关于复合微分算子的W-留数
The W-Residues of Complex Differential Operators
摘要: 本文首先综述近年来关于微分算子W-留数的一系列研究进展。之后研究一类复合微分算子 D+c( X ) 的基本结构,并在法坐标系下导出了微分算子的主符号表示,最终结合Lichnerowicz公式给出了5维带边流形上复合微分算子的W-留数表示。
Abstract: In this paper, a series of research advances on W-residue of differential operators in recent years are reviewed. Then the basic structure of a class of complex differential operators D+c( X ) is studied, and the principal symbolic representation of differential operators is derived in normal coordinate system. Finally, the W-residue representation of complex differential operators on 5-dimensional manifolds with edges is given by combining Lichnerowicz formula.
文章引用:王楠, 王剑. 关于复合微分算子的W-留数[J]. 应用数学进展, 2024, 13(11): 5009-5016. https://doi.org/10.12677/aam.2024.1311483

1. 引言

近年来,非交换留数研究有了很多重要的结果,微分算子的Lichnerowicz公式及其带边流形上的留数研究获得了细致而深入的理解。本文在以往工作的基础上,探讨一类复合微分算子 D+c( X ) 的基本结构,对该微分算子的Lichnerowicz公式和W-留数进行刻画。

20世纪90年代,Wodzicki对椭圆拟微分算子的zeta函数理论作了深入的研究,在非交换几何框架下给出了以他的名字命名的Wodzicki定理(参见文献[1])。Connes [2]应用非交换留数导出了四维情形下的微分算子的Polyakov作用。进一步,Connes [3]猜想Dirac算子逆的平方的非交换留数与Einstein-Hilbert作用成正比。Kastler [4],Kalau和Walze [5]从不同的角度证明了这一结论,称之为Kastler-Kalau-Walze定理。Fedosov等人[6]结合紧致流形M上Wodzicki的相关理论将这种留数推广到Boutet代数上,并给出了带边流形W-留数的结构。结合FGLS定理[6],带边流形上的W-留数 Wres ˜ [7],可以分为内部项和边界项两部分来刻画。Sitarz和Zajac [8]探讨了扰动Dirac算子的谱作用,Iochum和Levy [9]计算了具有单形式扰动的Dirac算子谱作用渐进展开中的热核系数。结合Dirac算子、Signature算子,Wang [10]证明了低维带边流形的Kastler-Kalau-Walze型定理。Wang [11]定义了具有边界的自旋流形的低维体积并计算了具有边界的5维和6维自旋流形的低维体积。进一步,相关文献[12]-[14]探讨了扭化Dirac算子的Lichnerowicz型公式,建立了高维带边流形上微分算子的Kastler-Kalau-Walze型定理。

本文主要考虑一类复合微分算子 D+c( X ) ,结合Lichnerowicz公式计算出5维带边流形与复合微分Dirac算子相关的W-留数 Wres ˜ [ π + ( D+c( X ) ) 1 π + ( D+c( X ) ) 1 ]

2. 复合微分算子的Lichnerowicz公式

( M, g M ) n维带边流形,边界为 M 。记 L 为Levi-Civita联络,在局部坐标 { x i ;1in } 和标准正交坐标系 { E ˜ 1 ,, E ˜ n } 下,联络矩阵 ( ω s,t ) 定义为

L ( E ˜ 1 ,, E ˜ n ) t =( w s,t ) ( E ˜ 1 ,, E ˜ n ) t (2.1)

定义2.1:记M为具有黎曼度量gn维定向自旋流形,Dirac算子在切丛 TM 的正交框架 e i 1in 和自然框架 i 下,

D= i,j g i,j c( i ) i S = i c( e i ) e i S , (2.2)

其中 c( e i ) 表示Clifford作用,满足关系式 c( e i )c( e j )+c( e j )c( e i )=2 δ i j

定义2.2:记复合微分算子 D ˜ 为Dirac算子与微分形式的组合,

D ˜ =D+c( X )= i c( e i ) e i S +c( X ). (2.3)

