肥胖作用于甲状腺癌的机制及临床特点的研究进展
Research Progress on the Mechanism and Clinical Characteristics of Obesity in Thyroid Cancer
DOI: 10.12677/acm.2024.14113029, PDF, HTML, XML,    科研立项经费支持
作者: 吴梦颖:绍兴文理学院医学院,浙江 绍兴;朱紫颖:宁波大学医学部,浙江 宁波;陈振华, 古丽阿依夏木·阿克木:宁波大学医学部,浙江 宁波;宁波市第二医院甲状腺外科,浙江 宁波;戴 磊*:宁波市第二医院甲状腺外科,浙江 宁波
关键词: 肥胖TC临床相关性作用机制研究Obesity TC Clinical Relevance Mechanism of Action Study
摘要: 近年来,甲状腺癌(TC)的发病率在全球范围内迅速上升,中国城市女性TC的发病率已在所有女性恶性肿瘤中位居第四。肥胖作为一种日益严重的全球性健康问题,它被认为是癌症发病和死亡的一个可预防的危险因素。目前,肥胖和超重已被证实与TC的风险增加有关。然而,临床上肥胖与TC的相关作用机制尚处于探索阶段。脂肪因子作为肥胖细胞分泌物,同时也是肿瘤微环境的重要组成成分,今后的研究可以从脂肪因子途径和慢性炎症反应等途径中寻找肥胖与TC相结合的机制。本综述围绕肥胖与TC的临床相关性,探究两者之间潜在的作用机制,旨在为今后的基础和临床研究提供参考。
Abstract: In recent years, the incidence of thyroid cancer (TC) has risen rapidly worldwide, and the incidence of TC among urban women in China has ranked fourth among all female malignancies. Obesity is a growing global health problem and is considered a preventable risk factor for cancer morbidity and mortality. Currently, obesity and overweight have been shown to be associated with an increased risk of TC. However, the clinical mechanism of obesity and TC is still in the stage of exploration. Adipokine, as a secretion of obesity cells, is also an important component of the tumor microenvironment. Future studies can look for the mechanism of the combination of obesity and TC through adipokine pathway and chronic inflammatory response. This review focuses on the clinical correlation between obesity and TC and explores the potential mechanism of action between the two, aiming to provide reference for future basic and clinical research.
文章引用:吴梦颖, 朱紫颖, 陈振华, 古丽阿依夏木·阿克木, 戴磊. 肥胖作用于甲状腺癌的机制及临床特点的研究进展[J]. 临床医学进展, 2024, 14(11): 1428-1437. https://doi.org/10.12677/acm.2024.14113029

1. 前言

甲状腺癌(TC)是头颈部最常见的恶性肿瘤,随着人们生活方式的变化和诊疗技术的不断发展,TC已经成为我国发病率增长最快的恶性肿瘤[1]。根据国际癌症研究机构(IARC)的最新估计,2022年全球TC总发病率排名第七,在女性中排名第五[2]。TC发病率的增加主要由于分化型甲状腺癌的确诊率提高,特别是甲状腺乳头状癌(PTC),而甲状腺髓样癌(MTC)、滤泡性甲状腺癌和间变性甲状腺癌的患病率人仍保持稳定[3]。肥胖已成为一个全球性的热点问题,肥胖是影响TC发生发展的一个重要风险因素[4]。先前的国际研究表明TC已成为9种肥胖相关癌症(ORC)之一[5]。肥胖的流行与TC发病率的上升同时发生,在年轻人中TC每年的百分比变化与超重和肥胖患病率的变化呈正相关[6]。并且在流行病学研究中,身体质量指数(BMI)、成年期BMI增加和腰围等与TC风险密切相关[7]。此外,TC的发生和发展受多种因素的影响,如基因突变、环境暴露和表观遗传改变。最近,有许多研究通过脂肪细胞与脂肪因子、肿瘤微环境、内分泌相关等途径的探索发现了两者之间的关联。然而,关于肥胖与TC之间的潜在因果机制尚未完全清楚。本文主要通过阐述肥胖与TC的临床相关性,进一步探索两者间的作用机制,旨在为今后TC的研究提供参考。

2. 肥胖与甲状腺癌临床相关性研究

2.1. 肥胖与肿瘤的相关性研究

WHO将肥胖定义为可能损害健康的过度脂肪堆积,国际上通常使用BMI作为判定肥胖程度的指标,BMI ≥ 25 kg/m2为超重,≥30 kg/m2为肥胖[8]。许多不同类型的癌症已被描述为与体内脂肪过多相关的风险增加,例如胃肠道癌症(食道癌、贲门癌、胃癌、胰腺癌、胆囊癌、肝脏癌、结肠癌、直肠癌)、乳腺癌(绝经后癌症,特别是ER + 乳腺癌风险,而ER-或TNBC与肥胖相关性很小或呈负相关)、肾脏癌、甲状腺癌、前列腺癌、卵巢癌、子宫内膜癌、多发性骨髓瘤和脑膜瘤[9]。越来越多的证据表明,脂肪组织失调与啮齿动物和人类的代谢疾病密切相关,例如2型糖尿病(T2DM)、肥胖、脂肪肝和胰腺炎。此外,其中一些被认为是多发性肿瘤的高危因素[10]。最近的有项研究指出,代谢人体测量表型与ORC风险之间存在显着的性别差异[11]。由此可见,肥胖在不同肿瘤的发生、发展过程中起着一定的作用。

