Dy3+掺杂CaMnO3材料的微波吸收性能研究
Study on Microwave Absorption Properties of CaMnO3 Samples Doped with Dy3+ Ions
DOI: 10.12677/ms.2024.1411177, PDF, HTML, XML,   
作者: 李 冉, 王 会, 杨述洪, 车 勤:中国兵器工业第214所,江苏 苏州;陈 健:陆军装备部驻蚌埠地区军事代表室,安徽 蚌埠
关键词: 微波吸收CaMnO3材料Dy3+离子掺杂Microwave Absorption CaMnO3 Material Dy3+ Ion Doping
摘要: 文章主要研究了不等价Dy3+离子掺杂的Ca1-xDyxMnO3样品的微波吸收性能。利用固相反应法制备不同Dy3+浓度掺杂的Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,分析Dy3+离子掺杂对Ca1−xDyxMnO3样品在晶体结构、微观形貌、电磁参数以及吸波性能等方面的影响。实验结果表明,随着Dy3+离子掺杂浓度的提高,样品颗粒尺寸减小,介电常数实部增大,吸波性能得到增强。当Dy3+离子掺杂浓度为5%时,样品吸波性能最佳,在频率2~18 GHz范围内,最大有效吸波带宽达到2.2 GHz,最小反射损耗可达−39.72 dB。文章利用不等价Dy3+离子掺杂有效提高吸波性能,拓宽了CaMnO3材料在微波吸收领域的潜在应用。
Abstract: This paper mainly studies the microwave absorption properties of Ca1−xDyxMnO3 samples doped with non-equivalent Dy3+ ions. Samples of Ca1−xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with various concentrations of Dy3+ ions were prepared using the solid-state reaction method. The effects of Dy3+ ion doping on the crystal structure, micromorphology, electromagnetic parameters, and microwave absorption properties of the Ca1−xDyxMnO3 samples were analyzed. The experimental results indicate that as the doping concentration of Dy3+ ions increases, the particle size of the samples decreases, the real part of the permittivity increases, and the microwave absorption properties are enhanced. When the doping concentration of Dy3+ ions is 5%, the samples exhibit the best microwave absorption performance, with a maximum effective absorption bandwidth of 2.2 GHz and a minimum reflection loss of −39.72 dB within the frequency range of 2~18 GHz. This paper effectively improves microwave absorption performance through the doping of non-equivalent Dy3+ ions, broadening the potential applications of CaMnO3 materials in the field of microwave absorption.
文章引用:李冉, 陈健, 王会, 杨述洪, 车勤. Dy3+掺杂CaMnO3材料的微波吸收性能研究[J]. 材料科学, 2024, 14(11): 1639-1646. https://doi.org/10.12677/ms.2024.1411177

1. 引言

随着现代科学技术的进步,电子信息技术飞速发展,各种电子设备广泛应用于无线通讯、交通运输、医学、国防等各个领域,给人们的生产生活带来了诸多便利。但与此同时,这些设备的过度使用产生了大量电磁波,导致越来越多的电磁辐射和电磁干扰,损害数字设备的正常运行[1]。除此之外,在军事上,随着现代化探测技术和制导技术的飞速发展,军事目标被敌方发现、跟踪和攻击的几率大大增加,传统军事作战武器的生存能力面临严峻的考验。在红外、雷达、激光、声波、可见光等众多的探测方法中,雷达是探测目标最有效、应用最广泛的关键侦察手段之一[2]-[4]。为了躲避雷达探测,雷达隐身技术应运而生。目前实现雷达隐身主要有两种方法:(1) 结构隐身:改变飞行器外形和结构,减小雷达散射截面和热辐射;(2) 材料隐身:采用涂覆型和结构型吸波材料,使得入射电磁波在吸波材料中被衰减和吸收[5]-[8]。尽管结构隐身是最直接有效的隐身方法,但其设计不够灵活,存在一定的技术局限性,无法适应飞行器全方位隐身的需求,因此,在结构隐身的基础上,叠加材料隐身技术将进一步提高飞行器的整体隐身能力[4]-[6]。因此,开发性能优异的吸波材料对于解决电磁污染以及军事隐身具有重要的研究意义和实用性需求。