其中 c( X ) M微分一形式,X为向量场。

结合复合微分算子 D ˜ D ˜ 2 的运算

D ˜ 2 = ( D+c( X ) ) 2 = D 2 +Dc( X )+c( X )D+ c 2 ( X ) ,(2.4)

得到复合微分算子 D ˜ 的Lichnerowicz公式。

命题2.3:复合微分算子 D ˜ 2 可表示为

D ˜ 2 = g ij i j +[ 2 σ j + Γ j +c( j )c( X )+c( X )c( j ) ] j + i,j g ij [ ( i σ j ) σ i σ j + Γ ij k σ k +c( i ) j ( c( X ) )+c( i ) σ j c( X )+c( X )c( i ) σ j ] + 1 4 s+ c 2 ( X ). (2.5)

结合命题2.3,得到如下结论。

定理2.4:对于偶数n维的紧致无边流形,复合微分算子 D ˜ 的非交换留数可表示为

Wres( D ˜ n+2 )= ( n2 ) π n 2 dim( S( TM ) ) ( n 2 1 )! M 5s 12 dvo l M .  (2.6)

3. 带边流形上复合微分算子 D ˜ 的W-留数

定理3.1 [6]:对于带边流形x,边界为 x dimV3 A=( π + P+G K T S )B ,记 p,b s分别表示 P,B S的局部表示,微分算子的W-留数定义为

Wres ˜ ( A )= X S t r E [ p n ( x,ξ ) ]σ( ξ )dx +2π X S { t r E [ ( tr b n )( x , ξ ) ]+t r F [ s 1n ( x , ξ ) ] }σ( ξ )d x . (3.1)

a) Wres ˜ ( [ A,B ] )=0 ,对于任意的 A,BΒ ;b) 是 Β/ Β 上唯一的连续迹。

σ l ( A ) 表示微分算子Al阶符号,则带边流形微分算子A的W-留数为:

Wres ˜ [ π + D ˜ p 1 π + D ˜ p 2 ]= X | ξ |=1 t r S( TM ) [ σ n ( D ˜ p 1 p 2 ) ]σ( ξ )dx + M Φ, (3.2)

其中

Φ= | ξ |=1 + j,k=0 ( i ) | a |+j+k+1 a!( j+k+1 ) trac e S( TM ) [ x n j ξ a ξ n k σ r + ( D ˜ p 1 )( x ,0, ξ , ξ n ) × x a ξ n j+1 x n k σ l ( D ˜ p 2 )( x ,0, ξ , ξ n ) ]d ξ n σ( ξ )d x , (3.3)

rk+| a |+lj1=n,r p 1 ,l p 2 .

依据命题3.5 [11]可知, p 1 + p 2 nmod1 Vo l n ( p 1 , p 2 ) M= M Φ ,则5维带边流形情形下复合微分算子 D ˜ 的W-留数为 Wres ˜ [ π + D ˜ 1 π + D ˜ 1 ]= M Φ

引理3.2:复合微分算子 D ˜ 的主符号

σ 1 ( D ˜ 1 )= q 1 = 1 c( ξ ) | ξ | 2 ;

σ 2 ( D ˜ 1 )= q 2 = c( ξ ) p 0 c( ξ ) | ξ | 4 + c( ξ ) | ξ | 6 j c( d x j )[ x j ( c( ξ ) ) | ξ | 2 c( ξ ) x j ( | ξ | 2 ) ] = σ 2 ( D 1 )+ c( X ) | ξ | 2 2g( X,ξ )c( ξ ) | ξ | 4 ;

σ 3 ( D ˜ 1 )= q 3 = 1 p 1 [ p 0 q 2 + j=1 n1 c( d x j ) x j q 2 +c( d x n ) x n q 2 ];

其中, p 0 ( x )= h ( 0 )c( d x n )+c( X )

