ravel, J., et al. (2015) Uncovering Effects of Antibiotics on the Host and Microbiota Using Transkingdom Gene Networks. Gut, 64, 1732-1743.
https://doi.org/10.1136/gutjnl-2014-308820
[26] Sawaed, J., Zelik, L., Levin, Y., Feeney, R., Naama, M., Gordon, A., et al. (2024) Antibiotics Damage the Colonic Mucus Barrier in a Microbiota-Independent Manner. Science Advances, 10, eadp4119.
https://doi.org/10.1126/sciadv.adp4119
[27] Kalghatgi, S., Spina, C.S., Costello, J.C., Liesa, M., Morones-Ramirez, J.R., Slomovic, S., et al. (2013) Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells. Science Translational Medicine, 5, 192ra85.
https://doi.org/10.1126/scitranslmed.3006055
[28] Turner, N.A., Saullo, J.L. and Polage, C.R. (2020) Healthcare Associated Diarrhea, Not Clostridioides difficile. Current Opinion in Infectious Diseases, 33, 319-326.
https://doi.org/10.1097/qco.0000000000000653
[29] Abad, C.L.R. and Safdar, N. (2021) A Review of Clostridioides difficile Infection and Antibiotic-Associated Diarrhea. Gastroenterology Clinics of North America, 50, 323-340.
https://doi.org/10.1016/j.gtc.2021.02.010
[30] Cao, X., Boyaci, H., Chen, J., Bao, Y., Landick, R. and Campbell, E.A. (2022) Basis of Narrow-Spectrum Activity of Fidaxomicin on Clostridioides difficile. Nature, 604, 541-545.
https://doi.org/10.1038/s41586-022-04545-z
[31] 陈洁, 程茜, 华子瑜, 等. 益生菌儿科临床应用循证指南[J]. 中国实用儿科杂志, 2024, 39(1): 1-15, 20.
[32] Blaabjerg, S., Artzi, D. and Aabenhus, R. (2017) Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis. Antibiotics, 6, Article 21.
https://doi.org/10.3390/antibiotics6040021
[33] Guo, Q., Goldenberg, J.Z., Humphrey, C., El Dib, R. and Johnston, B.C. (2019) Probiotics for the Prevention of Pediatric Antibiotic-Associated Diarrhea. Cochrane Database of Systematic Reviews, No. 4, CD004827.
https://doi.org/10.1002/14651858.cd004827.pub5
[34] Ma, Y., Yang, J.Y., Peng, X., Xiao, K.Y., Xu, Q. and Wang, C. (2020) Which Probiotic Has the Best Effect on Preventing Clostridium difficile‐Associated Diarrhea? A Systematic Review and Network Meta‐Analysis. Journal of Digestive Diseases, 21, 69-80.
https://doi.org/10.1111/1751-2980.12839
[35] Li, W., Zhang, S., Wang, Y., Bian, H., Yu, S., Huang, L., et al. (2023) Complex Probiotics Alleviate Ampicillin-Induced Antibiotic-Associated Diarrhea in Mice. Frontiers in Microbiology, 14, Article 1156058.
https://doi.org/10.3389/fmicb.2023.1156058
[36] Łukasik, J., Dierikx, T., Besseling-van der Vaart, I., de Meij, T., Szajewska, H., van der Schoor, S.R.D., et al. (2022) Multispecies Probiotic for the Prevention of Antibiotic-Associated Diarrhea in Children. JAMA Pediatrics, 176, 860-866.
https://doi.org/10.1001/jamapediatrics.2022.1973
[37] Dierikx, T.H., Malinowska, A.M., Łukasik, J., Besseling-van der Vaart, I., Belzer, C., Szajewska, H., et al. (2024) Probiotics and Antibiotic-Induced Microbial Aberrations in Children. JAMA Network Open, 7, e2418129.
https://doi.org/10.1001/jamanetworkopen.2024.18129
[38] Yao, X., Nie, W., Chen, X., Zhang, J., Wei, J., Qiu, Y., et al. (2024) Two Enterococcus faecium Isolates Demonstrated Modulating Effects on the Dysbiosis of Mice Gut Microbiota Induced by Antibiotic Treatment. International Journal of Molecular Sciences, 25, Article 5405.
https://doi.org/10.3390/ijms25105405
[39] Al-Jashaami, L.S. and Dupont, H.L. (2016) Management of Clostridium difficile Infection. Gastroenterology & Hepatology, 12, 609-616.
