[1]
|
Tang, L., Zeng, D., Ling, Z., Zhang, Z. and Fang, X. (2023) Research Progress of Phase Change Materials and Their Application Systems for Cool Storage. Chemical Industry and Engineering Progress, 42, 4322-4339.
|
[2]
|
Elshaer, A.M., Soliman, A.M.A., Yousef, M.S., Kassab, M. and Hawwash, A.A. (2024) Experimental Study about the Impact of Open Cell Aluminium Foam (OCAF) Insertion in Salt-Based Phase Change Material (PCM) for Electronics Thermal Management. Thermal Science and Engineering Progress, 47, Article 102311. https://doi.org/10.1016/j.tsep.2023.102311
|
[3]
|
Lyu, J., Liu, Z., Wu, X., Li, G., Fang, D. and Zhang, X. (2019) Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano, 13, 2236-2245. https://doi.org/10.1021/acsnano.8b08913
|
[4]
|
Deng, C., Dong, H., Sun, K., Kou, Y., Liu, H., Jian, W., et al. (2023) Synchronous Visual/infrared Stealth Using an Intrinsically Flexible Self-Healing Phase Change Film. Advanced Functional Materials, 33, Article 2212259. https://doi.org/10.1002/adfm.202212259
|
[5]
|
Zhou, Y., Yang, J., Bai, L., Bao, R., Yang, M. and Yang, W. (2022) Flexible Phase Change Hydrogels for Mid-/Low-Temperature Infrared Stealth. Chemical Engineering Journal, 446, Article 137463. https://doi.org/10.1016/j.cej.2022.137463
|
[6]
|
Zare, M. and Mikkonen, K.S. (2023) Phase Change Materials for Life Science Applications. Advanced Functional Materials, 33, Article 2213455. https://doi.org/10.1002/adfm.202213455
|
[7]
|
Jing, Y., Zhao, Z., Cao, X., Sun, Q., Yuan, Y. and Li, T. (2023) Ultraflexible, Cost-Effective and Scalable Polymer-Based Phase Change Composites via Chemical Cross-Linking for Wearable Thermal Management. Nature Communications, 14, Article No. 8060. https://doi.org/10.1038/s41467-023-43772-4
|
[8]
|
Lin, Y., Kang, Q., Liu, Y., Zhu, Y., Jiang, P., Mai, Y., et al. (2023) Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators. Nano-Micro Letters, 15, Article No. 31. https://doi.org/10.1007/s40820-022-01003-3
|
[9]
|
Aftab, W., Mahmood, A., Guo, W., Yousaf, M., Tabassum, H., Huang, X., et al. (2019) Polyurethane-Based Flexible and Conductive Phase Change Composites for Energy Conversion and Storage. Energy Storage Materials, 20, 401-409. https://doi.org/10.1016/j.ensm.2018.10.014
|
[10]
|
Tang, Z., Gao, H., Chen, X., Zhang, Y., Li, A. and Wang, G. (2021) Advanced Multifunctional Composite Phase Change Materials Based on Photo-Responsive Materials. Nano Energy, 80, Article 105454. https://doi.org/10.1016/j.nanoen.2020.105454
|
[11]
|
Wu, Y., Chen, M., Zhao, G., Qi, D., Zhang, X., Li, Y., et al. (2024) Recyclable Solid-Solid Phase Change Materials with Superior Latent Heat via Reversible Anhydride-Alcohol Crosslinking for Efficient Thermal Storage. Advanced Materials, 36, Article 2311717. https://doi.org/10.1002/adma.202311717
|
[12]
|
Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. https://doi.org/10.1016/j.ensm.2021.07.019
|
[13]
|
Usman, A., Xiong, F., Aftab, W., Qin, M. and Zou, R. (2022) Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. Advanced Materials, 34, Article 2202457. https://doi.org/10.1002/adma.202202457
|
[14]
|
Liu, L., Zhang, Y., Zhang, S. and Tang, B. (2023) Advanced Phase Change Materials from Natural Perspectives: Structural Design and Functional Applications. Advanced Science, 10, Article 2207652. https://doi.org/10.1002/advs.202207652
|
[15]
|
Liu, C., Zhang, J., Liu, J., Tan, Z., Cao, Y., Li, X., et al. (2021) Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer. Angewandte Chemie, 133, 14097-14106. https://doi.org/10.1002/ange.202103186
|
[16]
|
Shchukina, E.M., Graham, M., Zheng, Z. and Shchukin, D.G. (2018) Nanoencapsulation of Phase Change Materials for Advanced Thermal Energy Storage Systems. Chemical Society Reviews, 47, 4156-4175. https://doi.org/10.1039/c8cs00099a
|
[17]
|