引理3.3:复合微分算子 D ˜ 的-3阶基本形式为

σ 3 ( D ˜ 1 )( x 0 )| | ξ |=1 = σ 3 ( D 1 )( x 0 )| | ξ |=1 + [ q 1 c( X ) σ 2 ( D 1 ) q 1 c( X ) | ξ | 2 + q 1 2g( X,ξ )c( ξ ) | ξ | 4 q 1 j=1 n1 c( d x j ) x j ( c( X ) | ξ | 2 )+ q 1 j=1 n1 c( d x j ) x j ( 2g( X,ξ )c( ξ ) | ξ | 4 ) q 1 c( d x n ) x n ( c( X ) | ξ | 2 )+ q 1 x n ( 2g( X,ξ ) | ξ | 4 ) ]( x 0 )| | ξ |=1 = σ 3 ( D 1 )( x 0 )| | ξ |=1 + R 3 ( x 0 )| | ξ |=1 . (3.4)

对于5维带边流形,根据 rl+k+j| a |1=5 r,l1 ,可得 Φ= i=1 15 Φ i

(1) r=1 l=1 k=0 j=1 | a |=1

Φ 1 = i 2 | ξ |=1 + | α |=1 trace[ x n ξ i π ξ n + q 1 × x i ξ n 2 q 1 ]( x 0 )d ξ n σ( ξ )d x .

对于 j<n ,有

x i q 1 ( x 0 )= x i ( 1 c( ξ ) | ξ | 2 )( x 0 )= 1 x i | c( ξ ) |( x 0 ) | ξ | 2 1 c( ξ ) x i ( | ξ | 2 )( x 0 ) | ξ | 4 =0 , Φ 1 =0 .

(2) r=1 l=1 k=0 j=2 | a |=0

Φ 2 = i 6 | ξ |=1 + j=2 trace[ x n 2 π ξ n + q 1 × ξ n 3 q 1 ]( x 0 )d ξ n σ( ξ )d x .

直接计算得到

ξ n 3 q 1 ( x 0 )| | ξ |=1 = 24 ξ n 24 ξ n 3 ( 1+ ξ n 2 ) 4 1 c( ξ )+ 6 ξ n 4 +36 ξ n 2 6 ( 1+ ξ n 2 ) 4 1 c( d x n ) ,

x n 2 π ξ n + q 1 ( x 0 )| | ξ |=1 = π ξ n + x n 2 c( ξ ) | ξ | 2 | | ξ |=1 = π ξ n + x n [ x n ( c( ξ ) ) | ξ | 2 c( ξ ) x n ( | ξ | 2 ) | ξ | 4 ] = π ξ n + ( x n 2 ( c( ξ ) ) | ξ | 2 2 h ( 0 ) x n ( c( ξ ) ) | ξ | 4 h ( 0 )c( ξ ) | ξ | 4 + c( ξ )2 ( h ( 0 ) ) 2 | ξ | 6 ) = π ξ n + ( x n 2 ( c( ξ ) ) | ξ | 2 )2 h ( 0 ) x n ( c( ξ ) ) π ξ n + 1 | ξ | 4 h ( 0 ) π ξ n + c( ξ ) | ξ | 4 +2 ( h ( 0 ) ) 2 π ξ n + c( ξ ) | ξ | 6 =( 3 4 ( h ( 0 ) ) 2 1 2 h ( 0 ) ) c( ξ ) 2( ξ n i ) h ( 0 ) ξ n 2i 4 ( ξ n i ) 2 x n ( c( ξ ) ) h ( 0 ) ( ξ n 2i )c( ξ )+c( d x n ) 4 ( ξ n i ) 2 +2i ( h ( 0 ) ) 2 ( 3i ξ n 2 9 ξ n +8i )c( ξ )( i ξ n +3 )c( d x n ) 16 ( ξ n i ) 3 .