一般来说,理想的吸波材料需要满足吸收电磁波能力强、、匹配厚度薄以及质量轻等特点。传统的微波吸收剂包括铁氧体材料、导电纤维、碳基材料等[7]-[9]。这些材料对电磁波有很大的损耗,但它们都有各自的缺点,比如铁氧体密度相对较大[8]-[12],导电聚合物存在阻抗匹配特性差、吸收带宽较窄等问题[13]-[15]。随着研究的推进,寻找新型微波吸收材料已成为当前领域研究的热点[16]-[20]。在新型微波吸收剂中,ABO3型钙钛矿材料具有较高的结构稳定性、低密度和特殊的电磁特性,表现出潜在的吸波性能,目前已成为科研者们深入研究的重点[21]-[24]。其中,CaMnO3作为一种典型的钙钛矿氧化物,由于其巨大的磁阻效应和热电效应而得到了诸多研究。根据前人研究,CaMnO3材料具有良好的介电损耗和高温稳定性,同时发现在Ca位或Mn位的离子掺杂会引入结构缺陷,改变载流子浓度,从而提高电导率和极化效应[25]-[30]。因此,CaMnO3有望发展成为一种性能优异的微波吸收材料。例如,Zhao和Liu等人[31] [32]采用不同种类离子La3+或Ti4+掺杂入CaMnO3,获得性能优异的微波吸收材料。研究结果表明在匹配厚度为2.2 mm下,Ti4+离子掺杂的CaMnO3最小反射损耗可达−46.9 dB。此外,Zhan等人[28]通过在CaMnO3材料中引入Dy3+离子,发现Dy3+离子的不等价掺杂可以有效提高CaMnO3的电导率和介电参数。因此,不等价离子掺杂可以有效调控材料的介电参数,为调控材料的吸波性能提供有效的手段。

本文利用固相反应法合成了不同浓度Dy3+离子掺杂的Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,研究分析了不同Dy3+离子掺杂浓度对Ca1xDyxMnO3样品在晶体结构、微观形貌、电磁参数以及吸波性能等方面的影响。实验结果发现,随着Dy3+离子掺杂浓度的增加,样品颗粒尺寸减小,介电常数实部增大,吸波性能得到增强。当Dy3+离子掺杂浓度为5%时,样品吸波性能最佳,在频率2~18 GHz范围内,最大有效吸波带宽达到2.2 GHz,最小反射损耗可达−39.72 dB。由此可见,不等价Dy3+离子掺杂能有效提高材料吸波性能。

2. 实验

本文采用固相反应法制备Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品。将原料CaCO3、MnO2和Dy2O3按照化学计量比称量,并加入无水乙醇放入行星球磨机中球磨6 h,使原料充分混合。球磨结束后,倒出浆料于玻璃皿中,在60℃的干燥箱中放置4 h,使其完全干燥。将干燥后的粉体充分研磨,并放入坩埚转移至箱式炉内,在900℃下预烧2 h。随后将预烧后的样品置于箱式炉内在1300℃下煅烧12 h,并将煅烧后的样品充分研磨,得到粉体状产物。

采用高分辨X射线衍射仪(X-ray Diffractometer, XRD, Panalytical Empyrean)对粉末样品的物相组成和晶体结构进行表征。采用扫描电子显微镜(Scanning Electron Microscopy, SEM, JSM-IT500HR, JEOL)研究样品的表面形貌。将粉体状样品与石蜡按照质量比(样品:固体石蜡 = 7.5:2.5)称取,置于80℃的加热台上加热一段时间使石蜡完全融化,并且与样品充分混合后放入模具中压制成2 mm左右厚度的同轴环,随后使用矢量网络分析仪(Vector Network Analyzer, VNA, Agilent N5244A)在2~18 GHz频率范围内测量这些样品的电磁参数。

