|
[1]
|
Martinez‐Garcia, M., Dejonghe, W., Cauwenberghs, L., Maesen, M., Vanbroekhoven, K. and Satyawali, Y. (2020) Enzymatic Synthesis of Glucose‐ and Xylose Laurate Esters Using Different Acyl Donors, Higher Substrate Concentrations, and Membrane Assisted Solvent Recovery. European Journal of Lipid Science and Technology, 123, Article ID: 2000225. [Google Scholar] [CrossRef]
|
|
[2]
|
Neta, N.D.A.S., Santos, J.C.S.D., Sancho, S.D.O., Rodrigues, S., Gonçalves, L.R.B., Rodrigues, L.R., et al. (2012) Enzymatic Synthesis of Sugar Esters and Their Potential as Surface-Active Stabilizers of Coconut Milk Emulsions. Food Hydrocolloids, 27, 324-331. [Google Scholar] [CrossRef]
|
|
[3]
|
El-Laithy, H.M., Shoukry, O. and Mahran, L.G. (2011) Novel Sugar Esters Proniosomes for Transdermal Delivery of Vinpocetine: Preclinical and Clinical Studies. European Journal of Pharmaceutics and Biopharmaceutics, 77, 43-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Khan, N.R. and Rathod, V.K. (2015) Enzyme Catalyzed Synthesis of Cosmetic Esters and Its Intensification: A Review. Process Biochemistry, 50, 1793-1806. [Google Scholar] [CrossRef]
|
|
[5]
|
Lucarini, S., Fagioli, L., Campana, R., Cole, H., Duranti, A., Baffone, W., et al. (2016) Unsaturated Fatty Acids Lactose Esters: Cytotoxicity, Permeability Enhancement and Antimicrobial Activity. European Journal of Pharmaceutics and Biopharmaceutics, 107, 88-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hsieh, S., Lee, M., Tsai, C., Lai, L., Yeh, T., Hsieh, C., et al. (2015) Enzymatic Synthesis, Purification and Identification of Bioactive Trehalose Ester Derivatives for Health Applications. Food and Bioproducts Processing, 95, 163-172. [Google Scholar] [CrossRef]
|
|
[7]
|
Puterka, G.J., Farone, W., Palmer, T. and Barrington, A. (2003) Structure-Function Relationships Affecting the Insecticidal and Miticidal Activity of Sugar Esters. Journal of Economic Entomology, 96, 636-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Okabe, S., Suganuma, M., Tada, Y., Ochiai, Y., Sueoka, E., Kohya, H., et al. (1999) Disaccharide Esters Screened for Inhibition of Tumor Necrosis Factor‐α Release Are New Anti‐Cancer Agents. Japanese Journal of Cancer Research, 90, 669-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ren, K. and Lamsal, B.P. (2017) Synthesis of Some Glucose-Fatty Acid Esters by Lipase from Candida antarctica and Their Emulsion Functions. Food Chemistry, 214, 556-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Uppenberg, J., Hansen, M.T., Patkar, S. and Jones, T.A. (1994) The Sequence, Crystal Structure Determination and Refinement of Two Crystal Forms of Lipase B from Candida antarctica. Structure, 2, 293-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Anderson, E.M., Larsson, K.M. and Kirk, O. (1998) One Biocatalyst-Many Applications: The Use of Candida antarctica B-Lipase in Organic Synthesis. Biocatalysis and Biotransformation, 16, 181-204. [Google Scholar] [CrossRef]
|
|
[12]
|
Gonçalves, M.C.P., Cansian, A.B.M., Tardioli, P.W. and Saville, B.A. (2023) Production of Sugars from Mixed Hardwoods for Use in the Synthesis of Sugar Fatty Acid Esters Catalyzed by Immobilized‐Stabilized Derivatives of candida Antarctica Lipase B. Biofuels, Bioproducts and Biorefining, 17, 1236-1250. [Google Scholar] [CrossRef]
|
|
[13]
|
Bernal, C., Poveda-Jaramillo, J.C. and Mesa, M. (2018) Raising the Enzymatic Performance of Lipase and Protease in the Synthesis of Sugar Fatty Acid Esters, by Combined Ionic Exchange-Hydrophobic Immobilization Process on Aminopropyl Silica Support. Chemical Engineering Journal, 334, 760-767. [Google Scholar] [CrossRef]
|
|
[14]
|
Chaiyaso, T., H-kittikun, A. and Zimmermann, W. (2006) Biocatalytic Acylation of Carbohydrates with Fatty Acids from Palm Fatty Acid Distillates. Journal of Industrial Microbiology & Biotechnology, 33, 338-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sin, Y.M., Cho, K.W. and Lee, T.H. (1998) Synthesis of Fructose Esters by Pseudomonas sp. Lipase in Anhydrous Pyridine. Biotechnology Letters, 20, 91-94. [Google Scholar] [CrossRef]
|
|
[16]
|
Scheckermann, C., Schlotterbeck, A., Schmidt, M., Wray, V. and Lang, S. (1995) Enzymatic Monoacylation of Fructose by Two Procedures. Enzyme and Microbial Technology, 17, 157-162. [Google Scholar] [CrossRef]
|
|
[17]
|
Tracy, P., Dasgupta, D. and More, S. (2023) Challenges and Opportunities for Production of C5 Sugar Fatty Acid Esters (SFAEs) from Renewable Resources. Industrial Crops and Products, 193, Article ID: 116170. [Google Scholar] [CrossRef]
|
|
[18]
|