结合Clifford运算及迹性质 trAB=trBA ,有

tr[ c( ξ )c( d x n ) ]=0;tr[ c ( d x n ) 2 ]=4; tr[ c ( ξ ) 2 ( x 0 ) ]( x 0 )| | ξ |=1 =4; tr[ x n c( ξ )c( d x n ) ]=0; tr[ x n c( ξ )×c( ξ ) ]( x 0 )| | ξ |=1 =2 h ( 0 ).

trace[ x n 2 π ξ n 2 q 1 × ξ n 3 q 1 ]( x 0 )| | ξ |=1 =i ( h ( 0 ) ) 2 3( 33 ξ n 5 75i ξ n 4 94 ξ n 3 +90i ξ n 2 +57 ξ n 3i ) 2 ( ξ n i ) 3 ( 1+ ξ n 2 ) 4 +i( h ( 0 ) ) 6( 9 ξ n 4 +12i ξ n 3 +14 ξ n 2 12i ξ n 1 ) 2 ( ξ n i ) 2 ( 1+ ξ n 2 ) 4 .

Φ 2 = 1 6 ( h ( 0 ) ) 2 | ξ |=1 + 3( 33 ξ n 5 75i ξ n 4 94 ξ n 3 +90i ξ n 2 +57 ξ n 3i ) 2 ( ξ n i ) 3 ( 1+ ξ n 2 ) 4 d ξ n σ( ξ )d x 1 6 h ( 0 ) | ξ |=1 + 6( 9 ξ n 4 +12i ξ n 3 +14 ξ n 2 12i ξ n 1 ) 2 ( ξ n i ) 3 ( 1+ ξ n 2 ) 4 d ξ n σ( ξ )d x = 1 6 ( h ( 0 ) ) 2 Ω 3 Γ + 3(33 ξ n 5 75i ξ n 4 94 ξ n 3 +90i ξ n 2 +57 ξ n 3i) 2 ( ξ n i ) 3 ( 1+ ξ n 2 ) 4 d ξ n d x 1 6 h ( 0 ) Ω 3 Γ + 6( 9 ξ n 4 +12i ξ n 3 +14 ξ n 2 12i ξ n 1 ) 2 ( ξ n i ) 3 ( 1+ ξ n 2 ) 4 d ξ n d x =( 29 64 ( h ( 0 ) ) 2 3 8 h ( 0 ) )π Ω 3 d x ,

其中 Ω 3 S 3 的标准体积。

(3) r=1 l=2 k=0 j=0 | a |=1

由(3.3)得:

Φ 3 = | ξ |=1 + | a |=1 trace[ ξ i π ξ n + q 1 × x i ξ n q 2 ]( x 0 ) d ξ n σ( ξ )d x = | ξ |=1 + | a |=1 trace[ ξ n ξ i π ξ n + q 1 × x i q 2 ]( x 0 ) d ξ n σ( ξ )d x = | ξ |=1 + | a |=1 trace[ ξ n ξ i π ξ n + q 1 × x i ( σ 2 ( D 1 )+ c( X ) | ξ | 2 2g( X,ξ )c( ξ ) | ξ | 4 ) ]( x 0 ) d ξ n σ( ξ )d x .

x 0 点结合 π ξ n + 运算公式得到

ξ i π ξ n + q 1 ( x 0 )| | ξ |=1 = 1 2 ( ξ n i ) 2 c( d x i ) ξ i 3i ξ n 2 ( ξ n i ) 3 c( ξ )+ ξ i 1 ( ξ n i ) 3 c( d x n ),

x i ( c( X ) | ξ | 2 2g( X,ξ )c( ξ ) | ξ | 4 | | ξ |=1 = 1 | ξ | 2 x i [ c( X ) ] 2c( ξ ) | ξ | 4 x i [ g( X,ξ ) ].

计算得

| a |=1 trace[ ξ n ξ i π ξ n + q 1 × x i ( c( X ) | ξ | 2 2g( X,ξ )c( ξ ) | ξ | 4 ]( x 0 ) = 2 ( ξ n i ) 3 ( ξ n +i ) j1 n1 x j [ g( X,d x j ) ] + 2 ξ n 3 +6i ξ n 2 2 ξ n 2i ( ξ n i ) 5 ( ξ n +i ) 2 i,j1 n1 ξ i ξ j x j [ g( X,d x j ) ].

