二维铋烯光子学性能研究
Research on the Photonic Properties of Two-Dimensional Bismuthene
摘要: 自2016年被发现以来,铋烯作为一种新兴的二维材料,因其独特光学和电子特性而迅速受到研究者欢迎。理论和实验研究都证实了其卓越的半导体性能,包括可调的带隙、高载流子迁移率和优越的半导体性光响应,在许多领域具有实际应用前景。近年来越来越多的相关工作报道了半导体铋烯与光子的相互作用在纳米光子应用中具有重要潜力。本文综述了二维铋烯的可控制备、能带结构以及拉曼性质,并综述了铋烯的最新光子学应用研究进展,包括光电探测器、光调制器、光传感器、肿瘤治疗和光催化。最后,本文从制备方法和实际应用的角度出发对铋烯做出了总结和展望。
Abstract: Since its discovery in 2016, Bismuthene as an emerging two-dimensional material has drawn extensive interest due to its unique optical and electronic properties. Both theoretical and experimental studies have demonstrated its excellent semiconducting properties, including adjustable band gap, high carrier mobility and superior semiconductive photoresponse, which holds great practical prospects in many fields. In recent years, many researches have focused on the interaction between semiconducting Bismuthene and photons that play an important role in nanophotonic applications. In this review, the controllable preparation, band structure and Raman properties of two-dimensional Bismuthene are briefly reviewed, and the latest advances in photonics applications (e.g., photodetectors, optical modulators, optical sensors, cancer therapy and photocatalysis) of Bismuthene are discussed. Finally, the summary and perspectives of the Bismuthene are presented from the point of view of preparation strategy and practical applications.
文章引用:蒲俊梅, 王梦可, 訾由, 黄卫春. 二维铋烯光子学性能研究[J]. 物理化学进展, 2024, 13(4): 727-740. https://doi.org/10.12677/japc.2024.134073

1. 引言

近年来,二维(2D)磷族元素,第五主族原子片层结构(磷烯,砷烯,锑烯和铋烯)由于其优异的物理化学性质,如可调的带隙和可控的稳定性等,取得了显著进展。砷烯由于其高毒性实际应用相对较难[1] [2]。到目前为止,关于磷烯[3]-[5],和锑烯[6]的相关综述已经得到很多全面而令人印象深刻的总结。例如,深圳大学张晗教授等[3]系统地总结了黑磷(BP)的最新进展,包括制备单层或多层BP的合成方法,其光学、电子和力学性能的最新进展,以及相关器件。Akhtar等[5]也综述了近年来BP技术相关的研究,主要集中在磷烯的合成和层数确定、带隙调谐、各向异性特性、应变工程及其在电子、热电和储能方面的应用。Gómez-Herrero等[6]全面综述了锑烯的最新研究进展,包括电子能带结构、不同的锑烯制备技术以及主要表征技术。然而,虽然有一些综述关注铋的电化学[7]、能源科学[8]、场效应晶体管[1]和热电学[9],但很少有综合性的工作关注单元素铋纳米结构及其潜在的应用领域。

二维铋烯由于其优异的性能,如高表面积,易于功能化,成本效益,低毒性,高X射线衰减系数,近红外(NIR),强抗磁性,高电和磁电阻,理想的催化活性和高稳定性等,近年来作为研究突破引起了人们的极大兴趣。二维铋烯的结构稳定性、热力学稳定性以及电子和自旋电子特性直接决定了其在实际应用中的独特性能[1] [10]。此外,二维铋烯的低毒性和空气稳定性对于开辟具有吸引力的多用途应用路线也具有重要意义。

受深圳大学张晗教授等[3] [11]对黑磷的重要研究报道和Gómez-Herrero等[6]近年来对锑烯工作启发,我们在以下章节中总结并重点介绍了二维铋烯的可控合成、光学性质和光子学应用方面的最新进展。我们首先简要总结了二维铋烯的可控合成和能带结构、光学吸收和拉曼性质。然后,从实际应用的角度,综述了二维铋烯的光子学性能研究。最后,对二维铋烯结构在研究和应用中面临的挑战和未来的机遇进行了讨论。

2. 二维铋烯的制备及光学性能

2.1. 二维铋烯的制备

近年来,二维铋烯的可控制备方法,如溶剂热法[12],超声辅助电化学剥离法[13]和液相剥离法[14],得到了快速发展。2022年,土耳其科克大学Metin等[12]以BiCl3为铋源采用溶剂热法成功制备了二维铋烯,如图1(a)~(c)所示。透射电子显微镜(TEM,图1(a))图片显示二维片层结构的纵向尺寸为~550 nm;原子力显微镜(AFM,图1(b))表征结果为二维片层结构,与TEM结果一致,且其厚度为~4.0 nm (图1(c))。2020年,湖南大学吴英鹏教授等[13]采用超声辅助电化学剥离法成功制备了少层二维铋烯纳米片,如图1(d)图1(e)所示。TEM图片(图1(d))呈现透明的折叠膜状结构并具有平均横向尺寸~500 nm;高分辨透射电子显微镜(HRTEM,图1(e))图显示0.328 nm清晰晶格条纹,对应于斜方六面体Bi晶体的(012)晶面;快速傅里叶变换图(FFT,图1(e)插图)证明所制得的少层二维铋烯纳米片具有良好的结晶度,避免了氧化导致的大量缺陷。X-射线粉末衍射仪(XRD,图1(f))结果表明所制得的少层二维铋烯纳米片的所有衍射峰与本体Bi一致,但是其半峰宽远大于本体Bi衍射峰的半峰宽,这由少层二维铋烯纳米片层间结构膨胀以及堆叠层数减小导致。另外,2019年,北京航天航空大学郭林教授等[14]采用液相剥离法成功制备少层二维铋烯纳米片,如图1(g)~(i)所示。扫描电子显微镜(SEM,图1(g))图像清楚地显示所得产品由层次化的微花组成的超薄二维纳米片;HRTEM图(图1(h))清晰地显示出晶格间距为0.229 nm,归属于斜方六面体Bi晶体的(110)晶面;FFT图(图1(h)插图)显示区域轴沿[001]方向;高分辨X射线光电子能谱(XPS)很清楚表明,制备的少层二维铋烯纳米片在156.9和162.3 eV处具有两个独立的特征峰(图1(i)),对应于4f7/2 (Bi1)和4f5/2 (Bi2)成键特性,另外,在158.7和164.1 eV也观察到氧化铋的存在,这可能是由于在高温下不可避免的样品氧化所致[15]

Figure 1. (a) TEM image, (b) AFM image and (c) its corresponding height profiles of the Bi NSs prepared by a facile solvothermal method [12]; (d) TEM image, (e) HRTEM image and (f) XRD pattern of the few-layer Bi NSs fabricated by an ultrasonication-assisted electrochemical exfoliation method; inset in (e) shows the FFT pattern [13]; (g) SEM image, (h) HRTEM image and (i) high-resolution Bi 4f spectrum of few-layer Bi NSs fabricated by liquid-phase exfoliation; inset in (h) shows the FFT pattern [14]

