|
[1]
|
Tang, L., Zeng, D., Ling, Z., Zhang, Z. and Fang, X. (2023) Research Progress of Phase Change Materials and Their Application Systems for Cool Storage. Chemical Industry and Engineering Progress, 42, 4322-4339.
|
|
[2]
|
Elshaer, A.M., Soliman, A.M.A., Yousef, M.S., Kassab, M. and Hawwash, A.A. (2024) Experimental Study about the Impact of Open Cell Aluminium Foam (OCAF) Insertion in Salt-Based Phase Change Material (PCM) for Electronics Thermal Management. Thermal Science and Engineering Progress, 47, Article 102311. [Google Scholar] [CrossRef]
|
|
[3]
|
Lyu, J., Liu, Z., Wu, X., Li, G., Fang, D. and Zhang, X. (2019) Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano, 13, 2236-2245. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Deng, C., Dong, H., Sun, K., Kou, Y., Liu, H., Jian, W., et al. (2023) Synchronous Visual/infrared Stealth Using an Intrinsically Flexible Self-Healing Phase Change Film. Advanced Functional Materials, 33, Article 2212259. [Google Scholar] [CrossRef]
|
|
[5]
|
Zhou, Y., Yang, J., Bai, L., Bao, R., Yang, M. and Yang, W. (2022) Flexible Phase Change Hydrogels for Mid-/Low-Temperature Infrared Stealth. Chemical Engineering Journal, 446, Article 137463. [Google Scholar] [CrossRef]
|
|
[6]
|
Zare, M. and Mikkonen, K.S. (2023) Phase Change Materials for Life Science Applications. Advanced Functional Materials, 33, Article 2213455. [Google Scholar] [CrossRef]
|
|
[7]
|
Jing, Y., Zhao, Z., Cao, X., Sun, Q., Yuan, Y. and Li, T. (2023) Ultraflexible, Cost-Effective and Scalable Polymer-Based Phase Change Composites via Chemical Cross-Linking for Wearable Thermal Management. Nature Communications, 14, Article No. 8060. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lin, Y., Kang, Q., Liu, Y., Zhu, Y., Jiang, P., Mai, Y., et al. (2023) Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators. Nano-Micro Letters, 15, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Aftab, W., Mahmood, A., Guo, W., Yousaf, M., Tabassum, H., Huang, X., et al. (2019) Polyurethane-Based Flexible and Conductive Phase Change Composites for Energy Conversion and Storage. Energy Storage Materials, 20, 401-409. [Google Scholar] [CrossRef]
|
|
[10]
|
Tang, Z., Gao, H., Chen, X., Zhang, Y., Li, A. and Wang, G. (2021) Advanced Multifunctional Composite Phase Change Materials Based on Photo-Responsive Materials. Nano Energy, 80, Article 105454. [Google Scholar] [CrossRef]
|
|
[11]
|
Wu, Y., Chen, M., Zhao, G., Qi, D., Zhang, X., Li, Y., et al. (2024) Recyclable Solid-Solid Phase Change Materials with Superior Latent Heat via Reversible Anhydride-Alcohol Crosslinking for Efficient Thermal Storage. Advanced Materials, 36, Article 2311717. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. [Google Scholar] [CrossRef]
|
|
[13]
|
Usman, A., Xiong, F., Aftab, W., Qin, M. and Zou, R. (2022) Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. Advanced Materials, 34, Article 2202457. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, L., Zhang, Y., Zhang, S. and Tang, B. (2023) Advanced Phase Change Materials from Natural Perspectives: Structural Design and Functional Applications. Advanced Science, 10, Article 2207652. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liu, C., Zhang, J., Liu, J., Tan, Z., Cao, Y., Li, X., et al. (2021) Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer. Angewandte Chemie, 133, 14097-14106. [Google Scholar] [CrossRef]
|
|
[16]
|
Shchukina, E.M., Graham, M., Zheng, Z. and Shchukin, D.G. (2018) Nanoencapsulation of Phase Change Materials for Advanced Thermal Energy Storage Systems. Chemical Society Reviews, 47, 4156-4175. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Salunkhe, P.B. and Shembekar, P.S. (2012) A Review on Effect of Phase Change Material Encapsulation on the Thermal Performance of a System. Renewable and Sustainable Energy Reviews, 16, 5603-5616. [Google Scholar] [CrossRef]