[40] Greenhalgh, K., Meyer, K.M., Aagaard, K.M. and Wilmes, P. (2016) The Human Gut Microbiome in Health: Establishment and Resilience of Microbiota over a Lifetime. Environmental Microbiology, 18, 2103-2116.
https://doi.org/10.1111/1462-2920.13318
[41] Dicks, L.M.T. (2023) Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms, 11, Article 2161.
https://doi.org/10.3390/microorganisms11092161
[42] Nicholson, M.R., Mitchell, P.D., Alexander, E., Ballal, S., Bartlett, M., Becker, P., et al. (2020) Efficacy of Fecal Microbiota Transplantation for Clostridium difficile Infection in Children. Clinical Gastroenterology and Hepatology, 18, 612-619.E1.
https://doi.org/10.1016/j.cgh.2019.04.037
[43] Aggarwala, V., Mogno, I., Li, Z., Yang, C., Britton, G.J., Chen-Liaw, A., et al. (2021) Precise Quantification of Bacterial Strains after Fecal Microbiota Transplantation Delineates Long-Term Engraftment and Explains Outcomes. Nature Microbiology, 6, 1309-1318.
https://doi.org/10.1038/s41564-021-00966-0
[44] Abouelkhair, A.A. and Seleem, M.N. (2024) Exploring Novel Microbial Metabolites and Drugs for Inhibiting Clostridioides difficile. mSphere, 9, e0027324.
https://doi.org/10.1128/msphere.00273-24
[45] van Beurden, Y.H., de Groot, P.F., van Nood, E., Nieuwdorp, M., Keller, J.J. and Goorhuis, A. (2017) Complications, Effectiveness, and Long Term Follow‐up of Fecal Microbiota Transfer by Nasoduodenal Tube for Treatment of Recurrent Clostridium difficile Infection. United European Gastroenterology Journal, 5, 868-879.
https://doi.org/10.1177/2050640616678099
[46] Woodworth, M.H., Carpentieri, C., Sitchenko, K.L. and Kraft, C.S. (2017) Challenges in Fecal Donor Selection and Screening for Fecal Microbiota Transplantation: A Review. Gut Microbes, 8, 225-237.
https://doi.org/10.1080/19490976.2017.1286006
[47] Cotto, C., Baker, K., Fallon, E. and Rimon, S. (2024) Fecal Microbiota, Live-Jslm (RBL; REBYOTA®) for Prevention of Recurrent Clostridioides difficile Infection: What Gastroenterology Nurses Need to Know. Gastroenterology Nursing, 47, 378-382.
https://doi.org/10.1097/sga.0000000000000847
[48] Hourigan, S.K., Nicholson, M.R., Kahn, S.A. and Kellermayer, R. (2021) Updates and Challenges in Fecal Microbiota Transplantation for Clostridioides difficile Infection in Children. Journal of Pediatric Gastroenterology & Nutrition, 73, 430-432.
https://doi.org/10.1097/mpg.0000000000003229
[49] Doosetty, S., Umeh, C., Eastwood, W., Samreen, I., Penchala, A., Kaur, H., et al. (2024) Efficacy of Fecal Microbiota (REBYOTA) in Recurrent Clostridium difficile Infections: A Systematic Review and Meta-Analysis. Cureus, 16, e58862.
https://doi.org/10.7759/cureus.58862
[50] Feuerstadt, P., Louie, T.J., Lashner, B., Wang, E.E.L., Diao, L., Bryant, J.A., et al. (2022) SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. New England Journal of Medicine, 386, 220-229.
https://doi.org/10.1056/nejmoa2106516
[51] Spigaglia, P. (2024) Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens, 13, Article 646.
https://doi.org/10.3390/pathogens13080646
[52] 苏浩东, 郑浩玲, 刘灵娟, 等. 从脾论治儿童抗生素相关性腹泻[J]. 广州中医药大学学报, 2024, 41(4): 1058-1062.