1. 溶剂热法制备的(a) TEM图,(b) AFM图和(c) 相应的高度分布图[12];超声辅助电化学剥离法制备的少层Bi NSs的(d) TEM,(e) HRTEM和(f) XRD图;(e)中插图所示为FFT模式[13];液相剥离制备的少层Bi NSs的(g) SEM图,(h) HRTEM图像和(i) XPS高分辨率Bi 4f光谱;(h)中插图所示的是FFT模式[14]

2.2. 二维铋烯的能带结构

铋的光电子特性在很大程度上取决于其能带结构和光学性质。科学家常通过密度泛函理论对纳米材料的能带结构及光学性质进行系统研究[16]-[18]。例如,2020年,伊朗沙希德·贝赫什大学Shiraz和Goharrizi [16]采用密度泛函理论第一性原理对单层铋进行系统研究。他们采用Perdew-Burke-Ernzerhof以及强自旋轨道耦合对其进行计算。β-Bi的布里渊区所示计算得到的β-Bi的键长为3.07 Å,屈曲尺寸为1.73 Å,以及空间角为91.24˚。β-Bi在不同双轴应变下的带隙结构变化趋势证明当双轴应变从−2%变化到4%时,Γ点的带隙尺寸减小;当应变变化为6%~12%时,在Γ点处带隙尺寸逐渐增大;β-Bi在Γ点的最小带隙尺寸出现在应变接近5%时,与这个应变百分比附近的吸收峰红移相吻合。入射光偏振平行于单层铋平行单层铋时的吸收A(ω)、反射率R(ω)和电子能量损耗函数L(ω)结果表明,β-Bi的吸收带宽较宽;此外,在两个双轴应变组中均有显著红外吸收;模拟结果表明β-Bi两个双轴应变组中都有明显的宽带反射。在−6%~4%双轴应变范围内,β-Bi红外区的反射率较高;在双轴应变值为6%~12%范围内,β-Bi红外区的反射率和吸收率均表现显著。这些结果表明在所研究的双轴应变范围内,β-Bi都是优异的红外衰退剂。电子能量损耗函数通过穿越介质材料表达电子能量损耗,其值与不同的应变下的值相接近。与具有强应变依赖的β-Bi的带隙不同,β-Bi的光学性质是与应变无关的,这是因为它的能带结构中具有不同跃迁方式。2019年,香港理工大学郝建华教授等[19]发现3种不同厚度的Bi膜(1, 5和15 nm)的带隙值(Eg)分别为0.20,0.11和0.075 eV;随厚度的增加,其Eg值呈下降趋势。由于15 nm厚的样品更趋近于块体,因此0.075 eV的超小带隙是合理的。这种变化趋势也与以往的理论和实验结果一致[20] [21],可以用量子约束效应来解释。Bi薄膜的窄带隙(0.075~0.2 eV)使其成为中红外和远红外区域光电器件的合适候选者。

2.3. 二维铋烯的拉曼性质

在超薄膜的独特性质研究方面,拉曼光谱被认为是一种简单的检测方法。近年来,科学家们系统研究了铋纳米结构在不同外界条件下拉曼峰的演变[22] [23]。如2019年,燕山大学魏勇等[22]利用拉曼光谱系统研究二维铋烯在不同应变和层数条件下声子模式的频率和拉曼峰的演变。二维铋烯在双轴应变下可直接削弱键能,从而降低了铋原子振动频率,因此采用拉曼散射光谱可以直接检测二维铋烯在应变条件下的频率移动,如图2(a)~(c)所示。单层铋的拉曼散射光谱有两个峰,分别归属于衰退的面内模式和面外模式;随着双轴应变的增加,由于声子软化,两个峰逐渐向低频移动;双轴应变与单轴应变的对比结果体现双轴应变下的位移更为明显,这与声子频率的结果相一致。另外,层数(单层,双层和三层)对拉曼散射光谱的影响(图2(d))说明1) 高频区的两个峰偏移明显,并且对应于面外模式的峰偏移更明显(~10 cm1),这可能是由于层间相互作用对面外原子运动影响较大所致;2) 平面内模式的拉曼强度随着层数的增加而增加,这与石墨烯拉曼散射光谱中的G峰(平面键拉伸模式)相似[24]

此工作中第一性原理计算的局域密度近似通常低估了晶格常数,提高了键能,使频率声子模的计算结果略高于实验结果;在不同的实验制备中,晶格与衬底的不匹配难免引起表面微小应变,这也影响了实验与理论计算的一致性。值得注意的是,在多层二维铋烯模型下,在低频区(20~50 cm1)有几个新的峰,两层或三层二维铋烯在~30 cm1附近的峰值对应于剪切模式,即xy平面上各层之间的相对运动;三层二维铋烯在~45 cm1处的峰对应于呼吸模式即层间沿垂直于xy平面方向的相对运动;这两种模式是许多层状材料的显著特征,如石墨烯[25]、过渡金属二硫族化物[26] [27]和硒化铋[28]或碲化铋[28]等。另外,2018年,湘潭大学物理与光电工程学院钟建新教授等[29]通过气相沉积法成功地合成了单晶、高稳定性、连续的Bi薄膜,并进一步研究Bi薄膜在80~513 K范围内的温度依赖拉曼光谱行为;EgA1g拉曼模式的一阶温度系数估计分别为−0.0133和−0.0253 cm1·K1;利用物理模型分析了观测到的非线性温度相关拉曼位移,包括热膨胀和三声子和四声子的非谐波效应;A1g模式半峰宽最大值在193 K左右出现异常行为,表明在193 K附近发生相变[29]。该研究促进了对Bi薄膜基本物理性质的深入探索,并提供了Bi薄膜热性质的基础信息,这对开发Bi基器件的热学和电子应用至关重要[29]

Figure 2. (a) Raman scattering spectra of monolayer Bismuthene under the biaxial strains, (b) zigzag strains and (c) armchair strains, all the peaks have 3 cm1 Gaussian smearing; (d) Raman scattering spectra of different layers of bismuthine [22]

2. 单层铋在(a) 双轴应变、(b) 字形应变和(c) 扶手形应变下的拉曼散射光谱,所有峰都有3 cm1的高斯拖尾;(d) 不同层数Bi的拉曼散射光谱[22]

3. 铋烯的光子学性能

与块体铋材料相比,二维铋烯由于量子约束效应而表现出优异的光电子学性能,在很多应用领域展示了巨大的潜力[30]。揭示结构明确的二维铋烯结构与性质之间的关系对理解二维铋烯以及开发基于二维铋烯的多功能纳米结构具有重要意义。本章节主要介绍二维铋烯的最新应用,包括基于二维铋烯光电探测器,光调制器,光传感器,肿瘤治疗和光催化。