Salunkhe, P.B. and Shembekar, P.S. (2012) A Review on Effect of Phase Change Material Encapsulation on the Thermal Performance of a System. Renewable and Sustainable Energy Reviews, 16, 5603-5616. https://doi.org/10.1016/j.rser.2012.05.037
|
[18]
|
Fallahi, A., Guldentops, G., Tao, M., Granados-Focil, S. and Van Dessel, S. (2017) Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Applied Thermal Engineering, 127, 1427-1441. https://doi.org/10.1016/j.applthermaleng.2017.08.161
|
[19]
|
Qiu, J., Huo, D., Xue, J., Zhu, G., Liu, H. and Xia, Y. (2019) Encapsulation of a Phase-Change Material in Nanocapsules with a Well-Defined Hole in the Wall for the Controlled Release of Drugs. Angewandte Chemie International Edition, 58, 10606-10611. https://doi.org/10.1002/anie.201904549
|
[20]
|
Raj, C.R., Suresh, S., Bhavsar, R.R. and Singh, V.K. (2019) Recent Developments in Thermo-Physical Property Enhancement and Applications of Solid-Solid Phase Change Materials. Journal of Thermal Analysis and Calorimetry, 139, 3023-3049. https://doi.org/10.1007/s10973-019-08703-w
|
[21]
|
Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. https://doi.org/10.1002/adfm.202312019
|
[22]
|
Yang, Y., Cai, X. and Kong, W. (2023) A Novel Intrinsic Photothermal and Flexible Solid-Solid Phase Change Materials with Super Mechanical Toughness and Multi-Recyclability. Applied Energy, 332, Article 120564. https://doi.org/10.1016/j.apenergy.2022.120564
|
[23]
|
Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. https://doi.org/10.1016/j.ensm.2021.07.019
|
[24]
|
Wang, X., Zhang, L., Yu, Y., Jia, L., Sam Mannan, M., Chen, Y., et al. (2015) Nano-Encapsulated PCM via Pickering Emulsification. Scientific Reports, 5, Article No. 13357. https://doi.org/10.1038/srep13357
|
[25]
|
de Cortazar, M.G. and Rodríguez, R. (2012) Thermal Storage Nanocapsules by Miniemulsion Polymerization. Journal of Applied Polymer Science, 127, 5059-5064. https://doi.org/10.1002/app.38124
|
[26]
|
Zhang, H., Sun, S., Wang, X. and Wu, D. (2011) Fabrication of Microencapsulated Phase Change Materials Based on N-Octadecane Core and Silica Shell through Interfacial Polycondensation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 104-117. https://doi.org/10.1016/j.colsurfa.2011.08.043
|
[27]
|
Guo, X., Cao, J., Peng, Y. and Liu, R. (2016) Incorporation of Microencapsulated Dodecanol into Wood Flour/High-Density Polyethylene Composite as a Phase Change Material for Thermal Energy Storage. Materials & Design, 89, 1325-1334. https://doi.org/10.1016/j.matdes.2015.10.068
|
[28]
|
Yuan, K., Wang, H., Liu, J., Fang, X. and Zhang, Z. (2015) Novel Slurry Containing Graphene Oxide-Grafted Microencapsulated Phase Change Material with Enhanced Thermo-Physical Properties and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 143, 29-37. https://doi.org/10.1016/j.solmat.2015.06.034
|
[29]
|
Aftab, W., Huang, X., Wu, W., Liang, Z., Mahmood, A. and Zou, R. (2018) Nanoconfined Phase Change Materials for Thermal Energy Applications. Energy & Environmental Science, 11, 1392-1424. https://doi.org/10.1039/c7ee03587j
|
[30]
|
Zhang, Q., Wang, H., Ling, Z., Fang, X. and Zhang, Z. (2015) Rt100/Expand Graphite Composite Phase Change Material with Excellent Structure Stability, Photo-Thermal Performance and Good Thermal Reliability. Solar Energy Materials and Solar Cells, 140, 158-166. https://doi.org/10.1016/j.solmat.2015.04.008
|
[31]
|
Wei, X. and Wang, J. (2016) Study on Application Properties of Modified Montmorillonite as Phase Change Material for Energy Storage. Advances in Polymer Technology, 37, 857-868. https://doi.org/10.1002/adv.21731
|
[32]
|
Zhang, N., Yuan, Y., Wang, X., Cao, X., Yang, X. and Hu, S. (2013) Preparation and Characterization of Lauric-Myristic-Palmitic Acid Ternary Eutectic Mixtures/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage. Chemical Engineering Journal, 231, 214-219. https://doi.org/10.1016/j.cej.2013.07.008