3. 结果与讨论

利用固相反应法制备了不同浓度Dy3+离子掺杂的Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,其XRD图谱如图1所示。由图1(a)可知,所有掺杂浓度下的样品XRD图谱相似,它们的特征衍射峰位置基本一致,经过与标准PDF卡片比对,发现所有掺杂样品的XRD衍射峰与标准PDF卡片89-5424对应的CaMnO3结构一致,这表明所有掺杂样品均为单一的纯CaMnO3相。观察图1(b)的XRD在48˚~49.5˚范围内的局部放大图,我们发现样品的特征衍射峰随Dy3+离子掺杂浓度的增加逐渐向低衍射角偏移,这也表明Dy3+离子成功掺入CaMnO3晶格内。根据布拉格衍射方程,衍射角2θ减小意味着晶面间距d增大,晶格常数增大,即晶格膨胀。然而掺杂的Dy3+离子半径(91 pm)略小于Ca2+离子半径(99 pm),不会引起晶格膨胀。值得一提的是,Dy3+掺杂取代Ca2+会破坏电荷平衡,为了保持晶体内部的电中性,部分Mn4+离子被还原形成Mn3+离子。而Mn3+离子半径(64 pm)要高于Mn4+离子半径(53 pm),因此Mn离子电荷的变化将导致离子半径增大,从而引起晶格膨胀。

图2是不同浓度Dy3+离子掺杂的Ca1xDyxMnO3样品的SEM图像。从图中可知,所有样品颗粒均呈不规则的多边形块状,其中大尺寸颗粒与小尺寸颗粒并存,粒子分布不均匀,粒径在1 μm~40 μm之间。随掺杂浓度的增加,大颗粒减少,晶粒尺寸有所减小。这是由于Dy3+的掺杂将导致缺陷增多,从而阻碍晶粒的继续长大[28]

Figure 1. XRD patterns of Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with different concentrations of Dy3+ ions prepared by solid-state reaction method: (a) Diffraction patterns within the range of 20˚~90˚; (b) Enlarged diffraction patterns within the range of 48˚~49.5˚

1. 固相反应法制备不同浓度Dy3+离子掺杂的Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)材料的XRD图像:(a) 20˚~90˚范围内衍射峰;(b) 48˚~49.5˚范围内的局部放大衍射峰

Figure 2. SEM images of Ca1xDyxMnO3 doped with different concentrations of Dy3+ ions prepared by solid-state reaction method: (a) x = 2%; (b) x = 5%; (c) x = 8%; (d) x = 10%

2. 固相反应法制备不同浓度Dy3+离子掺杂的Ca1xDyxMnO3材料的SEM图像:(a) x = 2%; (b) x = 5%; (c) x = 8%; (d) x = 10%

由于Ca1xDyxMnO3材料的磁性很弱,其磁损耗几乎可以忽略不计,因此Ca1xDyxMnO3的吸波机制主要通过介电损耗来吸收电磁波[31] [32]图3(a)图3(b)分别是不同浓度Dy3+离子掺杂的Ca1xDyxMnO3样品的介电常数实部(ε')和介电常数虚部(ε")。如图3(a)介电常数实部中,在2~18 GHz范围内,未掺杂的CaMnO3样品的ε'值在15左右波动,并且随着频率的增加,ε'逐渐减小,呈现典型的频散效应。当掺入Dy3+离子后,介电常数实部ε'显著增大。当Dy3+离子掺杂浓度达到5%时,样品的介电常数实部达到最大,接近18。随后继续提高Dy3+离子掺杂浓度,ε'则逐渐降低。在图3(b)中,介电常数虚部ε"在3 GHz、6.5 GHz、11 GHz以及15 GHz左右频率处均出现明显且较宽的介电弛豫峰。但随着Dy3+离子掺杂浓度的提高,其介电常数虚部ε"基本没有变化。

Figure 3. The dielectric properties of Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with different Dy3+ concentrations. (a) The real part of permittivity (ε'), (b) The imaginary part of permittivity (ε")

3. 不同浓度Dy3+离子掺杂的Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)材料。(a) 介电常数实部(ε');(b) 介电常数虚部(ε")

材料的衰减常数α和阻抗匹配|Z|可以用来衡量对入射电磁波的吸收损耗能力。根据传输线理论[7]可以计算得出Ca1xDyxMnO3样品的衰减常数α和阻抗匹配|Z|,如图4所示。我们发现Dy3+离子掺杂后的样品与未掺杂的CaMnO3样品相比较,其衰减常数值在2~18 GHz范围内差异较小。当掺杂浓度过高时,如达到10%时,样品的衰减常数在1~12 GHz频率内有较为明显的下降。然而不同Dy3+离子掺杂浓度样品的阻抗匹配值几乎相同,都随着频率的增加而逐渐增大,阻抗匹配|Z|值达到0.4。