2.2. 肥胖与TC的风险因素研究

TC的高发病率提醒着我们要警惕它的风险因素。目前代谢综合征(MetS),包括肥胖、高血糖、高血压、血脂异常和高胰岛素血症等是PTC的危险因素。我国的一项横断面调查研究,发现了代谢不健康的个体,无论是否肥胖,都比无肥胖的代谢健康个体患甲状腺疾病的风险更高[12] [13]。一项双样本孟德尔随机化研究的结果与观察性研究相反,它并未证实肥胖在TC中的因果作用,但表明了T2DM与TC之间存在联系[14]

此外,Song等人的研究,证明了不论是否调整年龄、性别、促甲状腺激素(TSH)和BMI,MetS均与PTC的侵袭性相关[13]。Wang等人的研究发现了在年龄较大、女性、BMI较高和有阳性糖尿病家族史的人群中,糖尿病和较短的糖尿病病程与TC风险降低有明显相关性[15]。然而,一项关于北非和中东地区20年来TC负担的趋势描述研究,最终得出了女性TC发病率较高的结论[16]。此外,有研究表明肥胖和糖尿病对分化型甲状腺癌(DTC)的侵袭性有影响,并发现BMI和空腹血糖与DTC患者的治疗反应有相关性[17]。值得注意的是,双酚A是一种广泛存在的甲状腺干扰物,它的暴露也被证明是肥胖人群患TC的一个危险因素。在肥胖患者中,双酚A暴露与较高TSH水平显著相关[18]。因此,年龄、性别、TSH水平等因素也应被视为影响肥胖与TC的重要综合因素。

2.3. 肥胖的指数与TC的相关研究

肥胖参与并影响着TC的发生发展,一些指数可以评估肥胖的临床相关性,如BMI、腰高比、腰围和腰臀比等。一项来自亚洲队列协会的汇总分析,表明了高BMI与患TC的风险升高有关,但低BMI的相关性可能因性别和组织学亚型而异[19]。在韩国队列中观察到BMI与TC发病率之间关联的性别差异,最终提出了BMI < 23 kg/m2可能有助于预防TC的发生,尤其是在男性中[20]。另外一项病例对照研究,发现了与BMI水平和每个肥胖指数正常的女性相比,BMI (≥25.0 kg/m2)和其他肥胖指数(腰围 ≥ 85.0 cm、腰臀比 ≥ 0.85或腰高比 ≥ 0.5)的女性患TC的风险增加[21]

此外,乳腺癌(BC)是TC的可能危险因素,TC也是ER-乳腺癌的可能危险因素。从基因驱动的角度来看,TC患者患ER + BC的可能性较小;而ER + BC患者更有可能患有TC [22]。美国一项有关BC的队列研究了过度肥胖和肥胖相关代谢状况与TC发病率的关系,表明BMI (每5 kg/m2),腰围(每增加5cm)和腰臀比(≥0.85和<0.85)与TC的发病率呈正相关[7]。然而,有研究表明TC的评估与BMI无明显相关性[23]。英国的一项多变量孟德尔随机化研究发现较高的BMI在腰臀比调整前后降低了载脂蛋白B和低密度脂蛋白胆固醇,而BMI仅在腰臀比调整前增加了甘油三酯[21]。因此,腰臀比对代谢性状的总体影响更大,与BMI无关,且与女性相关性较高。

2.4. 肥胖与TC的临床特征研究

近年来,TC的病理分类在临床诊疗中的应用得到了越来越多的关注。细针穿吸细胞学检查是目前的主要确诊手段。Li等人的研究发现肿瘤组织钙化与PTC侵袭性呈正相关,而肥胖进一步增加了PTC合并肿瘤组织钙化的肿瘤侵袭风险,由此提出了有经验的病理学家进行更全面的评估可能有助于医生确定术后最佳治疗方案[24]

一些回顾性研究的证据表明,肥胖与TC更具侵袭性的特征相关,包括肿瘤体积增大、甲状腺外扩展(ETE)、肿瘤分期晚以及治疗后疾病持续存在。最近,Dong等人的研究发现超重和肥胖与PTC和PTMC侵袭性临床病理特征显著相关[25]。Shi等人还发现,55岁以下T2DM患者更易发生多灶性癌和腺体外浸润,且女性比男性更易发生腺体外浸润[26]。一项meta分析发现BMI升高与PTC的多种潜在不良特征显著相关[27]。Wang等人也发现了BMI与PTC的侵袭性有关,超重组患者发生ETE和TNM III/IV期的风险较高,肥胖组患者发生ETE的风险较高[28]。而Li等人的一项回顾性研究显示亚临床甲状腺功能减退症是PTC患者发生ETE的独立危险因素,其在正常体重和年轻患者中尤为显著,且男性患者的ETE风险更高[29]。韩国一项研究表明女性无论是否患有MetS,肥胖与ETE都是显著相关的[30]。因此,在女性患者中,要考虑BMI可能影响低中危PTC的侵袭性。