[53] Li, Q., Yin, P., Wang, H., Yu, L., Liu, S., Song, S., et al. (2024) Comparative Evaluation of Fermented Ginseng on Alleviating Antibiotic-Associated Diarrhea in Mice. Food Science and Biotechnology, 33, 2845-2856.
https://doi.org/10.1007/s10068-024-01538-8
[54] Zhang, N., Liang, T., Jin, Q., Shen, C., Zhang, Y. and Jing, P. (2019) Chinese Yam (Dioscorea opposita Thunb.) Alleviates Antibiotic-Associated Diarrhea, Modifies Intestinal Microbiota, and Increases the Level of Short-Chain Fatty Acids in Mice. Food Research International, 122, 191-198.
https://doi.org/10.1016/j.foodres.2019.04.016
[55] 沈红, 伍城颖, 龙芳, 等. 从肠道菌群调控角度探讨中药汤剂中多糖组分存在的意义[J]. 药学学报, 2022, 57(12): 3480-3486.
[56] Xue, H., Mei, C., Wang, F. and Tang, X. (2023) Relationship among Chinese Herb Polysaccharide (CHP), Gut Microbiota, and Chronic Diarrhea and Impact of CHP on Chronic Diarrhea. Food Science & Nutrition, 11, 5837-5855.
https://doi.org/10.1002/fsn3.3596
[57] Min, S.J., Kim, H., Yambe, N. and Shin, M. (2024) Ameliorative Effects of Korean-Red-Ginseng-Derived Polysaccharide on Antibiotic-Associated Diarrhea. Polymers, 16, Article 231.
https://doi.org/10.3390/polym16020231
[58] Xu, H., Wang, S., Jiang, Y., Wu, J., Chen, L., Ding, Y., et al. (2023) Poria cocos Polysaccharide Ameliorated Antibiotic-Associated Diarrhea in Mice via Regulating the Homeostasis of the Gut Microbiota and Intestinal Mucosal Barrier. International Journal of Molecular Sciences, 24, Article 1423.
https://doi.org/10.3390/ijms24021423
[59] 韩天雨, 杨栋, 周树青, 等. 肉苁蓉及其有效成分调节抗生素所致小鼠肠道菌群失调[J]. 中国应用生理学杂志, 2022, 38(6): 766-770.
[60] Kim, S.J., Shin, M. and Choi, Y. (2024) Ameliorative Effects of Zingiber officinale Rosc on Antibiotic-Associated Diarrhea and Improvement in Intestinal Function. Molecules, 29, Article 732.
https://doi.org/10.3390/molecules29030732
[61] Kang, B., Park, D.H., Lee, M.J., Jeon, C., Kang, K.S. and Choi, Y. (2022) Beneficial Effect of Paeonol on Antibiotic-Associated Inflammatory Response in Mice with Diarrhea. Biomolecules, 12, Article 1634.
https://doi.org/10.3390/biom12111634
[62] Chen, Y., Meng, X., Zheng, H., Gu, Y., Zhu, W., Wang, S., et al. (2024) Deciphering the Pharmacological Mechanisms of Shenlingbaizhu Formula in Antibiotic-Associated Diarrhea Treatment: Network Pharmacological Analysis and Experimental Validation. Journal of Ethnopharmacology, 329, Article 118129.
https://doi.org/10.1016/j.jep.2024.118129
[63] Hui, H., Wu, Y., Zheng, T., Zhou, S. and Tan, Z. (2020) Bacterial Characteristics in Intestinal Contents of Antibiotic-Associated Diarrhea Mice Treated with Qiweibaizhu Powder. Medical Science Monitor, 26, e921771.
https://doi.org/10.12659/msm.921771
[64] 吴仪, 黄莉莉, 谢果珍, 等. 七味白术散对抗生素相关性腹泻小鼠肠道糖苷水解酶活性的影响[J]. 中国感染控制杂志, 2023, 22(10): 1224-1231.