Figure 4. The attenuation coefficient α (a) and the impedance match |Z| (b) of Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%) doped with different Dy3+ concentrations prepared by solid-state reaction method

4. 固相反应法制备不同浓度Dy3+离子掺杂的Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品的(a) 衰减常数α与(b) 阻抗匹配|Z|

根据传输线理论,我们还可以得到样品在不同匹配厚度下的反射损耗(Reflection Loss, RL),如图5所示。为了更全面直观地展现样品的反射损耗性能,我们分别给出Ca1xDyxMnO3样品的三维反射损耗图以及部分匹配厚度下样品的二维反射损耗图。从三维反射损耗图中可观察到,样品的有效吸波范围(RL < −10 dB)集中在样品较高匹配厚度(3~5 mm)处,此时在高频(13.64~14.64 GHz)和低频(4.04~5.24 GHz)范围内均出现了较好的反射损耗,表现出多频段吸收的特性,且有效吸波带宽达到2.2 GHz。从二维反射损耗图可以发现,随着Dy3+离子的引入,在3~5 mm匹配厚度内的样品于2~6 GHz频率处的反射损耗增强,当Dy3+离子掺杂浓度达到5%时,匹配厚度为4 mm的样品在频率4.08 GHz处达到反射损耗最优值−31 dB。但是当Dy3+离子掺杂浓度继续增加到8%和10%时,样品的吸波性能逐渐下降。这些现象表明Dy3+离子的掺入能有效提高CaMnO3材料的吸波性能,其中掺杂浓度为5%时样品吸波性能最佳。这可能是由于Dy3+离子的掺杂会引起晶格畸变并在晶体内部形成缺陷,导致界面极化增强,从而提高其介电常数实部。此外,离子的不等价取代可能会在晶体内部形成一些空位、自由电子,从而增加偶极子极化和界面极化,提高材料的介电损耗,继而增强其吸波性能[27]-[29]

Figure 5. The three-dimensional and the corresponding two-dimensional reflection loss (RL) of Ca1xDyxMnO3 doped with different Dy3+ concentrations: (a) x = 0%; (b) x = 2%; (c) x = 5%; (d) x = 8%; (e) x = 10%

5. 不同浓度Dy3+离子掺杂的Ca1xDyxMnO3样品的三维反射损耗(RL)图:(a) x = 0;(b) x = 2%;(c) x = 5%;(d) x = 8%;(e) x = 10%以及对应的二维反射损耗图

4. 结论

本文利用固相反应法制备了不同Dy3+离子掺杂浓度的Ca1xDyxMnO3 (x = 0%, 2%, 5%, 8%, 10%)样品,并研究Dy3+离子的引入对其吸波性能的影响规律。实验结果表明,不等价Dy3+离子掺杂会引起Mn4+到Mn3+的转变,在晶体内部形成缺陷和空位等,增强了界面极化,从而有效提高其介电性能和微波吸收性能。当Dy3+离子掺杂浓度为5%时,样品具有最佳的吸波性能,最小反射损耗达到−31 dB,有效吸波带宽达到2.2 GHz。本文的实验结果拓宽了CaMnO3材料在微波吸收领域的潜在应用。