肥胖与TC的术后并发症之间的关系也是值得探究的。由于甲状旁腺功能中断,甲状腺全切除术后术后短暂性低钙血症很常见。Remer等人的研究表明高BMI可能对肥胖患者甲状腺全切除术后低血钙具有保护作用[31],这可能是由于解剖区域脂肪组织增加,从而减少甲状旁腺损伤并随后保留其功能[32]。对于手术方式,Park等人的研究结果表明行双侧腋窝–乳房入路(BABA)机器人甲状腺切除术患者的BMI与术后并发症无显著相关性[33]。值得注意的是,TC的高发病率也提示了开展预防工作的必要性。国内Huang等人发现了TC一级预防的几个潜在因素,包括中心性肥胖、舒张压、血红蛋白A1c (HbA1c)和端粒长度。他们发现端粒长度与甲状腺癌风险增加显著相关,而腰臀比和舒张压、HbA1c和甲状腺癌风险降低相关[34]。但是,韩国的一项研究比较了甲状腺切除术组与对照组的BMI和收缩压/舒张压,得出两组的BMI和收缩压/舒张压差异无统计学意义[35]

3. 肥胖与TC的作用机制研究

3.1. 概述

肥胖与肿瘤之间的作用机制仍处于探索阶段。脂肪细胞是网膜的主要细胞类型,在维持其组织结构和内分泌功能方面起着至关重要的作用。与正常细胞相比,肿瘤细胞消耗更多的葡萄糖和谷氨酰胺[36]。一旦癌细胞在网膜定植,它们就会在网膜脂肪细胞中启动脂解信号,导致长链脂肪酸释放。目前尚不清楚哪些脂质种类受癌细胞–脂肪细胞相互作用的影响。此外,这些脂质对肿瘤微环境(TME)的影响以及这些脂质代谢的机制尚不清楚[37]。肿瘤细胞中增强的合成代谢包括从头脂质合成以及蛋白质和核酸合成。有研究表明,PTC中脂肪酸摄取的失调与脂质代谢和信号通路的改变有关[38]。目前,肥胖的患病率正在逐渐增加,同时胰岛素抵抗和T2DM发展的潜在高风险也在逐渐增加。肥胖与许多恶性肿瘤的风险增加有关,高胰岛素血症被认为是肥胖与癌症发展之间的联系。甲状腺癌的发病率也在增加,使这种癌症成为最常见的内分泌恶性肿瘤[39]

3.2. 脂肪细胞与脂肪因子

脂肪细胞分泌物是一个参与调节肿瘤细胞行为的储存库,可分泌大量细胞因子(IL-6、IL-8和TNF-α)、脂肪因子(瘦素、脂联素和抵抗素等)、脂质代谢物(游离脂肪酸和β-羟基丁酸)和其他外泌体包封物质[40]。脂肪细胞是免疫系统的一部分,脂肪细胞会产生参与许多代谢过程的细胞因子,影响着TC的产生和发展。最近,有学者指出,应在脂肪因子途径和慢性炎症反应中寻找肥胖与TC相结合的机制[41]

脂肪因子,也称为脂肪细胞因子,由20多种不同的激素和源自脂肪细胞的信号分子组成,影响肝脏、骨骼肌、中枢神经系统、心血管系统和胰腺等靶组织。脂肪细胞可以通过脂肪因子影响甲状腺功能,且主要通过控制TSH分泌的瘦素。瘦素是肥胖症刺激生长的关键因素,它调节下丘脑神经元的活动,并对TRH-TSH分泌有直接和间接的影响[42]。此外,脂联素是最丰富的脂肪因子,是人血浆中含量最高的蛋白质,已被证明在人体生理学中具有多种功能,可平衡葡萄糖和脂质代谢,并揭示胰岛素增敏、抗凋亡和免疫调节作用[43]

目前,瘦素和脂联素是研究最广泛的脂肪因子之一。事实上,脂肪细胞分泌脂联素减少或瘦素产生增加都可能促进巨噬细胞在脂肪组织中的积累,并增强巨噬细胞与内皮细胞的粘附[41]。国外Nigro等人的研究发现了脂联素和瘦素对BCPAP和K1细胞系PTC的迁移和侵袭均有拮抗作用,提出两者可能是TC管理的治疗靶点和生物标志物[44]。最近,Refahi等人的病例对照研究发现PTC患者的血清瘦素水平明显高于甲状腺良性结节患者和健康群体,也表明了血清瘦素可被视为PTC的潜在肿瘤标志物[45]。然而,目前有关脂肪因子与TC的相关研究有限,其他一些可能与TC相关的脂肪因子,仍有待我们进一步去探索与发现。

3.3. 脂肪组织与肿瘤微环境

慢性低度炎症除了是肥胖状态下脂肪组织的特征外,还存在于TME中。现在TME被广泛认为在肿瘤发生和恶性进展中起着不可或缺的作用[46]。TME由细胞外基质分子、可溶性因子、代谢物、血液和淋巴肿瘤血管以及几种基质细胞类型组成,它们通过自身相互作用及与肿瘤细胞相互作用,影响着TME重塑、癌症生长和进展。最近,He等人的研究表明,维甲酸诱导基因6可作为BRAF突变PTC的预后标志物,其可能通过激活致癌途径和调节肿瘤免疫抑制TME来驱动甲状腺癌变[47]