组合以上算式得

Φ 3 =( 3 16 5 32 i ) s M π Ω 3 d x + | ξ |=1 + | a |=1 trace[ ξ n ξ a π ξ n + q 1 × x a ( c( X ) | ξ | 2 2g( X,ξ )c( ξ ) | ξ | 4 ]( x 0 )d ξ n σ( ξ )d x =( 3 16 5 32 i ) s M π Ω 3 d x 9 16 π Ω 3 j=1 n1 x j [ g( X,d x j ) ]d x =( 3 16 5 32 i ) s M π Ω 3 d x 9 16 π Ω 3 C 1 1 ( M ( X | M ) * )d x .

其中向量场 ( X | M ) * 指代 X | M 的度量对偶, M M 的Levi-Civita联络, C 1 1 是(1,1)张量的缩并。

类似以上方法,计算得到其他情形。

Φ 4 = 5 16 ( h ( 0 ) ) 2 π Ω 3 d x , Φ 5 =0, Φ 6 =( 29 64 ( h ( 0 ) ) 2 3 8 h ( 0 ) )π Ω 3 d x ,

Φ 7 = 39 32 ( h ( 0 ) ) 2 π Ω 3 d x 5 8 a n h ( 0 ) Ω 3 d x , Φ 8 = 1 4 s M π 3 d x ,

Φ 9 =( 367 128 h ( 0 ) 2 + 103 64 h ( 0 ) )π Ω 3 d x 3 8 π Ω 3 x n ( a n )d x + 15 64 π a n h ( 0 ) Ω 3 d x ,

Φ 10 =( 367 128 h ( 0 ) 2 + 103 64 h ( 0 ) )π Ω 3 d x 3 8 π Ω 3 x n ( a n )d x + 15 64 π a n h ( 0 ) Ω 3 d x ,

Φ 11 =0, Φ 12 = 39 32 ( h ( 0 ) ) 2 π Ω 3 d x 5 8 a n h ( 0 )π Ω 3 d x ,

Φ 13 = 821 256 ( h ( 0 ) ) 2 π Ω 3 d x + 15 16 π a n h ( 0 ) Ω 3 d x + π 2 | X | g 2 TM Ω 3 d x + 35 64 π | X | g 2 M Ω 3 d x π a n 2 Ω 3 d x ,

Φ 14 =( 239 64 ( h ( 0 ) ) 2 27 16 h ( 0 ) 11 192 s M )π Ω 3 d x 5 8 π a n h ( 0 ) Ω 3 d x + 3 4 π x n ( a n ) Ω 3 d x + 3 4 π C 1 1 ( D X )d x ,

Φ 15 =( 239 64 ( h ( 0 ) ) 2 27 16 h ( 0 ) 11 192 s M )π Ω 3 d x 5 8 π a n h ( 0 ) Ω 3 d x + 3 4 π x n ( a n ) Ω 3 d x + 3 4 π Ω 3 C 1 1 ( M ( X | M ) )d x ,

组合上述结果得到

Φ=( 399 256 ( h ( 0 ) ) 2 29 32 h ( 0 )( 17 96 + 5 32 i ) s M )π Ω 3 d x + 25 32 π a n h ( 0 ) Ω 3 d x π 2 | X | g 2 TM Ω 3 d x + 35π 65 | X | g 2 TM h ( 0 ) Ω 3 d x π a n 2 Ω 3 d x 3 4 π x n ( a n ) Ω 3 d x + 15 16 π C 1 1 ( M ( X | M ) * ) Ω 3 d x (3.5)

4. 结论

依据带边流形的Einstein-Hilbert作用[10] [11]

I G r = 1 16π M sdvo l M +2 M Kdvo l M := I G r,i + I G r,b ,

K= 1i,jn1 K i,j g M i,j , K i,j ( x 0 )= Γ i,j n ( x 0 ) .