|
|
[18]
|
Fallahi, A., Guldentops, G., Tao, M., Granados-Focil, S. and Van Dessel, S. (2017) Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Applied Thermal Engineering, 127, 1427-1441. [Google Scholar] [CrossRef]
|
|
[19]
|
Qiu, J., Huo, D., Xue, J., Zhu, G., Liu, H. and Xia, Y. (2019) Encapsulation of a Phase-Change Material in Nanocapsules with a Well-Defined Hole in the Wall for the Controlled Release of Drugs. Angewandte Chemie International Edition, 58, 10606-10611. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Raj, C.R., Suresh, S., Bhavsar, R.R. and Singh, V.K. (2019) Recent Developments in Thermo-Physical Property Enhancement and Applications of Solid-Solid Phase Change Materials. Journal of Thermal Analysis and Calorimetry, 139, 3023-3049. [Google Scholar] [CrossRef]
|
|
[21]
|
Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. [Google Scholar] [CrossRef]
|
|
[22]
|
Yang, Y., Cai, X. and Kong, W. (2023) A Novel Intrinsic Photothermal and Flexible Solid-Solid Phase Change Materials with Super Mechanical Toughness and Multi-Recyclability. Applied Energy, 332, Article 120564. [Google Scholar] [CrossRef]
|
|
[23]
|
Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. [Google Scholar] [CrossRef]
|
|
[24]
|
Wang, X., Zhang, L., Yu, Y., Jia, L., Sam Mannan, M., Chen, Y., et al. (2015) Nano-Encapsulated PCM via Pickering Emulsification. Scientific Reports, 5, Article No. 13357. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
de Cortazar, M.G. and Rodríguez, R. (2012) Thermal Storage Nanocapsules by Miniemulsion Polymerization. Journal of Applied Polymer Science, 127, 5059-5064. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, H., Sun, S., Wang, X. and Wu, D. (2011) Fabrication of Microencapsulated Phase Change Materials Based on N-Octadecane Core and Silica Shell through Interfacial Polycondensation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 104-117. [Google Scholar] [CrossRef]
|
|
[27]
|
Guo, X., Cao, J., Peng, Y. and Liu, R. (2016) Incorporation of Microencapsulated Dodecanol into Wood Flour/High-Density Polyethylene Composite as a Phase Change Material for Thermal Energy Storage. Materials & Design, 89, 1325-1334. [Google Scholar] [CrossRef]
|
|
[28]
|
Yuan, K., Wang, H., Liu, J., Fang, X. and Zhang, Z. (2015) Novel Slurry Containing Graphene Oxide-Grafted Microencapsulated Phase Change Material with Enhanced Thermo-Physical Properties and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 143, 29-37. [Google Scholar] [CrossRef]
|
|
[29]
|
Aftab, W., Huang, X., Wu, W., Liang, Z., Mahmood, A. and Zou, R. (2018) Nanoconfined Phase Change Materials for Thermal Energy Applications. Energy & Environmental Science, 11, 1392-1424. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, Q., Wang, H., Ling, Z., Fang, X. and Zhang, Z. (2015) Rt100/Expand Graphite Composite Phase Change Material with Excellent Structure Stability, Photo-Thermal Performance and Good Thermal Reliability. Solar Energy Materials and Solar Cells, 140, 158-166. [Google Scholar] [CrossRef]
|
|
[31]
|
Wei, X. and Wang, J. (2016) Study on Application Properties of Modified Montmorillonite as Phase Change Material for Energy Storage. Advances in Polymer Technology, 37, 857-868. [Google Scholar] [CrossRef]
|
|
[32]
|
Zhang, N., Yuan, Y., Wang, X., Cao, X., Yang, X. and Hu, S. (2013) Preparation and Characterization of Lauric-Myristic-Palmitic Acid Ternary Eutectic Mixtures/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage. Chemical Engineering Journal, 231, 214-219. [Google Scholar] [CrossRef]