然而,脂肪组织的组成、功能和分泌的变化对TME和免疫系统有直接影响。癌细胞的功能和TME的组织不仅受到脂肪细胞功能障碍的影响,还受到肿瘤脂肪微环境中的免疫细胞(如巨噬细胞和淋巴细胞)的影响。在探讨肿瘤脂肪微环境时,不仅要考虑癌细胞,还要考虑整个免疫细胞和基质细胞群[48]。目前,巨噬细胞在脂肪组织炎症反应中的核心作用已得到充分证实。国内Li等人探究了肥胖相关微环境中脂肪组织巨噬细胞重编程的潜在机制,包括功能紊乱代谢物的直接交换、过多的细胞因子和其他信号介质、细胞外囊泡货物的转移以及肠道微生物群及其代谢物的变化[49]

癌症相关成纤维细胞(CAFs)是TME中的关键成分,CAF可分泌多种趋化因子,促进肿瘤侵袭和转移以及抗肿瘤免疫的发生,并增强肿瘤中的肿瘤化疗耐药性[50]。Pu等人通过对11名患者进行单细胞RNA测序,发现无论组织类型如何,所有成纤维细胞都表达了典型的CAF生物标志物,包括波形蛋白、钙离子结合蛋白S100A4、α-平滑肌肌动蛋白和血小板衍生生长因子受体-α。这也确定了免疫疗法及其与抗血管生成疗法联合使用在PTC中的潜在机会[51]。此外,国内有学者通过免疫组化法研究了CAFs标志蛋白在PTC中的表达及其与临床病理特征的相关性,结果发现CAFs强表达是PTC肿瘤腺外浸润、淋巴结转移和多灶性的危险因素[52]。值得注意的是,TME中其他与肥胖相关联的成分对PTC的作用机制还有待进一步研究。

3.4. 癌细胞与脂质代谢

慢性炎症会激活癌前细胞中核因子κ-轻链增强子、STAT3和激活蛋白1等因子的转录。所有这些通路都会增强细胞增殖和存活,促进血管生成,同时减少缺氧[53]。在肿瘤中已鉴定出多种浸润细胞,即肿瘤相关淋巴细胞、肿瘤相关巨噬细胞、未成熟树突状细胞、肥大细胞和髓源性抑制细胞。肿瘤部位存在的特异性炎症免疫细胞(如巨噬细胞和肥大细胞),与甲状腺癌的不良预后有关[54]

最近的研究结果强调了癌细胞的代谢可塑性,并为代谢重新布线如何成为癌细胞持久性、去分化和生长的关键事件提供了新的见解[55]。脂肪细胞脂肪酸结合蛋白(FABP),也称为AP2或FABP4,是一种脂肪酸伴侣,已被进一步定义为脂肪衍生激素,它调节脂质稳态,是炎症的关键介质。有研究表明FABP4可能介导脂肪组织和甲状腺系统之间的“串扰”,它可作为临床环境中甲状腺癌进展的潜在指标,需要进一步的研究来剖析FABP4调节甲状腺癌变的分子机制[56]。此外,METTL16是一种新发现的N6-甲基腺苷(m6 A)甲基转移酶,它也与不同癌症的各种恶性特征相关,在PTC组织中表达水平降低,但其在PTC中作为m6 A RNA写入者的可能功能尚不清楚。国内Li等人为了进一步探讨脂质代谢在PTC发病中的临床意义和分子机制,研究了METTL16/YTHDC2/SCD1在PTC进展过程中调节脂质代谢的生物学作用,他们发现METTL16及其下游调控分子可能成为PTC新的诊断标志物和治疗靶点[57]。因此,脂质代谢与TC细胞的发展存在着密切关联,未来的研究可以进一步探究其内在的分子联系。

3.5. 内分泌相关进展

已知m6 A是高等真核生物RNA中最常见的内部化学修饰,主要在转录后水平对mRNA进行修饰。METTL3是RNA上最著名的m6 A修饰元件,是m6 A RNA修饰的唯一催化组分,可在不改变DNA序列的情况下将一个甲基沉积在靶RNA上以调节其稳定性和翻译[58]。最近,有研究表明,METTL3对肥胖和TC的内分泌功能障碍和进展有显著的促进作用[59],这也是一个新的突破口。

如观察性研究所示,TC与糖尿病之间的关联可以用胰岛素抵抗来解释。Brenta等人关于抗糖尿病药物的研究表明,二甲双胍可能有益于TC,而GLP-1受体激动剂(GLP1 RA)与TC增加之间存在关联的证据有限[60]。GLP1RA是T2DM患者的重要降糖药物,对肥胖和超重伴体重相关合并症患者有一定益处。国内Hu W等人的随机对照试验的荟萃分析发现,GLP1 RA不会增加或降低TC、甲状腺功能亢进症、甲状腺功能减退症、甲状腺炎、甲状腺肿块和甲状腺肿的风险[61]。然而,法国Bezin等人的嵌套病例对照分析有不同的见解,他们发现使用GLP1 RA 1-3年会增加患所有TC的风险,尤其是MTC [62]。最近的一项系统评价和荟萃分析进一步探讨了这个问题,结果发现GLP1 RA的使用与任何类型癌症的风险增加无关[63]。综上,GLP1 RA对TC的影响的进一步的研究有助于探究TC患者内分泌相关代谢途径。