参考文献

[1] 张淑琴, 张彭. 电磁辐射的危害与防护[J]. 工业安全与环保, 2008, 34(3): 30-32.
[2] 何小锋. 现代雷达隐身技术发展[J]. 现代导航, 2015(3): 306-309.
[3] 师俊朋, 胡国平, 王金龙, 等. 雷达隐身技术分析及进展[J]. 飞航导弹, 2014(2): 81-84.
[4] 徐剑盛, 周万城, 罗发, 等. 雷达波隐身技术及雷达吸波材料研究进展[J]. 材料导报, 2014, 28(9): 46-49.
[5] 李旺昌, 周祥, 应耀, 等. 雷达吸波隐身材料的进展及发展趋势[J]. 材料导报, 2015(2): 353-357.
[6] 班国东, 刘朝辉, 叶圣天, 等. 新型涂覆型雷达吸波材料的研究进展[J]. 表面技术, 2016, 45(6): 140-146.
[7] Zeng, X., Cheng, X., Yu, R. and Stucky, G.D. (2020) Electromagnetic Microwave Absorption Theory and Recent Achievements in Microwave Absorbers. Carbon, 168, 606-623.
https://doi.org/10.1016/j.carbon.2020.07.028
[8] 高海涛, 王建江, 赵志宁, 等. 铁氧体吸波材料吸波性能影响因素研究进展[J]. 磁性材料与器件, 2014(1): 68-73.
[9] Thakur, P., Chahar, D., Taneja, S., Bhalla, N. and Thakur, A. (2020) A Review on MnZn Ferrites: Synthesis, Characterization and Applications. Ceramics International, 46, 15740-15763.
https://doi.org/10.1016/j.ceramint.2020.03.287
[10] Zhang, S., Meng, C., Zhang, L., Yuan, S., Luo, H., Liu, S., et al. (2020) Effect of Zn and Ir Doping on Microwave Absorption of SrFe122xZnxIrxO19. Journal of Magnetism and Magnetic Materials, 513, Article ID: 167076.
https://doi.org/10.1016/j.jmmm.2020.167076
[11] Chen, N., Mu, G., Pan, X., Gan, K. and Gu, M. (2007) Microwave Absorption Properties of SrFe12O19/ZnFe2O4 Composite Powders. Materials Science and Engineering: B, 139, 256-260.
https://doi.org/10.1016/j.mseb.2007.02.002
[12] Dong, S., Lin, C. and Meng, X. (2019) One-Pot Synthesis and Microwave Absorbing Properties of Ultrathin SrFe12O19 Nanosheets. Journal of Alloys and Compounds, 783, 779-784.
https://doi.org/10.1016/j.jallcom.2018.12.265
[13] Ren, F., Yu, H., Wang, L., Saleem, M., Tian, Z. and Ren, P. (2014) Current Progress on the Modification of Carbon Nanotubes and Their Application in Electromagnetic Wave Absorption. RSC Advances, 4, Article No. 14419.
https://doi.org/10.1039/c3ra46989a
[14] Qing, Y., Zhou, W., Luo, F. and Zhu, D. (2009) Microwave-Absorbing and Mechanical Properties of Carbonyl-Iron/Epoxy-Silicone Resin Coatings. Journal of Magnetism and Magnetic Materials, 321, 25-28.
https://doi.org/10.1016/j.jmmm.2008.07.011
[15] Weng, G., Li, J., Alhabeb, M., Karpovich, C., Wang, H., Lipton, J., et al. (2018) Layer-by-Layer Assembly of Cross‐Functional Semi-Transparent MXene-Carbon Nanotubes Composite Films for Next‐Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 28, Article ID: 1803360.
https://doi.org/10.1002/adfm.201803360
[16] Huang, Z., Chen, H., Huang, Y., Ge, Z., Zhou, Y., Yang, Y., et al. (2017) Ultra‐Broadband Wide‐Angle Terahertz Absorption Properties of 3D Graphene Foam. Advanced Functional Materials, 28, Article ID: 1704363.
https://doi.org/10.1002/adfm.201704363
[17] Qiang, R., Du, Y., Zhao, H., Wang, Y., Tian, C., Li, Z., et al. (2015) Metal Organic Framework-Derived Fe/C Nanocubes toward Efficient Microwave Absorption. Journal of Materials Chemistry A, 3, 13426-13434.
https://doi.org/10.1039/c5ta01457c
[18] Balci, O., Polat, E.O., Kakenov, N. and Kocabas, C. (2015) Graphene-Enabled Electrically Switchable Radar-Absorbing Surfaces. Nature Communications, 6, Article No. 10000.
https://doi.org/10.1038/ncomms7628
[19] Li, X., Zhang, L. and Yin, X. (2012) Effect of Chemical Vapor Infiltration of Si3N4 on the Mechanical and Dielectric Properties of Porous Si3N4 Ceramic Fabricated by a Technique Combining 3-D Printing and Pressureless Sintering. Scripta Materialia, 67, 380-383.
https://doi.org/10.1016/j.scriptamat.2012.05.030