|
|
[33]
|
Karaman, S., Karaipekli, A., Sari, A. and Biçer, A. (2011) Polyethylene Glycol (PEG)/Diatomite Composite as a Novel Form-Stable Phase Change Material for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 95, 1647-1653. [Google Scholar] [CrossRef]
|
|
[34]
|
Wen, R., Zhang, X., Huang, Y., Yin, Z., Huang, Z., Fang, M., et al. (2017) Preparation and Properties of Fatty Acid Eutectics/Expanded Perlite and Expanded Vermiculite Shape-Stabilized Materials for Thermal Energy Storage in Buildings. Energy and Buildings, 139, 197-204. [Google Scholar] [CrossRef]
|
|
[35]
|
Yang, X., Yuan, Y., Zhang, N., Cao, X. and Liu, C. (2014) Preparation and Properties of Myristic-Palmitic-Stearic Acid/Expanded Graphite Composites as Phase Change Materials for Energy Storage. Solar Energy, 99, 259-266. [Google Scholar] [CrossRef]
|
|
[36]
|
Cai, Z., Liu, J., Zhou, Y., Dai, L., Wang, H., Liao, C., et al. (2021) Flexible Phase Change Materials with Enhanced Tensile Strength, Thermal Conductivity and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 219, Article 110728. [Google Scholar] [CrossRef]
|
|
[37]
|
Lee, J., Han, H., Noh, D., Lee, J., Lim, D.D., Park, J., et al. (2024) Multiscale Porous Architecture Consisting of Graphene Aerogels and Metastructures Enabling Robust Thermal and Mechanical Functionalities of Phase Change Materials. Advanced Functional Materials, 34, Article 2405625. [Google Scholar] [CrossRef]
|
|
[38]
|
Hu, W., Shi, X., Gao, M., Huang, C., Huang, T., Zhang, N., et al. (2021) Light-Actuated Shape Memory and Self-Healing Phase Change Composites Supported by Mxene/Waterborne Polyurethane Aerogel for Superior Solar-Thermal Energy Storage. Composites Communications, 28, Article 100980. [Google Scholar] [CrossRef]
|
|
[39]
|
Deng, J., Li, X., Li, C., Wang, T., Liang, R., Li, S., et al. (2023) Multifunctional Flexible Composite Phase Change Material with High Anti-Leakage and Thermal Conductivity Performances for Battery Thermal Management. Journal of Energy Storage, 72, Article 108313. [Google Scholar] [CrossRef]
|
|
[40]
|
Ge, X., Tay, G., Hou, Y., Zhao, Y., Sugumaran, P.J., Thai, B.Q., et al. (2023) Flexible and Leakage-Proof Phase Change Composite for Microwave Attenuation and Thermal Management. Carbon, 210, Article 118084. [Google Scholar] [CrossRef]
|
|
[41]
|
Jiang, X., Deng, C., Xu, D. and Luo, X. (2023) Epoxy Composites Based on Phase Change Microcapsules with High Thermal Conductivity and Storage Efficiency by Dispersing with Cellulose Nanofibrils. Journal of Energy Storage, 74, Article 109382. [Google Scholar] [CrossRef]
|
|
[42]
|
Yan, B., Li, M., Lu, H., Pi, M., Mu, J., Cui, W., et al. (2024) Composite Aerogel Incorporating Low Temperature Phase Change Microcapsules for Enhanced Thermal Insulation. Chemical Engineering Journal, 481, Article 148540. [Google Scholar] [CrossRef]
|
|
[43]
|
Saraç, E.G., Öner, E. and Kahraman, M.V. (2019) Microencapsulated Organic Coconut Oil as a Natural Phase Change Material for Thermo-Regulating Cellulosic Fabrics. Cellulose, 26, 8939-8950. [Google Scholar] [CrossRef]
|
|
[44]
|
Liang, C., Lingling, X., Hongbo, S. and Zhibin, Z. (2009) Microencapsulation of Butyl Stearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System. Energy Conversion and Management, 50, 723-729. [Google Scholar] [CrossRef]
|
|
[45]
|
Nikpourian, H., Bahramian, A.R. and Abdollahi, M. (2020) On the Thermal Performance of a Novel PCM Nanocapsule: The Effect of Core/Shell. Renewable Energy, 151, 322-331. [Google Scholar] [CrossRef]
|
|
[46]
|
