[1]
|
Murphy, H.R., Howgate, C., O’Keefe, J., Myers, J., Morgan, M., Coleman, M.A., et al. (2021) Characteristics and Outcomes of Pregnant Women with Type 1 or Type 2 Diabetes: A 5-Year National Population-Based Cohort Study. The Lancet Diabetes & Endocrinology, 9, 153-164. https://doi.org/10.1016/s2213-8587(20)30406-x
|
[2]
|
Zou, Y., Chu, Z., Guo, J., Liu, S., Ma, X. and Guo, J. (2023) Minimally Invasive Electrochemical Continuous Glucose Monitoring Sensors: Recent Progress and Perspective. Biosensors and Bioelectronics, 225, Article 115103. https://doi.org/10.1016/j.bios.2023.115103
|
[3]
|
Awang Dahlan, S., Idris, I.B., Mohammed Nawi, A. and Abd Rahman, R. (2024) Family Planning Behaviours among Women with Diabetes Mellitus: A Scoping Review. European Journal of Medical Research, 29, Article No. 41. https://doi.org/10.1186/s40001-023-01626-1
|
[4]
|
Huang, Q., Chen, J., Zhao, Y., Huang, J. and Liu, H. (2025) Advancements in Electrochemical Glucose Sensors. Talanta, 281, Article 126897. https://doi.org/10.1016/j.talanta.2024.126897
|
[5]
|
Akter, R., Saha, P., Shah, S.S., Shaikh, M.N., Aziz, M.A. and Ahammad, A.J.S. (2022) Nanostructured Nickel‐Based Non‐Enzymatic Electrochemical Glucose Sensors. Chemistry—An Asian Journal, 17, e202200897. https://doi.org/10.1002/asia.202200897
|
[6]
|
Zhang, J., Liu, L., Yang, Y., Huang, Q., Li, D. and Zeng, D. (2021) A Review on Two-Dimensional Materials for Chemiresistive-and Fet-Type Gas Sensors. Physical Chemistry Chemical Physics, 23, 15420-15439. https://doi.org/10.1039/d1cp01890f
|
[7]
|
Xue, M., Mao, W., Chen, J., Zheng, F., Chen, W., Shen, W., et al. (2021) Application of Au or Ag Nanomaterials for Colorimetric Detection of Glucose. The Analyst, 146, 6726-6740. https://doi.org/10.1039/d1an01540k
|
[8]
|
Su, Y., Guo, H., Wang, Z., Long, Y., Li, W. and Tu, Y. (2018) Au@Cu2O Core-Shell Structure for High Sensitive Non-Enzymatic Glucose Sensor. Sensors and Actuators B: Chemical, 255, 2510-2519. https://doi.org/10.1016/j.snb.2017.09.056
|
[9]
|
Dayakar, T., Venkateswara, R.K., Vinodkumar, M., Bikshalu, K., Chakradhar, B. and Ramachandra, R.K. (2018) Novel Synthesis and Characterization of Ag@TiO2 Core Shell Nanostructure for Non-Enzymatic Glucose Sensor. Applied Surface Science, 435, 216-224. https://doi.org/10.1016/j.apsusc.2017.11.077
|
[10]
|
Lee, Y., Liao, B. and Weng, Y. (2018) Ascorbic Acid Sensor Using a PVA/Laccase-Au-NPs/Pt Electrode. RSC Advances, 8, 37872-37879. https://doi.org/10.1039/c8ra06280c
|
[11]
|
Atta, S. and Vo-Dinh, T. (2023) Ultra-Trace SERS Detection of Cocaine and Heroin Using Bimetallic Gold-Silver Nanostars (BGNS-Ag). Analytica Chimica Acta, 1251, Article 340956. https://doi.org/10.1016/j.aca.2023.340956
|
[12]
|
Ning, C., Wang, L., Tian, Y., Yin, B. and Ye, B. (2020) Multiple and Sensitive SERS Detection of Cancer-Related Exosomes Based on Gold-Silver Bimetallic Nanotrepangs. The Analyst, 145, 2795-2804. https://doi.org/10.1039/c9an02180a
|
[13]
|