|
[33]
|
Karaman, S., Karaipekli, A., Sari, A. and Biçer, A. (2011) Polyethylene Glycol (PEG)/Diatomite Composite as a Novel Form-Stable Phase Change Material for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 95, 1647-1653. https://doi.org/10.1016/j.solmat.2011.01.022
|
[34]
|
Wen, R., Zhang, X., Huang, Y., Yin, Z., Huang, Z., Fang, M., et al. (2017) Preparation and Properties of Fatty Acid Eutectics/Expanded Perlite and Expanded Vermiculite Shape-Stabilized Materials for Thermal Energy Storage in Buildings. Energy and Buildings, 139, 197-204. https://doi.org/10.1016/j.enbuild.2017.01.025
|
[35]
|
Yang, X., Yuan, Y., Zhang, N., Cao, X. and Liu, C. (2014) Preparation and Properties of Myristic-Palmitic-Stearic Acid/Expanded Graphite Composites as Phase Change Materials for Energy Storage. Solar Energy, 99, 259-266. https://doi.org/10.1016/j.solener.2013.11.021
|
[36]
|
Cai, Z., Liu, J., Zhou, Y., Dai, L., Wang, H., Liao, C., et al. (2021) Flexible Phase Change Materials with Enhanced Tensile Strength, Thermal Conductivity and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 219, Article 110728. https://doi.org/10.1016/j.solmat.2020.110728
|
[37]
|
Lee, J., Han, H., Noh, D., Lee, J., Lim, D.D., Park, J., et al. (2024) Multiscale Porous Architecture Consisting of Graphene Aerogels and Metastructures Enabling Robust Thermal and Mechanical Functionalities of Phase Change Materials. Advanced Functional Materials, 34, Article 2405625. https://doi.org/10.1002/adfm.202405625
|
[38]
|
Hu, W., Shi, X., Gao, M., Huang, C., Huang, T., Zhang, N., et al. (2021) Light-Actuated Shape Memory and Self-Healing Phase Change Composites Supported by Mxene/Waterborne Polyurethane Aerogel for Superior Solar-Thermal Energy Storage. Composites Communications, 28, Article 100980. https://doi.org/10.1016/j.coco.2021.100980
|
[39]
|
Deng, J., Li, X., Li, C., Wang, T., Liang, R., Li, S., et al. (2023) Multifunctional Flexible Composite Phase Change Material with High Anti-Leakage and Thermal Conductivity Performances for Battery Thermal Management. Journal of Energy Storage, 72, Article 108313. https://doi.org/10.1016/j.est.2023.108313
|
[40]
|
Ge, X., Tay, G., Hou, Y., Zhao, Y., Sugumaran, P.J., Thai, B.Q., et al. (2023) Flexible and Leakage-Proof Phase Change Composite for Microwave Attenuation and Thermal Management. Carbon, 210, Article 118084. https://doi.org/10.1016/j.carbon.2023.118084
|
[41]
|
Jiang, X., Deng, C., Xu, D. and Luo, X. (2023) Epoxy Composites Based on Phase Change Microcapsules with High Thermal Conductivity and Storage Efficiency by Dispersing with Cellulose Nanofibrils. Journal of Energy Storage, 74, Article 109382. https://doi.org/10.1016/j.est.2023.109382
|
[42]
|
Yan, B., Li, M., Lu, H., Pi, M., Mu, J., Cui, W., et al. (2024) Composite Aerogel Incorporating Low Temperature Phase Change Microcapsules for Enhanced Thermal Insulation. Chemical Engineering Journal, 481, Article 148540. https://doi.org/10.1016/j.cej.2024.148540
|
[43]
|
Saraç, E.G., Öner, E. and Kahraman, M.V. (2019) Microencapsulated Organic Coconut Oil as a Natural Phase Change Material for Thermo-Regulating Cellulosic Fabrics. Cellulose, 26, 8939-8950. https://doi.org/10.1007/s10570-019-02701-9
|
[44]
|
Liang, C., Lingling, X., Hongbo, S. and Zhibin, Z. (2009) Microencapsulation of Butyl Stearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System. Energy Conversion and Management, 50, 723-729. https://doi.org/10.1016/j.enconman.2008.09.044
|
[45]
|
Nikpourian, H., Bahramian, A.R. and Abdollahi, M. (2020) On the Thermal Performance of a Novel PCM Nanocapsule: The Effect of Core/Shell. Renewable Energy, 151, 322-331. https://doi.org/10.1016/j.renene.2019.11.027
|
[46]
|