Kou, Y., Sun, K., Luo, J., Zhou, F., Huang, H., Wu, Z., et al. (2021) An Intrinsically Flexible Phase Change Film for Wearable Thermal Managements. Energy Storage Materials, 34, 508-514. [Google Scholar] [CrossRef]
|
|
[47]
|
Cui, M., Tian, C., Yang, Y., Huang, L., Liu, Q., Yang, N., et al. (2023) Intrinsic Photothermal Phase Change Materials with Enhanced Toughness and Flexibility for Thermal Management in Extreme Environments. Chemical Engineering Journal, 475, Article 146091. [Google Scholar] [CrossRef]
|
|
[48]
|
Lai, J., Mei, J., Jia, X., Li, C., You, X. and Bao, Z. (2016) A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Advanced Materials, 28, 8277-8282. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bao, C., Jiang, Y., Zhang, H., Lu, X. and Sun, J. (2018) Room-Temperature Self-Healing and Recyclable Tough Polymer Composites Using Nitrogen-Coordinated Boroxines. Advanced Functional Materials, 28, Article 1800560. [Google Scholar] [CrossRef]
|
|
[50]
|
Cui, Y., Li, F. and Zhang, X. (2021) Controlling Fluorescence Resonance Energy Transfer of Donor-Acceptor Dyes by Diels-Alder Dynamic Covalent Bonds. Chemical Communications, 57, 3275-3278. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Xiang, S., Hua, Q., Gong, W., Xie, N., Zhao, P., Cheng, G.J., et al. (2019) Photoplastic Transformation Based on Dynamic Covalent Chemistry. ACS Applied Materials & Interfaces, 11, 23623-23631. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kim, S., Jeon, H., Shin, S., Park, S., Jegal, J., Hwang, S.Y., et al. (2017) Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Advanced Materials, 30, Article 1705145. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Deng, J., Kuang, X., Liu, R., Ding, W., Wang, A.C., Lai, Y., et al. (2018) Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Advanced Materials, 30, Article 1705918. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhu, H., Gu, M., Dai, X., Feng, S., Yang, T., Fan, Y., et al. (2024) Mechanically Strong, Healable, and Recyclable Supramolecular Solid–solid Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Chemical Engineering Journal, 494, Article 153235. [Google Scholar] [CrossRef]
|
|
[55]
|
Du, X., Jin, L., Deng, S., Zhou, M., Du, Z., Cheng, X., et al. (2021) Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Applied Materials & Interfaces, 13, 42991-43001. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. [Google Scholar] [CrossRef]
|
|
[57]
|
Tian, C., Ning, J., Yang, Y., Zeng, F., Huang, L., Liu, Q., et al. (2022) Super Tough and Stable Solid-Solid Phase Change Material Based on Π-Π Stacking. Chemical Engineering Journal, 429, Article 132447. [Google Scholar] [CrossRef]
|
|
[58]
|
Wang, C., Geng, X., Chen, J., Wang, H., Wei, Z., Huang, B., et al. (2023) Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management. Advanced Materials, 36, Article 2309723. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Cao, Y., Meng, Y., Jiang, Y., Qian, S., Fan, D., Zhou, X., et al. (2022) Healable Supramolecular Phase Change Polymers for Thermal Energy Harvesting and Storage. Chemical Engineering Journal, 433, Article 134549. [Google Scholar] [CrossRef]
|
|
[60]
|
Meng, Y., Liu, Y., Wan, Z., Huan, Y., Guo, Q., Fan, D., et al. (2023) A Phase Change Supramolecular Assembly with a Rapid Self-Healing Behavior via Thermally Actuated Reversible Associations. Chemical Engineering Journal, 453, Article 139967. [Google Scholar] [CrossRef]
|
|
[61]
|
Miao, P., Liu, J., He, M., Leng, X. and Li, Y. (2023) Bio-Based Non-Isocyanate Polyurethane with Closed-Loop Recyclability and Its Potential Application. Chemical Engineering Journal, 475, Article 146398. [Google Scholar] [CrossRef]
|