3.1. 光电探测器

Table 1. Comparison of electrical properties of two-dimensional bismuth films with other typical two-dimensional materials

1. 二维铋薄膜与其他典型二维材料的电学性能比较

材料

载流子迁移率(cm2·V1·s1)

半导体种类

处理温度(℃)

参考文献

Bi

220

P

100

[19]

石墨烯

3700

P

1000

[35]

MoS2

3.6

N

850

[36]

黑磷

10

P

150

[37]

100

P

250~270

[38]

近期理论和实验结果表明,铋是一种单质拓扑绝缘体,具有窄带隙(铋烯:0.3~0.5 eV,块体铋:30~40 meV)和高载流子迁移率(块体铋:5.7 × 106 cm2·V1·s1),这些优异特性使铋在光电材料领域有着巨大的应用前景。二维铋烯有望在室温下表现出独特的拓扑性能,并保持较高的结构稳定性[31]-[34],这使得二维铋烯在下一代电子和光电子器件实际应用中有明显优势,其电学性质比较如表1所示。

2018年,深圳大学深圳市黑磷光电子工程实验室张晗教授团队[20]采用液相剥离法成功制备二维铋烯纳米片,并构建了基于二维铋烯的光电化学型工作电极,用于光电化学光电探测器。二维铋烯纳米片在0.5 M Na2SO4和1.0 M NaOH电解质溶液中的极化曲线表明其光电流密度随偏置电位增加而增大。此外,值得注意的是,偏置电位从0.5 V增加到1.0 V,二维铋烯纳米片在1.0 M NaOH电解质溶液中的光电流密度显著提升。在0.5 M Na2SO4和1.0 M NaOH电解液中,当偏置电位为0 V时,基于二维铋烯纳米片电极的暗电流密度几乎为零。然而,当偏置电位提高到1.0 V时,可以观察到黑暗和光照条件下在1.0 M NaOH中二维铋烯纳米片的光电流密度有明显的差距,而二维铋烯纳米片在0.5 M Na2SO4中的光电流密度无明显变化。在0.5 M Na2SO4和1.0 M NaOH电解液中,二维铋烯纳米片在电流密度变化时呈现出更小的Tafel斜率,说明1.0 M NaOH电解液比0.5 M Na2SO4更能促进电化学行为发生[20]。在光照条件下,斜率略有减小并保持黑暗条件下的斜率以下,这可能由于光致电子产生所致。光电流密度对入射光强度的依赖性是另一个用于评价光电探测器性能的关键因素。在光功率密度为50 mW·cm2和偏置电位0.6 V条件下,二维铋烯纳米片光电流密度可达到180 nA·cm2,远高于0 V时光电流密度(7.6 nA·cm2)。当光功率密度从50 mW·cm2增加到250 mW·cm2时,二维铋烯纳米片光电流密度从180 nA·cm−2增至830 nA·cm2。二维铋烯纳米片在低功率密度下可以实现相当高的光电探测器效率,与目前常用的新型纳米材料相媲美,如表2所示,表明其在低入射功率密度下具有更广泛的应用前景。

Table 2. Two-dimensional Bismuthene-based electrodes compared with the performance of reported nanostructure-based electrodes

2. 二维铋烯基电极与已报道的基于纳米结构电极性能比较

材料

测试条件

光电流密度(μA·cm2)

光响应度(μA·W1)

响应时间(s)/恢复时间(s)

参考文献

二维铋烯

1.0 M NaOH, 0.6 V

0.83

1.8

0.90/0.22

[20]

二维黑磷

0.1 M KOH, 0.3 V

0.64

5.4

0.50/1.10

[39] [40]

二维碲烯

0.1 M KOH, 0.6 V

0.14

1.2

0.05/0.07

[41]

二维硒烯

0.1 M KOH, −0.6 V

1.3

10.5

0.13/N/Aa

[42]

二维SnS

0.1 M Na2SO4, 0.6 V

0.47

18

0.20/0.40

[43]

零维Bi量子点

0.1 M KOH, 0.6 V

1.0

8.6

0.50/1.1

[44]

零维烯量子点

0.5 M KOH, 0.6 V

1.8

N/A

0.02/0.62

[45]

注:aN/A:未报道。

在光功率密度~150 mW·cm2和偏置电位0.5 V条件下,二维铋烯纳米片在1.0 M NaOH电解液中的光电流密度相当稳定;然而,其在0.5 M Na2SO4电解质中光电流密度下降近60%。在6000~8000 s的测试时间范围内,二维铋烯纳米片在0.5 M Na2SO4和1.0 M NaOH中都展示优异的光开关信号。为更好说明基于二维铋烯纳米片的光电探测器的光响应行为,其光电探测工作原理揭示二维铋烯纳米片表面具有超导行为,在模拟太阳光的照射下,光生载流子被输送到Bi的两侧,有效分离电子和空穴。基于二维铋烯纳米片内在优异的光电子特性,光与二维铋烯之间的强相互作用可以有效地提升其在光电探测器中光电流密度。基于二维铋烯光电化学光电探测器与其传统场效应晶体管[1] [46] [47]相比,表现出更快捷廉价和性能优异的特性,有望实现下一代高性能光电探测器的开发和运用。

3.2. 光调制器

Figure 3. Number of rings of Bismuthene dispersion increases with increasing intensity for different femtosecond lasers and the corresponding diffraction ring patterns: (a) λ = 400 nm and (b) λ = 800 nm; (c) schematic diagram of Bismuthene deposition and microscope image of the prepared Bismuthene SA; (d) changes of transmission vs. average power; (e) schematic of mode-locked fiber laser with a microfiber-based Bismuthene SA; (f) spectrum of mode-locking; (g) pulse train; inset shows the pulse train with a span time of 20 μs; (h) output spectra collection across 5 h; and (i) changes of output power vs. pump power [51]

3. 在不同飞秒激光下,铋烯分散液的散色环数随光强的增加而增加,对应的衍射环图为:(a) λ = 400 nm和(b) λ = 800 nm;(c) Bi烯沉积示意图及制备的铋烯SA的显微镜图像;(d) 传输功率与平均功率的变化;(e) 微光纤铋烯SA锁模光纤激光器原理图;(f) 锁模谱;(g) 脉冲序列;(g) 中插图为脉冲序列时间跨度为20 μs;(h) 5 h的输出光谱采集;以及(i) 输出功率与泵功率的变化[51]