Emir, G., Dilgin, Y., Şahin, S. and Akgul, C. (2024) A Self-Powered Enzymatic Glucose Sensor Utilizing Bimetallic Nanoparticle Composites Modified Pencil Graphite Electrodes as Cathode. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-024-05068-1
|
[14]
|
Yang, J., Chen, H., Zhu, C., Huang, Z., Ou, R., Gao, S., et al. (2022) A Miniature CuO Nanoarray Sensor for Noninvasive Detection of Trace Salivary Glucose. Analytical Biochemistry, 656, Article 114857. https://doi.org/10.1016/j.ab.2022.114857
|
[15]
|
Cao, X. (2022) CuO Nanowires Fabricated by Thermal Oxidation of Cu Foils Towards Electrochemical Detection of Glucose. Micromachines, 13, Article 2010. https://doi.org/10.3390/mi13112010
|
[16]
|
Li, C., Kurniawan, M., Sun, D., Tabata, H. and Delaunay, J. (2014) Nanoporous CuO Layer Modified Cu Electrode for High Performance Enzymatic and Non-Enzymatic Glucose Sensing. Nanotechnology, 26, Article 015503. https://doi.org/10.1088/0957-4484/26/1/015503
|
[17]
|
Naikoo, G.A., Bano, M., Arshad, F., Hassan, I.U., BaOmar, F., Alfagih, I.M., et al. (2023) Non-Enzymatic Glucose Sensors Composed of Trimetallic CuO/Ag/NiO Based Composite Materials. Scientific Reports, 13, Article No. 6210. https://doi.org/10.1038/s41598-023-32719-w
|
[18]
|
He, G., Tian, L., Cai, Y., Wu, S., Su, Y., Yan, H., et al. (2018) Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO. Nanoscale Research Letters, 13, Article No. 3. https://doi.org/10.1186/s11671-017-2406-0
|
[19]
|
Yang, H., Hu, Y., Yin, X., Huang, J., Qiao, C., Hu, Z., et al. (2023) A Disposable and Sensitive Non-Enzymatic Glucose Sensor Based on a 3D-Mn-Doped NiO Nanoflower-Modified Flexible Electrode. The Analyst, 148, 153-162. https://doi.org/10.1039/d2an01495e
|
[20]
|
Zhang, X., Xu, Y., Wang, X., Chen, T., Yao, Q., Chang, S., et al. (2024) Enhanced Immunochromatographic Assay Using Multifunctional Gold@Iridium Nanoflower with Colorimetric Photothermal Catalytic Activity for the Detection of Staphylococcal Enterotoxin B. Food Chemistry, 460, Article 140710. https://doi.org/10.1016/j.foodchem.2024.140710
|
[21]
|
Shoji, T., Iida, M., Matsumoto, M., Yuyama, K. and Tsuboi, Y. (2024) Measurements of Spontaneous and External Stimuli Molecular Release Processes from a Single Optically Trapped Poly(Lactic-co-Glycolic) Acid Microparticle and a Liposome Containing Gold Nanospheres. Analytical Chemistry, 96, 12957-12965. https://doi.org/10.1021/acs.analchem.3c05950
|
[22]
|
Zhao, Y., Jiang, Y., Mo, Y., Zhai, Y., Liu, J., Strzelecki, A.C., et al. (2023) Boosting Electrochemical Catalysis and Nonenzymatic Sensing toward Glucose by Single‐Atom Pt Supported on Cu@CuO Core-Shell Nanowires. Small, 19, Article 2207240. https://doi.org/10.1002/smll.202207240
|
[23]
|
Wang, C., Zhou, E., He, W., Deng, X., Huang, J., Ding, M., et al. (2017) NiCo2O4-Based Supercapacitor Nanomaterials. Nanomaterials, 7, Article 41. https://doi.org/10.3390/nano7020041
|
[24]
|
Yan, J., Wang, P., Lv, T., Fang, H., Wang, H., Wang, S., et al. (2020) In-situ Growth of Broussonetia-Like NiCo2O4 on Carbon Cloth with Tailored Aqueous Capacitance. Journal of Nanoscience and Nanotechnology, 20, 909-917. https://doi.org/10.1166/jnn.2020.16729