对于5维带边流形, K( x 0 )= i,j K i,j ( x 0 ) g M i,j ( x 0 ) = i,j 4 K i,j ( x 0 ) =2 h ( 0 ) ,有

s M =3 ( h ( 0 ) ) 2 4 h ( 0 )+ s M ( x 0 ). (4.1)

定理4.1:设M为5维带边流形,边界为 M 。复合微分算子 D ˜ 的W-留数为

Wres ˜ [ π + ( D+c( X ) ) 1 π + ( D+c( X ) ) 1 ] = M [ 1 16 ( 225 32 K 2 + 29 4 s M | M ( 155 12 +5i ) s M ) 25 32 a n K | X | g 2 M 35 64 | X | g 2 M K 3 a n 2 | M 3 2 x n ( a n )| M + 15 8 C 1 1 ( M ( X | M ) * ) ] π 3 dvo l M (4.2)

其中 s M , s M 分别指代M M 上的数量曲率,向量场 ( X | M ) * X | M 的度量对偶, M M 的Levi-Civita联络, C 1 1 是(1,1)张量的缩并。

NOTES

*通讯作者。

参考文献

[1] Wodzicki, M. (1984) Local Invariants of Spectral Asymmetry. Inventiones Mathematicae, 75, 143-177.
https://doi.org/10.1007/bf01403095
[2] Connes, A. (1995) Quantized Calculus and Applications. Proceedings of the 11th International Congress of Mathematical Physics. Paris, 18-22 July 1994, 15-36.
[3] Connes, A. (1988) The Action Functional in Non-Commutative Geometry. Communications in Mathematical Physics, 117, 673-683.
https://doi.org/10.1007/bf01218391
[4] Kastler, D. (1995) The Dirac Operator and Gravitation. Communications in Mathematical Physics, 166, 633-643.
https://doi.org/10.1007/bf02099890
[5] Kalau, W. and Walze, M. (1995) Gravity, Non-Commutative Geometry and the Wodzicki Residue. Journal of Geometry and Physics, 16, 327-344.
https://doi.org/10.1016/0393-0440(94)00032-y
[6] Fedosov, B.V., Golse, F., Leichtnam, E. and Schrohe, E. (1996) The Noncommutative Residue for Manifolds with Boundary. Journal of Functional Analysis, 142, 1-31.
https://doi.org/10.1006/jfan.1996.0142
[7] Wang, Y. (2006) Differential Forms and the Wodzicki Residue for Manifolds with Boundary. Journal of Geometry and Physics, 56, 731-753.
https://doi.org/10.1016/j.geomphys.2005.04.015
[8] Sitarz, A. and Zając, A. (2011) Spectral Action for Scalar Perturbations of Dirac Operators. Letters in Mathematical Physics, 98, 333-348.
https://doi.org/10.1007/s11005-011-0498-5
[9] Iochum, B. and Levy, C. (2011) Tadpoles and Commutative Spectral Triples. Journal of Noncommutative Geometry, 5, 299-329.
https://doi.org/10.4171/jncg/77
[10] Wang, Y. (2007) Gravity and the Noncommutative Residue for Manifolds with Boundary. Letters in Mathematical Physics, 80, 37-56.
https://doi.org/10.1007/s11005-007-0147-1
[11] Yong, W. (2010) Lower-Dimensional Volumes and Kastler-Kalau-Walze Type Theorem for Manifolds with Boundary. Communications in Theoretical Physics, 54, 38-42.
https://doi.org/10.1088/0253-6102/54/1/08
[12] Li, H., Wu, T. and Wang, Y. (2023) Statistical De Rham Hodge Operators and General Kastler-Kalau-Walze Type Theorems for Manifolds with Boundary. Journal of Pseudo-Differential Operators and Applications, 14, Article No. 68.
https://doi.org/10.1007/s11868-023-00563-1
[13] Liu, S. and Wang, Y. (2023) A Kastler-Kalua-Walze Type Theorem for the J-Twist DJ of the Dirac Operator. Journal of Nonlinear Mathematical Physics, 30, 743-794.
https://doi.org/10.1007/s44198-022-00100-6
[14] Wu, T., Wei, S. and Wang, Y. (2023) Twisted Dirac Operators and the Kastler-Kalau-Walze Type Theorem for Five Dimensional Manifolds with Boundary. Turkish Journal of Mathematics, 47, 439-475.
https://doi.org/10.55730/1300-0098.3372