新的非线性光学材料(高非线性特性和高稳定性)探索研究及其在全光开关、光偏振等实际设备应用方面仍然是一大挑战。近年来,二维铋烯因其独特的光电子、机械性能及其优异的稳定性而受到广泛关注。二维铋烯的非线性折射率研究及其二维铋烯的空间自相位调控(SSPM)和热透镜效应对全光衍射环形成的影响在全光调制方面也有了实质性进展[48]-[50]。如,2018年,深圳大学范滇元院士[51]采用液相剥离法成功制备了~800 nm横向尺寸和4 nm厚度的二维铋烯纳米片,并成功运用于空间自相位光调制器中,如图3所示。从图3(a)图3(b)中可以看出衍射环数量随入射光(λ = 400 nm或800 nm)的增强而增加,归因于随入射光增强,二维铋烯电子–空穴对的分离效率更高;另外,衍射环数量随入射光波长的增加而减小,说明入射光的能量越高,更利于二维铋烯的电子–空穴对分离。值得指出的是纯溶剂作为对比实验样品在同样测试条件下无衍射环产生,说明其衍射环的生成确实归因于二维铋烯纳米片[51]。当一束光穿过一种无归介质时,其折光指数可用n = n0 + n2I表达,其中n0为线性指数,n2为非线性指数,I为入射光光强[52]。二维铋烯在400 nm和800 nm下的n0分别为3.71和3.92。一种溶液的n2表达为

n 2 = λ 2 n 0 L eff N I (1)

其中Leff为介质的有效厚度,N为衍射环数目。三阶非线性极化率χ(3) total表达为

χ total ( 3 ) = cλ n 0 2.4× 10 4 π 2 L eff dN dI (2)

因此,浓度为2.0 mM二维铋烯在400 nm下的n2为(1.11 ± 0.01) × 106·cm2 W1χ(3) total为(1.84 ± 0.02) × 109 e.s.u;在800 nm下的n2为(1.39 ± 0.01) ×106·cm2·W1χ(3) total为(1.12 ± 0.02) × 109 e.s.u。

另外,二维铋烯作为饱和吸收体(SA)在超快光子学应用方面得到广泛运用。图3(c)给出了所制备的基于二维铋烯饱和吸收体器件的结构示意图,且在放大20倍后可以清晰地观察到沉积在光线表面的二维铋烯样品。图3(d)可以看出二维铋烯作为SA的调制深度为~2.03%,饱和吸收强度为~30 MW·cm2。由于二维铋烯优异SA的性能,二维铋烯也成功应用于激光锁模器件中,如图3(e)所示。图3(f)显示了1559.18 nm处的锁模光谱,以及3-db频谱带宽为4.64 nm。图3(g)为空腔长度为22.7 m的脉冲序列;基于空腔长度,重复频率为基本频率8.83 MHz。脉冲序列的强度分布随时间的变化行为(图3(h))表明锁模过程是非常稳定的。图3(i)为当最大泵浦功率为1.15 mW时,输出功率与泵功率的关系示意图。很明显,输出功率随着泵浦功率的增加而线性增加。微纤维二维铋烯SA由于没有脉冲断裂,更大的泵浦强度很有可能产生更高的平均功率。

3.3. 光传感器

随着纳米科学和技术的进步,大量工作表明二维铋烯在光传感应用方面有巨大的应用价值[10] [53] [54]。例如,深圳大学光电工程学院张豫鹏团队[53]采用液相剥离法制备二维铋烯纳米片,并将所制备的二维铋烯纳米片应用于miRNA超灵敏检测。图4(a)给出了一种基于二维铋烯纳米片的miRNA检测器示意图,共分为2步:(1) 带有荧光标记(FAM)的单链DNA (FAM-ssDNA)吸附在二维铋烯纳米片表面;(2) 不同浓度的目标miRNA溶液流过吸附ssDNA的二维铋烯纳米片表面,与可结合的ssDNAs形成双链,并从二维铋烯纳米片表面脱附。采用荧光光谱对阶段产物进行表征,如图4(b)~(d)所示。图4(b)给出了106 M FAM-ssDNA探针溶液的荧光显微镜图像;在加入二维铋烯纳米片后,FAM-ssDNA探针溶液的荧光急剧猝灭,证实了二维铋烯纳米片在此体系中猝灭能力(图4(c));在目标miRNA-21加入后,由于FAM-ssDNA与目标miRNA-21互补结合,并从二维铋烯纳米片上解吸,荧光恢复(图4(d))。为进一步验证观察结果,荧光光谱被用来定量测量,如图4(e)所示。FAM-ssDNA探针溶液在525 nm波长处表现出强发射;在添加二维铋烯纳米片后,FAM-ssDNA探针的荧光几乎被完全淬灭;随着目标miRNA-21的加入,由于ssDNA与miRNA结合后双链与二维铋烯纳米片之间的相互作用很弱,导致荧光强度大大增加。为了证实该方法的灵敏性,采用不同浓度的miRNA-21与FAM-ssDNA探针结合,然后与二维铋烯纳米片作用,如图4(f)所示。从荧光光谱中可以观察到随着miRNA-21浓度(0~500 nM)的增加,荧光强度逐渐增加。通过比较碱基匹配和碱基不匹配的miRNA-21在此体系中的荧光恢复响应行为,证实所设计体系的选择性,如图4(g)所示。随着碱基匹配miRNA-21浓度的增加,响应行为显著明显,而随着碱基不匹配miRNA-21浓度的增加,响应行为无明显变化;另外,在0~10 nM miRNA范围内,随着目标miRNA浓度的增加,荧光强度呈线性增加(图4(g)插图);检测限为60 pm (3倍信噪比)。

Figure 4. (a) Schematic illustration of Bismuthene-based miRNA detection; Fluorescence image of the FAM-ssDNA probe solution (106 M) (b) before and (c) after mixing with Bismuthene; (d) fluorescence image of FAM-ssDNA after mixing with Bismuthene and incubation with miRNA-21; (e) fluorescence spectra of the studied probes; (f) fluorescence spectra of the FAM-ssDNA probe solution with different concentrations of miRNA-21 and Bismuthene; and (g) relationship between the fluorescence intensity and miRNA-21/mismatched miRNA concentration; all error bars are the standard error of the fluorescence intensity from five data points [53]

4. 基于铋烯的miRNA检测示意图;FAM-ssDNA探针溶液(106 M)与铋烯混合(b)前和(c)后的荧光图像;(d) FAM-ssDNA与铋烯混合并与miRNA-21孵育后的荧光图像;(e) 所研究探针的荧光光谱;(f) 具有不同浓度miRNA-21以及铋烯的FAM-ssDNA探针溶液的荧光光谱;(g) 荧光强度与miRNA-21/不匹配的miRNA浓度的关系;所有误差条均为五个数据点荧光强度的标准误差[53]