|
[25]
|
Wei, M., Qiao, Y., Zhao, H., Liang, J., Li, T., Luo, Y., et al. (2020) Electrochemical Non-Enzymatic Glucose Sensors: Recent Progress and Perspectives. Chemical Communications, 56, 14553-14569. https://doi.org/10.1039/d0cc05650b
|
[26]
|
Liu, Y., Zeng, S., Ji, W., Yao, H., Lin, L., Cui, H., et al. (2021) Emerging Theranostic Nanomaterials in Diabetes and Its Complications. Advanced Science, 9, Article 2102466. https://doi.org/10.1002/advs.202102466
|
[27]
|
Xu, J., Ma, J., Peng, Y., Cao, S., Zhang, S. and Pang, H. (2023) Applications of Metal Nanoparticles/Metal-Organic Frameworks Composites in Sensing Field. Chinese Chemical Letters, 34, Article 107527. https://doi.org/10.1016/j.cclet.2022.05.041
|
[28]
|
Zahra, T., Javeria, U., Jamal, H., Baig, M.M., Akhtar, F. and Kamran, U. (2024) A Review of Biocompatible Polymer-Functionalized Two-Dimensional Materials: Emerging Contenders for Biosensors and Bioelectronics Applications. Analytica Chimica Acta, 1316, Article 342880. https://doi.org/10.1016/j.aca.2024.342880
|
[29]
|
Wang, X., Wang, Y. and Ying, Y. (2021) Recent Advances in Sensing Applications of Metal Nanoparticle/Metal-Organic Framework Composites. TrAC Trends in Analytical Chemistry, 143, Article 116395. https://doi.org/10.1016/j.trac.2021.116395
|
[30]
|
Cui, X., Li, J., Li, Y., Liu, M., Qiao, J., Wang, D., et al. (2022) Detection of Glucose in Diabetic Tears by Using Gold Nanoparticles and Mxene Composite Surface-Enhanced Raman Scattering Substrates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 266, Article 120432. https://doi.org/10.1016/j.saa.2021.120432
|
[31]
|
Li, T., Chen, X., Fu, Y. and Liao, C. (2023) Colorimetric Sweat Analysis Using Wearable Hydrogel Patch Sensors for Detection of Chloride and Glucose. Analytical Methods, 15, 5855-5866. https://doi.org/10.1039/d3ay01738a
|
[32]
|
Zhang, S., Zhao, W., Zeng, J., He, Z., Wang, X., Zhu, Z., et al. (2023) Wearable Non-Invasive Glucose Sensors Based on Metallic Nanomaterials. Materials Today Bio, 20, Article 100638. https://doi.org/10.1016/j.mtbio.2023.100638
|
[33]
|
Zhang, Q., Li, P., Wu, J., Peng, Y. and Pang, H. (2023) Pyridine‐Regulated Lamellar Nickel‐Based Metal-Organic Framework (Ni‐MOF) for Nonenzymatic Electrochemical Glucose Sensor. Advanced Science, 10, Article 2304102. https://doi.org/10.1002/advs.202304102
|
[34]
|
Zafar, H., Channa, A., Jeoti, V. and Stojanović, G.M. (2022) Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors, 22, Article 638. https://doi.org/10.3390/s22020638
|
[35]
|
Holzer, R., Bloch, W. and Brinkmann, C. (2022) Continuous Glucose Monitoring in Healthy Adults-Possible Applications in Health Care, Wellness, and Sports. Sensors, 22, Article 2030. https://doi.org/10.3390/s22052030
|
[36]
|
Yao, Y., Chen, J., Guo, Y., Lv, T., Chen, Z., Li, N., et al. (2021) Integration of Interstitial Fluid Extraction and Glucose Detection in One Device for Wearable Non-Invasive Blood Glucose Sensors. Biosensors and Bioelectronics, 179, Article 113078. https://doi.org/10.1016/j.bios.2021.113078
|