[20] Saib, A., Bednarz, L., Daussin, R., Bailly, C., Lou, X.D., Thomassin, J., et al. (2006) Carbon Nanotube Composites for Broadband Microwave Absorbing Materials. IEEE Transactions on Microwave Theory and Techniques, 54, 2745-2754.
https://doi.org/10.1109/tmtt.2006.874889
[21] Jia, Z., Gao, Z., Feng, A., Zhang, Y., Zhang, C., Nie, G., et al. (2019) Laminated Microwave Absorbers of A-Site Cation Deficiency Perovskite La0.8FeO3 Doped at Hybrid RGO Carbon. Composites Part B: Engineering, 176, Article ID: 107246.
https://doi.org/10.1016/j.compositesb.2019.107246
[22] Wang, B., Cao, Q. and Zhang, S. (2014) Effects of the Incorporation of Fe on the Electromagnetic and Microwave Absorption Performance of La0.7Sr0.3MnOδ. Materials Science in Semiconductor Processing, 19, 101-106.
https://doi.org/10.1016/j.mssp.2013.12.010
[23] Wu, Q., Liu, J., Wang, G., Chen, S. and Yu, S. (2016) A Surfactant-Free Route to Synthesize Ba X Sr1xTiO3 Nanoparticles at Room Temperature, Their Dielectric and Microwave Absorption Properties. Science China Materials, 59, 609-617.
https://doi.org/10.1007/s40843-016-5072-5
[24] Hu, K., Wang, S., Zhang, M., Huang, F., Kong, X. and Liu, Q. (2019) Enhanced Microwave Absorption Properties of La Doping BaSnO3 Ceramic Powder. Journal of Materials Science: Materials in Electronics, 30, 15420-15428.
https://doi.org/10.1007/s10854-019-01917-6
[25] Wang, Y., Sui, Y., Fan, H., Wang, X., Su, Y., Su, W., et al. (2009) High Temperature Thermoelectric Response of Electron-Doped CaMnO3. Chemistry of Materials, 21, 4653-4660.
https://doi.org/10.1021/cm901766y
[26] Zhang, F.P., Zhang, X., Lu, Q.M., Zhang, J.X. and Liu, Y.Q. (2011) Electronic Structure and Thermal Properties of Doped CaMnO3 Systems. Journal of Alloys and Compounds, 509, 4171-4175.
https://doi.org/10.1016/j.jallcom.2011.01.032
[27] Bocher, L., Aguirre, M.H., Logvinovich, D., Shkabko, A., Robert, R., Trottmann, M., et al. (2008) CaMn1−xNbxO3 (x ≤ 0.08) Perovskite-Type Phases as Promising New High-Temperature n-Type Thermoelectric Materials. Inorganic Chemistry, 47, 8077-8085.
https://doi.org/10.1021/ic800463s
[28] Zhan, B., Lan, J., Liu, Y., Lin, Y., Shen, Y. and Nan, C. (2014) High Temperature Thermoelectric Properties of Dy-Doped CaMnO3 Ceramics. Journal of Materials Science & Technology, 30, 821-825.
https://doi.org/10.1016/j.jmst.2014.01.002
[29] Murano, Y., Matsukawa, M., Ohuchi, S., Kobayashi, S., Nimori, S., Suryanarayanan, R., et al. (2011) Effect of Pressure on the Magnetic, Transport, and Thermal-Transport Properties of the Electron-Doped Manganite CaMn1−xSbxO3. Physical Review B, 83, Article ID: 054437.
https://doi.org/10.1103/physrevb.83.054437
[30] Zhang, F.-P., Zhang, J.-W., Zhang, J.-X., Yang, X.-Y., Lu, Q.-M. and Zhang, X. (2017) Effects of Sr Doping on Electronic and Thermoelectrical Transport Properties of CaMnO3 Based Oxide. Acta Physica Sinica, 66, Article ID: 247202.
https://doi.org/10.7498/aps.66.247202
[31] Zhao, S., Zheng, J., Jiang, F., Song, Y., Sun, M. and Song, X. (2015) Co-Precipitation Synthesis and Microwave Absorption Properties of CaMnO3 Doped by La and Co. Journal of Materials Science: Materials in Electronics, 26, 8603-8608.
https://doi.org/10.1007/s10854-015-3534-x
[32] Liu, Y., Zhu, D., Qing, Y., Zhou, W. and Luo, F. (2021) Effects of La3+ or Ti4+ Doping on Dielectric and Microwave Absorption Performance of CaMnO3 in the 8.2-18 Ghz. Journal of Materials Science: Materials in Electronics, 32, 10329-10338.
https://doi.org/10.1007/s10854-021-05688-x