4. 展望

本文通过对肥胖与TC之间的临床相关性研究,探讨了肥胖与TC的风险因素、肥胖的指数与TC、肥胖与TC的临床特征几个方面。此外,从脂肪细胞与脂肪因子、脂肪组织与肿瘤微环境、癌细胞与脂质代谢、内分泌进展等方面进一步探讨了两者之间潜在的分子机制。综上所述,肥胖通过引起人体代谢水平的变化,影响着TC的发生发展,肥胖的指标(如BMI、腰围、腰臀比等)是TC的重要危险因素,且与性别、年龄、TSH水平等有一定相关性。在临床上,我们可以通过测量肥胖的指数去初步评估患者的相关风险,但仍需要更多的临床研究去进一步探索肥胖与TC之间的作用机制。与此同时,往后的研究可以以肥胖因子TME中其他与肥胖相关联的成分对TC的作用为导向进一步探究肥胖与TC之间潜在的致癌分子途径,有望为TC的临床诊治提供一定的帮助。

基金项目

1) 外泌体hsa_circ_0082002和hsa_circ_0003863对甲状腺乳头状癌早期诊断价值及作用机制研究(2023J322)宁波市自然科学基金。2) 宁波市医学重点扶植学科–甲状腺外科(2022-F18)。3) 乳头状甲状腺癌细胞外泌体携带circ_0082002调控淋巴管内皮细胞miR-204-3p/FN1途径介导淋巴管生成和转移(2024HMZD06)华美基金–重点项目。