[65] Cui, Y., Zhang, C., Zhang, X., Yu, X., Ma, Y., Qin, X., et al. (2023) Integrated Serum Pharmacochemistry and Metabolomics Reveal Potential Effective Components and Mechanisms of Shengjiang Xiexin Decoction in the Treatment of Clostridium difficile Infection. Heliyon, 9, e15602.
https://doi.org/10.1016/j.heliyon.2023.e15602
[66] Yu, X., Lv, Z., Zhang, C., Gao, Y., Li, H., Ma, X., et al. (2024) Shengjiang Xiexin Decoction Mitigates Murine Clostridium difficile Infection through Modulation of the Gut Microbiota and Bile Acid Metabolism. Journal of Ethnopharmacology, 320, Article 117384.
https://doi.org/10.1016/j.jep.2023.117384
[67] 苏钢, 杨光勇, 张庚鑫, 等. 基于16S rRNA测序探究葛根芩连汤对抗生素相关性腹泻肠道菌群结构的影响[J]. 现代食品科技, 2023, 39(1): 11-19.
[68] Yang, L., Deng, F., Gong, Q., Liu, X., Li, M. and Zhang, C. (2024) Distribution of the Active Components from Xianglian Pill in Tissues of Healthy and Antibiotic-Associated Diarrhea Model Mice and the Mechanism Study. Journal of Pharmaceutical and Biomedical Analysis, 248, Article 116326.
https://doi.org/10.1016/j.jpba.2024.116326
[69] 肖湉, 于兴志, 杨丽萍, 等. 补土雅解方治疗抗生素相关性腹泻的作用机制[J]. 世界科学技术-中医药现代化, 2023, 25(8): 2743-2751.
[70] 宋文君. 参苓白术散加减穴位贴敷治疗儿童抗生素相关腹泻临床研究[J]. 亚太传统医药, 2023, 19(1): 78-81.
[71] 贾元斌, 宿绍敏, 刘亮晶, 等. 艾灸联合湘西小儿推拿治疗小儿抗生素相关性腹泻的临床观察[J]. 中国民间疗法, 2019, 27(19): 49-51.
[72] 姚雪含, 孙治前, 董俊刚, 等. 艾灸治疗抗生素相关性腹泻研究进展[J]. 中国中医药信息杂志, 2022, 29(1): 153-156.
[73] 唐泽惟, 章从恩, 赵奎君, 等. 抗生素相关性腹泻治疗方案的有效性及安全性评价: 基于15种中药联合益生菌治疗方案的网状Meta分析[J]. 中国医院用药评价与分析, 2024, 24(5): 582-593.
[74] 袁潮钢, 曹丽芳. 黄芪建中汤加减联合常规西药治疗儿童抗生素相关性腹泻60例[J]. 中国中医药科技, 2022, 29(1): 141-142.
[75] 李树枫, 肖琦. 中药封包联合布拉氏酵母菌治疗儿童抗生素相关性腹泻50例[J]. 浙江中医杂志, 2022, 57(9): 658-659.
[76] 刘晓玲, 阮仁伟, 裴婷, 等. 补中益气颗粒配以益生菌治疗肺炎继发抗生素相关性腹泻疗效观察[J]. 中华中医药学刊, 2023, 41(6): 209-212.
[77] 景宇倩, 王方玥, 符兆英. 参苓白术颗粒联合布拉氏酵母菌散对抗生素相关性腹泻患儿肠道菌群、黏膜功能及炎症因子的影响[J]. 齐齐哈尔医学院学报, 2023, 44(5): 428-432.