Kou, Y., Sun, K., Luo, J., Zhou, F., Huang, H., Wu, Z., et al. (2021) An Intrinsically Flexible Phase Change Film for Wearable Thermal Managements. Energy Storage Materials, 34, 508-514. https://doi.org/10.1016/j.ensm.2020.10.014
|
[47]
|
Cui, M., Tian, C., Yang, Y., Huang, L., Liu, Q., Yang, N., et al. (2023) Intrinsic Photothermal Phase Change Materials with Enhanced Toughness and Flexibility for Thermal Management in Extreme Environments. Chemical Engineering Journal, 475, Article 146091. https://doi.org/10.1016/j.cej.2023.146091
|
[48]
|
Lai, J., Mei, J., Jia, X., Li, C., You, X. and Bao, Z. (2016) A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Advanced Materials, 28, 8277-8282. https://doi.org/10.1002/adma.201602332
|
[49]
|
Bao, C., Jiang, Y., Zhang, H., Lu, X. and Sun, J. (2018) Room-Temperature Self-Healing and Recyclable Tough Polymer Composites Using Nitrogen-Coordinated Boroxines. Advanced Functional Materials, 28, Article 1800560. https://doi.org/10.1002/adfm.201800560
|
[50]
|
Cui, Y., Li, F. and Zhang, X. (2021) Controlling Fluorescence Resonance Energy Transfer of Donor-Acceptor Dyes by Diels-Alder Dynamic Covalent Bonds. Chemical Communications, 57, 3275-3278. https://doi.org/10.1039/d1cc00165e
|
[51]
|
Xiang, S., Hua, Q., Gong, W., Xie, N., Zhao, P., Cheng, G.J., et al. (2019) Photoplastic Transformation Based on Dynamic Covalent Chemistry. ACS Applied Materials & Interfaces, 11, 23623-23631. https://doi.org/10.1021/acsami.9b06608
|
[52]
|
Kim, S., Jeon, H., Shin, S., Park, S., Jegal, J., Hwang, S.Y., et al. (2017) Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Advanced Materials, 30, Article 1705145. https://doi.org/10.1002/adma.201705145
|
[53]
|
Deng, J., Kuang, X., Liu, R., Ding, W., Wang, A.C., Lai, Y., et al. (2018) Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Advanced Materials, 30, Article 1705918. https://doi.org/10.1002/adma.201705918
|
[54]
|
Zhu, H., Gu, M., Dai, X., Feng, S., Yang, T., Fan, Y., et al. (2024) Mechanically Strong, Healable, and Recyclable Supramolecular Solid–solid Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Chemical Engineering Journal, 494, Article 153235. https://doi.org/10.1016/j.cej.2024.153235
|
[55]
|
Du, X., Jin, L., Deng, S., Zhou, M., Du, Z., Cheng, X., et al. (2021) Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Applied Materials & Interfaces, 13, 42991-43001. https://doi.org/10.1021/acsami.1c14862
|
[56]
|
Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. https://doi.org/10.1002/adfm.202312019
|
[57]
|
Tian, C., Ning, J., Yang, Y., Zeng, F., Huang, L., Liu, Q., et al. (2022) Super Tough and Stable Solid-Solid Phase Change Material Based on Π-Π Stacking. Chemical Engineering Journal, 429, Article 132447. https://doi.org/10.1016/j.cej.2021.132447
|
[58]
|
Wang, C., Geng, X., Chen, J., Wang, H., Wei, Z., Huang, B., et al. (2023) Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management. Advanced Materials, 36, Article 2309723. https://doi.org/10.1002/adma.202309723
|
[59]
|
Cao, Y., Meng, Y., Jiang, Y., Qian, S., Fan, D., Zhou, X., et al. (2022) Healable Supramolecular Phase Change Polymers for Thermal Energy Harvesting and Storage. Chemical Engineering Journal, 433, Article 134549. https://doi.org/10.1016/j.cej.2022.134549
|
[60]
|
Meng, Y., Liu, Y., Wan, Z., Huan, Y., Guo, Q., Fan, D., et al. (2023) A Phase Change Supramolecular Assembly with a Rapid Self-Healing Behavior via Thermally Actuated Reversible Associations. Chemical Engineering Journal, 453, Article 139967. https://doi.org/10.1016/j.cej.2022.139967
|
[61]
|
Miao, P., Liu, J., He, M., Leng, X. and Li, Y. (2023) Bio-Based Non-Isocyanate Polyurethane with Closed-Loop Recyclability and Its Potential Application. Chemical Engineering Journal, 475, Article 146398. https://doi.org/10.1016/j.cej.2023.146398
|