NOTES

*通讯作者。

参考文献

[1] 国家癌症中心, 国家肿瘤质控中心甲状腺癌质控专家委员会. 中国甲状腺癌规范诊疗质量控制指标(2022版) [J]. 中华肿瘤杂志, 2022, 44(9): 902-907.
[2] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[3] Filetti, S., Durante, C., Hartl, D., Leboulleux, S., Locati, L.D., Newbold, K., et al. (2019) Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 30, 1856-1883.
https://doi.org/10.1093/annonc/mdz400
[4] Kitahara, C.M. and Schneider, A.B. (2022) Epidemiology of Thyroid Cancer. Cancer Epidemiology, Biomarkers & Prevention, 31, 1284-1297.
https://doi.org/10.1158/1055-9965.epi-21-1440
[5] Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F. and Straif, K. (2016) Body Fatness and Cancer—Viewpoint of the IARC Working Group. New England Journal of Medicine, 375, 794-798.
https://doi.org/10.1056/nejmsr1606602
[6] Chen, J., Dalerba, P., Terry, M.B. and Yang, W. (2024) Global Obesity Epidemic and Rising Incidence of Early-Onset Cancers. Journal of Global Health, 14, Article No. 04205.
https://doi.org/10.7189/jogh.14.04205
[7] Pasqual, E., O’Brien, K., Rinaldi, S., Sandler, D.P. and Kitahara, C.M. (2023) Obesity, Obesity-Related Metabolic Conditions, and Risk of Thyroid Cancer in Women: Results from a Prospective Cohort Study (Sister Study). The Lancet Regional HealthAmericas, 23, Article ID: 100537.
https://doi.org/10.1016/j.lana.2023.100537
[8] Prospective Studies Collaboration (2009) Body-Mass Index and Cause-Specific Mortality in 900000 Adults: Collaborative Analyses of 57 Prospective Studies. The Lancet, 373, 1083-1096.
https://doi.org/10.1016/s0140-6736(09)60318-4
[9] Arnold, M., Pandeya, N., Byrnes, G., Renehan, A.G., Stevens, G.A., Ezzati, M., et al. (2015) Global Burden of Cancer Attributable to High Body-Mass Index in 2012: A Population-Based Study. The Lancet Oncology, 16, 36-46.
https://doi.org/10.1016/s1470-2045(14)71123-4
[10] Wagner, R., Eckstein, S.S., Yamazaki, H., Gerst, F., Machann, J., Jaghutriz, B.A., et al. (2021) Metabolic Implications of Pancreatic Fat Accumulation. Nature Reviews Endocrinology, 18, 43-54.
https://doi.org/10.1038/s41574-021-00573-3
[11] Gong, J., Liu, F., Peng, Y., Wang, P., Si, C., Wang, X., et al. (2024) Sex Disparity in the Association between Metabolic-Anthropometric Phenotypes and Risk of Obesity-Related Cancer: A Prospective Cohort Study. BMC Medicine, 22, Article No. 355.
https://doi.org/10.1186/s12916-024-03592-9
[12] Song, J., Li, L., Yu, X., Zhan, L., Xu, Z., Li, J., et al. (2021) Association between Metabolic Syndrome and Clinicopathological Features of Papillary Thyroid Cancer. Endocrine, 75, 865-871.
https://doi.org/10.1007/s12020-021-02940-6
[13] Song, B., Lu, C., Teng, D., Shan, Z. and Teng, W. (2023) Association between Different Metabolic Phenotypes of Obesity and Thyroid Disorders among Chinese Adults: A Nationwide Cross-Sectional Study. Frontiers in Endocrinology, 14, Article ID: 1158013.
https://doi.org/10.3389/fendo.2023.1158013
[14] Fussey, J.M., Beaumont, R.N., Wood, A.R., Vaidya, B., Smith, J. and Tyrrell, J. (2020) Does Obesity Cause Thyroid Cancer? A Mendelian Randomization Study. The Journal of Clinical Endocrinology & Metabolism, 105, e2398-e2407.
https://doi.org/10.1210/clinem/dgaa250
[15] Wang, M., Gong, W., Lu, F., Hu, R., He, Q. and Yu, M. (2021) The Association between Diabetes and Thyroid Cancer Risk: A Hospital-Based Case-Control Study in China. BMC Endocrine Disorders, 21, Article No. 21.
https://doi.org/10.1186/s12902-021-00684-y
[16] Nejadghaderi, S.A., Moghaddam, S.S., Azadnajafabad, S., Rezaei, N., Rezaei, N., Tavangar, S.M., et al. (2022) Burden of Thyroid Cancer in North Africa and Middle East 1990-2019. Frontiers in Oncology, 12, Article ID: 955358.
https://doi.org/10.3389/fonc.2022.955358
[17] Wang, X., Yu, Y., Ji, Y., Ma, Z., Tan, J., Jia, Q., et al. (2023) Clinical Characteristics and Therapeutic Response of Differentiated Thyroid Carcinoma with Obesity and Diabetes. BMC Cancer, 23, Article No. 1077.
https://doi.org/10.1186/s12885-023-11591-x
[18] Marotta, V., Grumetto, L., Neri, I., Russo, G., Tortora, A., Izzo, G., et al. (2023) Exposure to Bisphenol A Increases Malignancy Risk of Thyroid Nodules in Overweight/Obese Patients. Environmental Pollution, 316, Article ID: 120478.
https://doi.org/10.1016/j.envpol.2022.120478
[19] Shin, A., Cho, S., Jang, D., Abe, S.K., Saito, E., Rahman, M.S., et al. (2022) Body Mass Index and Thyroid Cancer Risk: A Pooled Analysis of Half a Million Men and Women in the Asia Cohort Consortium. Thyroid, 32, 306-314.
https://doi.org/10.1089/thy.2021.0445
[20] Kim, K., Kim, K., Lee, S. and Park, S.K. (2023) Sex-Specific Associations between Body Mass Index and Thyroid Cancer Incidence among Korean Adults. Cancer Epidemiology, Biomarkers & Prevention, 32, 1227-1232.
https://doi.org/10.1158/1055-9965.epi-23-0093
[21] Bell, J.A., Richardson, T.G., Wang, Q., Sanderson, E., Palmer, T., Walker, V., et al. (2022) Effects of General and Central Adiposity on Circulating Lipoprotein, Lipid, and Metabolite Levels in UK Biobank: A Multivariable Mendelian Randomization Study. The Lancet Regional HealthEurope, 21, Article ID: 100457.
https://doi.org/10.1016/j.lanepe.2022.100457