3.4. 肿瘤治疗

在生物医学领域,高原子序数(Z = 83)铋具有相当高的X射线衰减系数(在100 keV时,Bi为5.74,Au为5.16,Pt为4.99,Ta为4.3,I为1.94 cm2·kg1) [55],因此在X射线计算机断层扫描(CT)上具有巨大应用潜力。另外,铋比Au每摩尔便宜近2000倍,而陆地储量是Au的2倍[55],这也使得铋基造影剂在大规模合成和生物医学应用方面具有极大吸引力。近年来,具有组织穿透能力的近红外光(NIR, λ = 700~1100 nm)的纳米材料介导光热疗法(PTT)作为一种有效的抗肿瘤治疗方式已特别引人注目[56]-[59]。2017年,哈尔滨工业大学化学化工学院于淼教授团队[60]采用聚乙二醇化的二维铋烯纳米晶体(Bi-PEG NCs)用于体内高性能的多模态生物成像和肿瘤的光热治疗。图5(a)显示所制备的Bi-PEG NCs的紫外–可见–红外(UV-vis-NIR)吸收光谱在500~1000 nm范围内表现出较强的宽带吸收,说明Bi-PEG NCs适用于近红外PTT。为了研究其光热性能,不同浓度梯度的Bi-PEG NCs分散液(0, 10, 20, 50, 100, 200 μg·mL1)受808 nm近红外激光(1.0 W·cm2)照射10 min,且每隔1 s监测系统温度;其结果表明在激光照射下,Bi-PEG NCs悬浮液的温度随浓度和照射时间的增加而明显升高,而对照样品(即纯去离子水)的温度变化不明显(图5(b))。在体内光热治疗实验中,为确认Bi-PEG NCs在荷瘤小鼠体内PTT抗肿瘤的有效性,当肿瘤长到~100 mm3时,所研究小鼠随机分为四组,即1) 磷酸盐缓冲液(PBS);2) PBS + laser;3) Bi-PEG NCs;以及4) Bi-PEG NCs + laser。在辐照过程中,用红外热像仪监测肿瘤在不同时间点的温度变化。在激光照射下,肿瘤部位温度在照射后迅速升高,可达到稳定温度~51.6℃,足以消除肿瘤,而相比之下,仅静脉注射PBS的小鼠在整个辐照过程中肿瘤温度几乎没有变化(图5(c))。在治疗1天后,只有Bi-PEG NCs + laser组肿瘤消失,仅在初始肿瘤部位留下黑色疤痕。各组肿瘤大小每2天测量一次。从图5(d)中可以观察到Bi-PEG + laser组小鼠的肿瘤生长被有效抑制;值得注意的是,该组中有3只小鼠(共4只)的肿瘤明显缩小,10天后只留有轻微的疤痕组织且第17天完全消失,无复发迹象[60]。小鼠的生存曲线(图5(e))显示,Bi-PEG NCs + laser组小鼠在整个实验期间全部存活,而其他三组小鼠在治疗后9天内相继死亡。图5(f)~5(g)分别为各组平均肿瘤权重及肿瘤照片,其中Bi-PEG NCs + laser组平均肿瘤重量最低。研究结果表明Bi-PEG NCs可以作为一种强大的体内肿瘤光热消除剂。除了PTT,二维铋烯也可能成为一种潜在的放射增敏剂,因为二维铋烯和其他含有高Z元素的纳米剂已被证明在抗肿瘤放射治疗中有巨大应用前景[61] [62]

Figure 5. (a) UV-vis-NIR absorption spectra of the Bi-PEG NCs dispersed in water and stored at room temperature for a week; (b) temperature elevation of the Bi-PEG NCs suspensions at various concentrations upon NIR irradiation; (c) tumor temperature changes monitored by an IR thermal camera during irradiation; (d) tumor growth curves and (e) survival curves of mice after various treatments as indicated; mice with tumors larger than 1000 mm3 are regarded as death; (f) average tumor weights collected from the mice at the end of the experiment; error bars correspond to mean ± standard deviations; and (g) representative photos of mice/tumors from different groups at the end of treatments [60]

5. (a) 分散在水中并在室温下保存一周的Bi-PEG NCs的紫外–可见–近红外吸收光谱;(b) 近红外辐照下不同浓度Bi-PEG NCs悬浮液的温度升高;(c) 红外热像仪在辐照过程中监测到的肿瘤区域温度变化;(d) 肿瘤生长曲线和(e) 不同处理后小鼠的存活曲线;肿瘤大于1000 mm3的小鼠视为死亡;(f) 实验结束时小鼠的平均肿瘤重量;误差条对应均值 ± 标准差;(g) 各组小鼠/肿瘤治疗结束时的代表性照片[60]

3.5. 光催化

铋作为一种合适的光催化材料,由于其独特半导体性质,当剥离层薄于30 nm时其带隙在0.3~1.0 eV可调[63] [64]。二维铋烯具有优异的电子迁移性[8]、低毒性[17]和高稳定性[65],由于其二维六边形晶格、窄带隙和高表面积,在光催化应用中表现出独特的潜力。如2022年,土耳其科克大学Metin等[12]首次报道二维铋烯作为光催化剂用于(杂)芳烃的直接C-H功能化。基于二维铋烯的窄带隙(0.60 eV)特征,二维铋烯在室内照明下很容易吸收光子有效分离电子–空穴,因此在给定的光照条件下研究其他不同条件对C-H催化产率的影响。首先,为消除温度的影响来揭示铋的光电特性,体系将溶剂由二甲基亚砜(DMSO)改为N,N-二甲基甲酰胺(DMF),因为DMF的冰点相对较低。当二维铋烯催化碳氢键芳基化反应在室内光线条件下在5℃进行时,产率较低,只获得微量的产品;当反应温度降低至−15℃时,甚至没有产物。反应在白光下进行时,产物产率达到72%,这肯定了反应机理的光催化性质;其次,以1,4-苯醌(BQ)为电子牺牲受体来了解室内光照下铋的活化是否发生了单电子转移。在BQ的存在下,产物产率从84%急剧下降到12%,这表明激发电子在反应机制中起着至关重要的作用;此外,在反应混合物中加入三乙醇胺(TEOA)作为空穴清除剂,产物产率也降至25%。这些结果为反应机理提供了明显的标志,其中电子向铋空穴的转移是主要活性物质形成的关键因素。利用2,2,6,6-四甲基哌啶氧基(TEMPO)作为自由基清除剂,通过捕获活性中间体并将产物产率降低至14%,进一步证实了芳基自由基的形成。另一个支持所提出的反应机制的实验证据是二维铋烯比大块铋提供更高的产物产率。二维铋烯在光照下易产生载流子,即使在低温和黑暗条件下也会减缓电子–空穴对的复合,这可能是低温和黑暗条件下和室内光照条件都能生成产物的原因。为了更好理解,采用稳态光致发光(PL)和时间分辨光致发光(TRPL)分析来理清二维铋烯与底物之间的关系。与二维铋烯相比,重氮盐和铋的混合使整个体系的PL强度大大降低,这是因为电子从二维铋烯到重氮盐底物发生了有效迁移,从而产生芳基自由基。TRPL研究和PL结果与光生电子的快速迁移一致,因为单独二维铋烯的光生电子的平均寿命比在二维铋烯和重氮盐共同存在下要短[66] [67]