[22] Wang, H., Li, S., Shi, J., Feng, C., Wang, Y. and Zhang, F. (2023) Unbalanced Bidirectional Causal Association between Thyroid Cancer and Er-Positive Breast Cancer: Should We Recommend Screening for Thyroid Cancer in Breast Cancer Patients? BMC Genomics, 24, Article No. 762.
https://doi.org/10.1186/s12864-023-09854-9
[23] Ahmadi, S., Pappa, T., Kang, A.S., Coleman, A.K., Landa, I., Marqusee, E., et al. (2022) Point of Care Measurement of Body Mass Index and Thyroid Nodule Malignancy Risk Assessment. Frontiers in Endocrinology, 13, Article ID: 824226.
https://doi.org/10.3389/fendo.2022.824226
[24] Li, C., Zhou, L., Dionigi, G., Li, F., Zhao, Y. and Sun, H. (2020) The Association between Tumor Tissue Calcification, Obesity, and Thyroid Cancer Invasiveness in a Cohort Study. Endocrine Practice, 26, 830-839.
https://doi.org/10.4158/ep-2020-0057
[25] Dong, Z., Liu, W., Su, F. and Cheng, R. (2023) Association of Body Mass Index with Clinicopathological Features of Papillary Thyroid Carcinoma: A Retrospective Study. Endocrine Practice, 29, 83-88.
https://doi.org/10.1016/j.eprac.2022.11.012
[26] Shi, P., Zhang, L., Liu, Y., Yang, F., Fu, K., Li, R., et al. (2022) Clinicopathological Features and Prognosis of Papillary Thyroid Cancer Patients with Type 2 Diabetes Mellitus. Gland Surgery, 11, 358-368.
https://doi.org/10.21037/gs-21-905
[27] O'Neill, R.J., Abd Elwahab, S., Kerin, M.J. and Lowery, A.J. (2021) Association of BMI with Clinicopathological Features of Papillary Thyroid Cancer: A Systematic Review and Meta‐Analysis. World Journal of Surgery, 45, 2805-2815.
https://doi.org/10.1007/s00268-021-06193-2
[28] Wang, H., Wang, P., Wu, Y., Hou, X., Peng, Z., Yang, W., et al. (2020) Correlation between Obesity and Clinicopathological Characteristics in Patients with Papillary Thyroid Cancer: A Study of 1579 Cases: A Retrospective Study. PeerJ, 8, e9675.
https://doi.org/10.7717/peerj.9675
[29] Li, C., Zhang, J., Dionigi, G. and Sun, H. (2023) The Relationship between Subclinical Hypothyroidism and Invasive Papillary Thyroid Cancer. Frontiers in Endocrinology, 14, Article ID: 1294441.
https://doi.org/10.3389/fendo.2023.1294441
[30] Kim, M., Kang, Y.E., Park, Y.J., Koo, B.S., Ku, E.J., Choi, J.Y., et al. (2023) Potential Impact of Obesity on the Aggressiveness of Low-to Intermediate-Risk Papillary Thyroid Carcinoma: Results from a MASTER Cohort Study. Endocrine, 82, 134-142.
https://doi.org/10.1007/s12020-023-03416-5
[31] Remer, L.F., Linhares, S.M., Scola, W.H., Khan, Z.F. and Lew, J.I. (2022) Transient Hypocalcemia after Total Thyroidectomy: The Obesity Paradox at Work? Journal of Surgical Research, 278, 93-99.
https://doi.org/10.1016/j.jss.2022.04.048
[32] Mahvi, D.A., Witt, R.G., Lyu, H.G., Gawande, A.A., Nehs, M.A., Doherty, G.M., et al. (2022) Increased Body Mass Index Is Associated with Lower Risk of Hypocalcemia in Total Thyroidectomy Patients. Journal of Surgical Research, 279, 240-246.
https://doi.org/10.1016/j.jss.2022.06.002
[33] Park, Y., Yu, H.W., Lee, J.K., Choi, J., Kim, W., Kwak, J., et al. (2023) Effect of Body Habitus on Surgical Outcomes Following Bilateral Axillo-Breast Approach Robotic Thyroidectomy: A Retrospective Cohort Study. International Journal of Surgery, 109, 1257-1263.
https://doi.org/10.1097/js9.0000000000000279
[34] Huang, L., Feng, X., Yang, W., Li, X., Zhang, K., Feng, S., et al. (2022) Appraising the Effect of Potential Risk Factors on Thyroid Cancer: A Mendelian Randomization Study. The Journal of Clinical Endocrinology & Metabolism, 107, e2783-e2791.
https://doi.org/10.1210/clinem/dgac196
[35] Jin, Y.J., Hah, J.H., Kwon, M.J., Kim, J.H., Kim, J., Kim, S., et al. (2022) Association between Thyroid Cancer and Weight Change: A Longitudinal Follow-Up Study. International Journal of Environmental Research and Public Health, 19, Article No. 6753.
https://doi.org/10.3390/ijerph19116753
[36] Bao, L., Xu, T., Lu, X., Huang, P., Pan, Z. and Ge, M. (2021) Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Frontiers in Oncology, 11, Article ID: 773028.
https://doi.org/10.3389/fonc.2021.773028
[37] Zhang, Z., Du, J., Shi, H., Wang, S., Yan, Y., Xu, Q., et al. (2022) Adiponectin Suppresses Tumor Growth of Nasopharyngeal Carcinoma through Activating AMPK Signaling Pathway. Journal of Translational Medicine, 20, Article No. 89.
https://doi.org/10.1186/s12967-022-03283-0
[38] Biswas, P., Datta, C., Rathi, P. and Bhattacharjee, A. (2022) Fatty Acids and Their Lipid Mediators in the Induction of Cellular Apoptosis in Cancer Cells. Prostaglandins & Other Lipid Mediators, 160, Article ID: 106637.
https://doi.org/10.1016/j.prostaglandins.2022.106637
[39] Kushchayeva, Y., Kushchayev, S., Jensen, K. and Brown, R.J. (2022) Impaired Glucose Metabolism, Anti-Diabetes Medications, and Risk of Thyroid Cancer. Cancers, 14, Article No. 555.
https://doi.org/10.3390/cancers14030555
[40] Zhou, X., Zhang, J., Lv, W., Zhao, C., Xia, Y., Wu, Y., et al. (2022) The Pleiotropic Roles of Adipocyte Secretome in Remodeling Breast Cancer. Journal of Experimental & Clinical Cancer Research, 41, Article No. 203.
https://doi.org/10.1186/s13046-022-02408-z