4. 总结与展望

本文总结了近年来基于二维铋烯的研究进展,包括二维铋烯的可控制备以及其在光电探测器,光调制器,光传感器和肿瘤治疗以及光催化方面的应用。相对于本体铋材料,二维铋烯具有更突出的优势,如更高的光热转化效率,更强的光电探测性能和光催化等,在光电子器件,非线性光学及传感方面有着巨大的潜在优势。另外,本文对于二维铋烯的制备和应用等方面的主要挑战和展望做如下概述:1) 目前二维铋烯的大规模制备操作过程相对复杂,所使用溶剂对环境有一定的影响,因此发展绿色、低成本和快捷的二维铋烯制备方法仍需进一步探索;2) 目前二维铋烯的研究已逐渐成熟,但是基于二维铋烯的多尺度(如零维 + 二维,一维 + 二维等)复合材料的研究鲜有报道,通过二维铋烯多尺度复合材料的研究有望更进一步突破目前瓶颈,实现高性能基于二维铋烯器件的开发和应用。

参考文献

[1] Zhou, W., Chen, J., Bai, P., Guo, S., Zhang, S., Song, X., et al. (2019) Two-Dimensional Pnictogen for Field-Effect Transistors. Research, 2019, Article ID: 1046329.
https://doi.org/10.34133/2019/1046329
[2] Ersan, F., Kecik, D., Özçelik, V.O., Kadioglu, Y., Aktürk, O.Ü., Durgun, E., et al. (2019) Two-Dimensional Pnictogens: A Review of Recent Progresses and Future Research Directions. Applied Physics Reviews, 6, Article 021308.
https://doi.org/10.1063/1.5074087
[3] Dhanabalan, S.C., Ponraj, J.S., Guo, Z., Li, S., Bao, Q. and Zhang, H. (2017) Emerging Trends in Phosphorene Fabrication Towards Next Generation Devices. Advanced Science, 4, Article 1600305.
https://doi.org/10.1002/advs.201600305
[4] Kou, L., Chen, C. and Smith, S.C. (2015) Phosphorene: Fabrication, Properties, and Applications. The Journal of Physical Chemistry Letters, 6, 2794-2805.
https://doi.org/10.1021/acs.jpclett.5b01094
[5] Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., et al. (2017) Recent Advances in Synthesis, Properties, and Applications of Phosphorene. npj 2D Materials and Applications, 1, Article No. 5.
https://doi.org/10.1038/s41699-017-0007-5
[6] Ares, P., Palacios, J.J., Abellán, G., Gómez‐Herrero, J. and Zamora, F. (2017) Recent Progress on Antimonene: A New Bidimensional Material. Advanced Materials, 30, Article 1703771.
https://doi.org/10.1002/adma.201703771
[7] Wu, M., Xu, B., Zhang, Y., Qi, S., Ni, W., Hu, J., et al. (2020) Perspectives in Emerging Bismuth Electrochemistry. Chemical Engineering Journal, 381, Article 122558.
https://doi.org/10.1016/j.cej.2019.122558
[8] Liu, X., Zhang, S., Guo, S., Cai, B., Yang, S.A., Shan, F., et al. (2020) Advances of 2D Bismuth in Energy Sciences. Chemical Society Reviews, 49, 263-285.
https://doi.org/10.1039/c9cs00551j
[9] Kim, J., Shim, W. and Lee, W. (2015) Bismuth Nanowire Thermoelectrics. Journal of Materials Chemistry C, 3, 11999-12013.
https://doi.org/10.1039/c5tc02886h
[10] Shahbazi, M., Faghfouri, L., Ferreira, M.P.A., Figueiredo, P., Maleki, H., Sefat, F., et al. (2020) The Versatile Biomedical Applications of Bismuth-Based Nanoparticles and Composites: Therapeutic, Diagnostic, Biosensing, and Regenerative Properties. Chemical Society Reviews, 49, 1253-1321.
https://doi.org/10.1039/c9cs00283a
[11] Luo, M., Fan, T., Zhou, Y., Zhang, H. and Mei, L. (2019) 2D Black Phosphorus-Based Biomedical Applications. Advanced Functional Materials, 29, Article 1808306.
https://doi.org/10.1002/adfm.201808306
[12] Ozer, M.S., Eroglu, Z., Yalin, A.S., Kılıç, M., Rothlisberger, U. and Metin, O. (2022) Bismuthene as a Versatile Photocatalyst Operating under Variable Conditions for the Photoredox C-H Bond Functionalization. Applied Catalysis B: Environmental, 304, Article 120957.
https://doi.org/10.1016/j.apcatb.2021.120957
[13] Shen, C., Cheng, T., Liu, C., Huang, L., Cao, M., Song, G., et al. (2020) Bismuthene from Sonoelectrochemistry as a Superior Anode for Potassium-Ion Batteries. Journal of Materials Chemistry A, 8, 453-460.
https://doi.org/10.1039/c9ta11000c
[14] Zhou, J., Chen, J., Chen, M., Wang, J., Liu, X., Wei, B., et al. (2019) Few‐Layer Bismuthene with Anisotropic Expansion for High‐Areal‐Capacity Sodium‐Ion Batteries. Advanced Materials, 31, Article 1807874.
https://doi.org/10.1002/adma.201807874
[15] Zhang, Q., Mao, J., Pang, W.K., Zheng, T., Sencadas, V., Chen, Y., et al. (2018) Boosting the Potassium Storage Performance of Alloy‐Based Anode Materials via Electrolyte Salt Chemistry. Advanced Energy Materials, 8, Article 1703288.
https://doi.org/10.1002/aenm.201703288
[16] Karaei Shiraz, A. and Yazdanpanah Goharrizi, A. (2019) Optical Properties of Buckled Bismuthene. Physica Status Solidi (b), 257, Article 1900408.
https://doi.org/10.1002/pssb.201900408
[17] Huang, W., Zhu, J., Wang, M., Hu, L., Tang, Y., Shu, Y., et al. (2020) Emerging Mono‐Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. Advanced Functional Materials, 31, Article 2007584.
https://doi.org/10.1002/adfm.202007584
[18] Xing, C., Chen, X., Huang, W., Song, Y., Li, J., Chen, S., et al. (2018) Two-Dimensional Lead Monoxide: Facile Liquid Phase Exfoliation, Excellent Photoresponse Performance, and Theoretical Investigation. ACS Photonics, 5, 5055-5067.
https://doi.org/10.1021/acsphotonics.8b01335
[19] Yang, Z., Wu, Z., Lyu, Y. and Hao, J. (2019) Centimeter‐Scale Growth of Two‐Dimensional Layered High‐Mobility Bismuth Films by Pulsed Laser Deposition. InfoMat, 1, 98-107.
https://doi.org/10.1002/inf2.12001
[20] Huang, H., Ren, X., Li, Z., Wang, H., Huang, Z., Qiao, H., et al. (2018) Two-Dimensional Bismuth Nanosheets as Prospective Photo-Detector with Tunable Optoelectronic Performance. Nanotechnology, 29, Article 235201.
https://doi.org/10.1088/1361-6528/aab6ee
[21] Aktürk, E., Aktürk, O.Ü. and Ciraci, S. (2016) Single and Bilayer Bismuthene: Stability at High Temperature and Mechanical and Electronic Properties. Physical Review B, 94, Article 014115.
https://doi.org/10.1103/physrevb.94.014115
[22] Pei, H., Wei, Y., Guo, X. and Wang, B. (2019) Raman Scattering Spectra of Bismuthene: A First-Principles Prediction. Optik, 180, 967-972.
https://doi.org/10.1016/j.ijleo.2018.10.217
[23] Wang, W., Liu, M., Yang, Z., Mai, W. and Gong, J. (2012) Synthesis and Raman Optical Properties of Single-Crystalline Bi Nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 44, 1142-1145.
https://doi.org/10.1016/j.physe.2012.01.001
[24] Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., et al. (2007) Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene. Nano Letters, 7, 238-242.
https://doi.org/10.1021/nl061702a
[25] Tan, P.H., Han, W.P., Zhao, W.J., Wu, Z.H., Chang, K., Wang, H., et al. (2012) The Shear Mode of Multilayer Graphene. Nature Materials, 11, 294-300.
https://doi.org/10.1038/nmat3245
[26] Zhang, X., Han, W.P., Wu, J.B., Milana, S., Lu, Y., Li, Q.Q., et al. (2013) Raman Spectroscopy of Shear and Layer Breathing Modes in Multilayer MoS2. Physical Review B, 87, Article 115413.
https://doi.org/10.1103/physrevb.87.115413
[27] Zhao, Y., Luo, X., Li, H., Zhang, J., Araujo, P.T., Gan, C.K., et al. (2013) Interlayer Breathing and Shear Modes in Few-Trilayer MoS2 and WsE2. Nano Letters, 13, 1007-1015.
https://doi.org/10.1021/nl304169w
[28] Zhao, Y., Luo, X., Zhang, J., Wu, J., Bai, X., Wang, M., et al. (2014) Interlayer Vibrational Modes in Few-Quintuple-Layer Bi2Te3 and Bi2Se3 Two-Dimensional Crystals: Raman Spectroscopy and First-Principles Studies. Physical Review B, 90, Article 245428.
https://doi.org/10.1103/physrevb.90.245428
[29] Lu, D., Luo, S., Liu, S., Yao, H., Ren, X., Zhou, W., et al. (2018) Anomalous Temperature-Dependent Raman Scattering of Vapor-Deposited Two-Dimensional Bi Thin Films. The Journal of Physical Chemistry C, 122, 24459-24466.
https://doi.org/10.1021/acs.jpcc.8b07957
[30] Li, H. and Yang, Z. (2023) Recent Progress in Synthesis and Photonic Applications of Two-Dimensional Bismuthene. Applied Sciences, 13, 6885.
https://doi.org/10.3390/app13126885
[31] Ersan, F., Aktürk, E. and Ciraci, S. (2016) Stable Single-Layer Structure of Group-V Elements. Physical Review B, 94, Article 245417.
https://doi.org/10.1103/physrevb.94.245417
[32] Guo, Y., Pan, F., Ye, M., Sun, X., Wang, Y., Li, J., et al. (2017) Monolayer Bismuthene-Metal Contacts: A Theoretical Study. ACS Applied Materials & Interfaces, 9, 23128-23140.
https://doi.org/10.1021/acsami.7b03833
[33] Kong, D. and Cui, Y. (2011) Opportunities in Chemistry and Materials Science for Topological Insulators and Their Nanostructures. Nature Chemistry, 3, 845-849.
https://doi.org/10.1038/nchem.1171
[34] Ma, Y., Dai, Y., Kou, L., Frauenheim, T. and Heine, T. (2015) Robust Two-Dimensional Topological Insulators in Methyl-Functionalized Bismuth, Antimony, and Lead Bilayer Films. Nano Letters, 15, 1083-1089.
https://doi.org/10.1021/nl504037u
[35] Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., et al. (2009) Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 457, 706-710.
https://doi.org/10.1038/nature07719
[36] Jeon, J., Jang, S.K., Jeon, S.M., Yoo, G., Jang, Y.H., Park, J., et al. (2015) Layer-Controlled CVD Growth of Large-Area Two-Dimensional MoS2 Films. Nanoscale, 7, 1688-1695.
https://doi.org/10.1039/c4nr04532g
[37] Yang, Z., Hao, J., Yuan, S., Lin, S., Yau, H.M., Dai, J., et al. (2015) Field‐Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition. Advanced Materials, 27, 3748-3754.
https://doi.org/10.1002/adma.201500990
[38] Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., et al. (2015) Silicene Field-Effect Transistors Operating at Room Temperature. Nature Nanotechnology, 10, 227-231.
https://doi.org/10.1038/nnano.2014.325
[39] Ren, X., Li, Z., Huang, Z., Sang, D., Qiao, H., Qi, X., et al. (2017) Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self‐Powered Photodetector. Advanced Functional Materials, 27, Article 1606834.
https://doi.org/10.1002/adfm.201606834
[40] 黄卫春, 訾由, 王梦可, 等. 黑磷半导体光物理及应用研究进展[J]. 深圳大学学报(理工版), 2024, 41(3): 323-347.
[41] Xie, Z., Xing, C., Huang, W., Fan, T., Li, Z., Zhao, J., et al. (2018) Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid‐Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Advanced Functional Materials, 28, Article 1705833.
https://doi.org/10.1002/adfm.201705833
[42] Fan, T., Xie, Z., Huang, W., Li, Z. and Zhang, H. (2019) Two-Dimensional Non-Layered Selenium Nanoflakes: Facile Fabrications and Applications for Self-Powered Photo-Detector. Nanotechnology, 30, Article 114002.
https://doi.org/10.1088/1361-6528/aafc0f
[43] Huang, W., Xie, Z., Fan, T., Li, J., Wang, Y., Wu, L., et al. (2018) Black-Phosphorus-Analogue Tin Monosulfide: An Emerging Optoelectronic Two-Dimensional Material for High-Performance Photodetection with Improved Stability under Ambient/Harsh Conditions. Journal of Materials Chemistry C, 6, 9582-9593.
https://doi.org/10.1039/c8tc03284j
[44] Xing, C., Huang, W., Xie, Z., Zhao, J., Ma, D., Fan, T., et al. (2017) Ultrasmall Bismuth Quantum Dots: Facile Liquid-Phase Exfoliation, Characterization, and Application in High-Performance UV-vis Photodetector. ACS Photonics, 5, 621-629.
https://doi.org/10.1021/acsphotonics.7b01211
[45] Jiang, X., Huang, W., Wang, R., Li, H., Xia, X., Zhao, X., et al. (2020) Photocarrier Relaxation Pathways in Selenium Quantum Dots and Their Application in Uv-Vis Photodetection. Nanoscale, 12, 11232-11241.
https://doi.org/10.1039/c9nr10235c