[41] Masone, S., Velotti, N., Savastano, S., Filice, E., Serao, R., Vitiello, A., et al. (2021) Morbid Obesity and Thyroid Cancer Rate. a Review of Literature. Journal of Clinical Medicine, 10, Article No. 1894.
https://doi.org/10.3390/jcm10091894
[42] Walczak, K. and Sieminska, L. (2021) Obesity and Thyroid Axis. International Journal of Environmental Research and Public Health, 18, Article No. 9434.
https://doi.org/10.3390/ijerph18189434
[43] Scherer, P.E. (2016) The Multifaceted Roles of Adipose Tissue—Therapeutic Targets for Diabetes and beyond: The 2015 Banting Lecture. Diabetes, 65, 1452-1461.
https://doi.org/10.2337/db16-0339
[44] Nigro, E., Orlandella, F.M., Polito, R., Mariniello, R.M., Monaco, M.L., Mallardo, M., et al. (2021) Adiponectin and Leptin Exert Antagonizing Effects on Proliferation and Motility of Papillary Thyroid Cancer Cell Lines. Journal of Physiology and Biochemistry, 77, 237-248.
https://doi.org/10.1007/s13105-021-00789-x
[45] Refahi, R., Heidari, Z. and Mashhadi, M. (2023) Association of High Serum Leptin Level with Papillary Thyroid Carcinoma: A Case-Control Study. International Journal of Hematology-Oncology and Stem Cell Research, 17, 210-219.
https://doi.org/10.18502/ijhoscr.v17i3.13311
[46] Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46.
https://doi.org/10.1158/2159-8290.cd-21-1059
[47] He, W., Sun, Y., Ge, J., Wang, X., Lin, B., Yu, S., et al. (2023) STRA6 Regulates Tumor Immune Microenvironment and Is a Prognostic Marker in Braf-Mutant Papillary Thyroid Carcinoma. Frontiers in Endocrinology, 14, Article ID: 1076640.
https://doi.org/10.3389/fendo.2023.1076640
[48] Liu, C., Zhang, Y., Lim, S., Hosaka, K., Yang, Y., Pavlova, T., et al. (2017) A Zebrafish Model Discovers a Novel Mechanism of Stromal Fibroblast-Mediated Cancer Metastasis. Clinical Cancer Research, 23, 4769-4779.
https://doi.org/10.1158/1078-0432.ccr-17-0101
[49] Li, B., Sun, S., Li, J., Yuan, J., Sun, S. and Wu, Q. (2023) Adipose Tissue Macrophages: Implications for Obesity-Associated Cancer. Military Medical Research, 10, Article No. 1.
https://doi.org/10.1186/s40779-022-00437-5
[50] Avagliano, A., Fiume, G., Bellevicine, C., Troncone, G., Venuta, A., Acampora, V., et al. (2022) Thyroid Cancer and Fibroblasts. Cancers, 14, Article No. 4172.
https://doi.org/10.3390/cancers14174172
[51] Pu, W., Shi, X., Yu, P., Zhang, M., Liu, Z., Tan, L., et al. (2021) Single-Cell Transcriptomic Analysis of the Tumor Ecosystems Underlying Initiation and Progression of Papillary Thyroid Carcinoma. Nature Communications, 12, Article No. 6058.
https://doi.org/10.1038/s41467-021-26343-3
[52] 朱莉, 张雪梅, 周贵明, 等. 癌相关成纤维细胞在甲状腺癌中的表达及临床相关性初步研究[J]. 中华内分泌代谢杂志, 2023, 39(9): 739-745.
[53] Ferrari, S.M., Fallahi, P., Galdiero, M.R., Ruffilli, I., Elia, G., Ragusa, F., et al. (2019) Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. International Journal of Molecular Sciences, 20, Article No. 4413.
https://doi.org/10.3390/ijms20184413
[54] Bergers, G. and Fendt, S. (2021) The Metabolism of Cancer Cells during Metastasis. Nature Reviews Cancer, 21, 162-180.
https://doi.org/10.1038/s41568-020-00320-2
[55] Fendt, S., Frezza, C. and Erez, A. (2020) Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discovery, 10, 1797-1807.
https://doi.org/10.1158/2159-8290.cd-20-0844
[56] Cheng, C., Fang, W., Yang, Y. and Lin, J. (2024) High Fatty Acid-Binding Protein 4 Expression Associated with Favorable Clinical Characteristics and Prognosis in Papillary Thyroid Carcinoma. Endocrine Pathology, 35, 245-255.
https://doi.org/10.1007/s12022-024-09815-2
[57] Li, Q., Wang, Y., Meng, X., Wang, W., Duan, F., Chen, S., et al. (2024) METTL16 Inhibits Papillary Thyroid Cancer Tumorigenicity through M6a/Ythdc2/Scd1-Regulated Lipid Metabolism. Cellular and Molecular Life Sciences, 81, Article No. 81.
https://doi.org/10.1007/s00018-024-05146-x
[58] Yang, J., Liu, J., Zhao, S. and Tian, F. (2020) N6-Methyladenosine METTL3 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract. Molecular TherapyNucleic Acids, 20, 111-116.
https://doi.org/10.1016/j.omtn.2020.02.002
[59] Su, X., Qu, Y. and Mu, D. (2024) Methyltransferase-Like 3 Modifications of RNAs: Implications for the Pathology in the Endocrine System. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1870, Article ID: 167010.
https://doi.org/10.1016/j.bbadis.2023.167010
[60] Brenta, G. and Di Fermo, F. (2023) Thyroid Cancer and Insulin Resistance. Reviews in Endocrine and Metabolic Disorders, 25, 19-34.
https://doi.org/10.1007/s11154-023-09849-7
[61] Hu, W., Song, R., Cheng, R., Liu, C., Guo, R., Tang, W., et al. (2022) Use of GLP-1 Receptor Agonists and Occurrence of Thyroid Disorders: A Meta-Analysis of Randomized Controlled Trials. Frontiers in Endocrinology, 13, Article ID: 927859.
https://doi.org/10.3389/fendo.2022.927859
[62] Bezin, J., Gouverneur, A., Pénichon, M., Mathieu, C., Garrel, R., Hillaire-Buys, D., et al. (2022) GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care, 46, 384-390.
https://doi.org/10.2337/dc22-1148
[63] Nagendra, L., BG, H., Sharma, M. and Dutta, D. (2023) Semaglutide and Cancer: A Systematic Review and Meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17, Article ID: 102834.
https://doi.org/10.1016/j.dsx.2023.102834