[46] Jafari, M., Ansari, R. and Rouhi, S. (2020) First-Principle Investigation of the Elastic and Plastic Properties of the Bismuthene: Effect of the External Electric Field. Superlattices and Microstructures, 140, Article 106476.
https://doi.org/10.1016/j.spmi.2020.106476
[47] Li, H., Xu, P., Xu, L., Zhang, Z. and Lu, J. (2019) Negative Capacitance Tunneling Field Effect Transistors Based on Monolayer Arsenene, Antimonene, and Bismuthene. Semiconductor Science and Technology, 34, Article 085006.
https://doi.org/10.1088/1361-6641/ab2cd8
[48] Yang, Q., Liu, R., Huang, C., Huang, Y., Gao, L., Sun, B., et al. (2018) 2D Bismuthene Fabricated via Acid-Intercalated Exfoliation Showing Strong Nonlinear Near-Infrared Responses for Mode-Locking Lasers. Nanoscale, 10, 21106-21115.
https://doi.org/10.1039/c8nr06797j
[49] Guo, P., Li, X., Feng, T., Zhang, Y. and Xu, W. (2020) Few-Layer Bismuthene for Coexistence of Harmonic and Dual Wavelength in a Mode-Locked Fiber Laser. ACS Applied Materials & Interfaces, 12, 31757-31763.
https://doi.org/10.1021/acsami.0c05325
[50] Zhang, L., Gong, T., Yu, Z., Dai, H., Yang, Z., Chen, G., et al. (2020) Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Advanced Functional Materials, 31, Article 2005471.
https://doi.org/10.1002/adfm.202005471
[51] Lu, L., Liang, Z., Wu, L., Chen, Y., Song, Y., Dhanabalan, S.C., et al. (2017) Few‐Layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser & Photonics Reviews, 12, Article 1700221.
https://doi.org/10.1002/lpor.201700221
[52] Durbin, S.D., Arakelian, S.M. and Shen, Y.R. (1981) Laser-Induced Diffraction Rings from a Nematic-Liquid-Crystal Film. Optics Letters, 6, 411-413.
https://doi.org/10.1364/ol.6.000411
[53] Xue, T., Bongu, S.R., Huang, H., Liang, W., Wang, Y., Zhang, F., et al. (2020) Ultrasensitive Detection of MicroRNA Using a Bismuthene-Enabled Fluorescence Quenching Biosensor. Chemical Communications, 56, 7041-7044.
https://doi.org/10.1039/d0cc01004a
[54] Yu, S., Zhang, L., Zhu, L., Gao, Y., Fan, G., Han, D., et al. (2019) Bismuth-Containing Semiconductors for Photoelectrochemical Sensing and Biosensing. Coordination Chemistry Reviews, 393, 9-20.
https://doi.org/10.1016/j.ccr.2019.05.008
[55] Wang, M., Hu, Y., Zi, Y. and Huang, W. (2022) Functionalized Hybridization of Bismuth Nanostructures for Highly Improved Nanophotonics. APL Materials, 10, Article 050901.
https://doi.org/10.1063/5.0091341
[56] Brown, A.L. and Goforth, A.M. (2012) pH-Dependent Synthesis and Stability of Aqueous, Elemental Bismuth Glyconanoparticle Colloids: Potentially Biocompatible X-Ray Contrast Agents. Chemistry of Materials, 24, 1599-1605.
https://doi.org/10.1021/cm300083j
[57] Yang, T., Wang, Y., Ke, H., Wang, Q., Lv, X., Wu, H., et al. (2016) Protein‐Nanoreactor‐Assisted Synthesis of Semiconductor Nanocrystals for Efficient Cancer Theranostics. Advanced Materials, 28, 5923-5930.
https://doi.org/10.1002/adma.201506119
[58] Meng, Z., Wei, F., Wang, R., Xia, M., Chen, Z., Wang, H., et al. (2015) NIR‐Laser‐Switched in Vivo Smart Nanocapsules for Synergic Photothermal and Chemotherapy of Tumors. Advanced Materials, 28, 245-253.
https://doi.org/10.1002/adma.201502669
[59] Wang, S., Li, X., Chen, Y., Cai, X., Yao, H., Gao, W., et al. (2015) A Facile One‐Pot Synthesis of a Two‐Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi‐Modality Tumor Imaging and Therapy. Advanced Materials, 27, 2775-2782.
https://doi.org/10.1002/adma.201500870
[60] Li, Z., Liu, J., Hu, Y., Li, Z., Fan, X., Sun, Y., et al. (2017) Biocompatible Pegylated Bismuth Nanocrystals: “All-in-One” Theranostic Agent with Triple-Modal Imaging and Efficient in vivo Photothermal Ablation of Tumors. Biomaterials, 141, 284-295.
https://doi.org/10.1016/j.biomaterials.2017.06.033
[61] Alqathami, M., Blencowe, A., Yeo, U.J., Franich, R., Doran, S., Qiao, G., et al. (2013) Enhancement of Radiation Effects by Bismuth Oxide Nanoparticles for Kilovoltage X-Ray Beams: A Dosimetric Study Using a Novel Multi-Compartment 3D Radiochromic Dosimeter. Journal of Physics: Conference Series, 444, Article 012025.
https://doi.org/10.1088/1742-6596/444/1/012025
[62] Zhang, X., Chen, J., Luo, Z., Wu, D., Shen, X., Song, S., et al. (2013) Enhanced Tumor Accumulation of Sub‐2 nm Gold Nanoclusters for Cancer Radiation Therapy. Advanced Healthcare Materials, 3, 133-141.
https://doi.org/10.1002/adhm.201300189
[63] Walker, E.S., Na, S.R., Jung, D., March, S.D., Kim, J., Trivedi, T., et al. (2016) Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films. Nano Letters, 16, 6931-6938.
https://doi.org/10.1021/acs.nanolett.6b02931
[64] Beladi‐Mousavi, S.M., Ying, Y., Plutnar, J. and Pumera, M. (2020) Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahigh‐Aspect‐Ratio 2D Microsheets. Small, 16, Article 2002037.
https://doi.org/10.1002/smll.202002037
[65] Zhang, J., Ye, S., Sun, Y., Zhou, F., Song, J. and Qu, J. (2020) Soft-Template Assisted Synthesis of Hexagonal Antimonene and Bismuthene in Colloidal Solutions. Nanoscale, 12, 20945-20951.
https://doi.org/10.1039/d0nr05578f
[66] Chen, F., Ma, T., Zhang, T., Zhang, Y. and Huang, H. (2021) Atomic‐Level Charge Separation Strategies in Semiconductor‐Based Photocatalysts. Advanced Materials, 33, 2005256.
https://doi.org/10.1002/adma.202005256
[67] Han, C., Li, Y., Li, J., Qi, M., Tang, Z. and Xu, Y. (2021) Cooperative Syngas Production and C-N Bond Formation in One Photoredox Cycle. Angewandte Chemie International Edition, 60, 7962-7970.
https://doi.org/10.1002/anie.202015756