Jocquel, C., Muzard, M., Plantier-Royon, R. and Rémond, C. (2021) An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/xylose Laurate Esters from Wheat Bran. Frontiers in Bioengineering and Biotechnology, 9, Article 647442. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Méline, T., Muzard, M., Deleu, M., Rakotoarivonina, H., Plantier-Royon, R. and Rémond, C. (2018) D-Xylose and L-Arabinose Laurate Esters: Enzymatic Synthesis, Characterization and Physico-Chemical Properties. Enzyme and Microbial Technology, 112, 14-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ferrer, M., Soliveri, J., Plou, F.J., López-Cortés, N., Reyes-Duarte, D., Christensen, M., et al. (2005) Synthesis of Sugar Esters in Solvent Mixtures by Lipases from Thermomyces lanuginosus and Candida antarctica B, and Their Antimicrobial Properties. Enzyme and Microbial Technology, 36, 391-398. [Google Scholar] [CrossRef]
|
|
[21]
|
Liang, M., Banwell, M.G., Wang, Y. and Lan, P. (2018) Effect of Variations in the Fatty Acid Residue of Lactose Monoesters on Their Emulsifying Properties and Biological Activities. Journal of Agricultural and Food Chemistry, 66, 12594-12603. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Enayati, M., Gong, Y., Goddard, J.M. and Abbaspourrad, A. (2018) Synthesis and Characterization of Lactose Fatty Acid Ester Biosurfactants Using Free and Immobilized Lipases in Organic Solvents. Food Chemistry, 266, 508-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pedersen, N.R., Wimmer, R., Emmersen, J., Degn, P. and Pedersen, L.H. (2002) Effect of Fatty Acid Chain Length on Initial Reaction Rates and Regioselectivity of Lipase-Catalysed Esterification of Disaccharides. Carbohydrate Research, 337, 1179-1184. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jia, C., Zhao, J., Feng, B., Zhang, X. and Xia, W. (2010) A Simple Approach for the Selective Enzymatic Synthesis of Dilauroyl Maltose in Organic Media. Journal of Molecular Catalysis B: Enzymatic, 62, 265-269. [Google Scholar] [CrossRef]
|
|
[25]
|
Gonzalez-Alfonso, J.L., Casas-Godoy, L., Arrizon, J., Arrieta-Baez, D., Ballesteros, A.O., Sandoval, G., et al. (2018) Lipase-Catalyzed Synthesis of Fatty Acid Esters of Trisaccharides. In: Sandoval, G., Ed., Lipases and Phospholipases, Springer, 287-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, X., Hai, Y., Ma, D., Chen, J., Banwell, M.G. and Lan, P. (2019) Fatty Acid Ester Surfactants Derived from Raffinose: Synthesis, Characterization and Structure-Property Profiles. Journal of Colloid and Interface Science, 556, 616-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Campos-Valdez, A.R., Casas-Godoy, L., Sandoval, G., Hernández, L., Sassaki, G.L., Alencar de Menezes, L.R., et al. (2021) Regioselective Synthesis of 6''-O-Lauroyl-1-Kestose and 6'''-O-Lauroylnystose by Sequential Enzymatic Reactions of Transfructosylation and Acylation. Biocatalysis and Biotransformation, 40, 133-143. [Google Scholar] [CrossRef]
|
|
[28]
|
Lee, H.Y., Kimura, S. and Iwata, T. (2018) Lipase-catalyzed Regioselective Synthesis of Dextrin Esters. Biomacromolecules, 20, 705-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Riva, S., Chopineau, J., Kieboom, A.P.G. and Klibanov, A.M. (1988) Protease-Catalyzed Regioselective Esterification of Sugars and Related Compounds in Anhydrous Dimethylformamide. Journal of the American Chemical Society, 110, 584-589. [Google Scholar] [CrossRef]
|
|
[30]
|
Patil, D.R., Rethwisch, D.G. and Dordick, J.S. (1991) Enzymatic Synthesis of a Sucrose‐Containing Linear Polyester in Nearly Anhydrous Organic Media. Biotechnology and Bioengineering, 37, 639-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
An, D., Zhao, X. and Ye, Z. (2015) Enzymatic Synthesis and Characterization of Galactosyl Monoesters. Carbohydrate Research, 414, 32-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jia, C., Wang, H., Zhang, W., Zhang, X. and Feng, B. (2018) Efficient Enzyme-Selective Synthesis of Monolauryl Mannose in a Circulating Fluidized Bed Reactor. Process Biochemistry, 66, 28-32. [Google Scholar] [CrossRef]
|
|
[33]
|
Giorgi, V., Botto, E., Fontana, C., Della Mea, L., Vaz, S., Menéndez, P., et al. (2022) Enzymatic Production of Lauroyl and Stearoyl Monoesters of D-Xylose, L-Arabinose, and D-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts, 12, Article No. 610. [Google Scholar] [CrossRef]
|
|
[34]
|
Du, L. and Luo, X. (2012) Lipase-Catalyzed Regioselective Acylation of Sugar in Microreactors. RSC Advances, 2, 2663-2665. [Google Scholar] [CrossRef]
|
|
[35]
|
Sun, P., Chen, Y., Wang, H., Li, J., Gao, J., Wang, H., et al. (2011) Lipase-Catalyzed Synthesis and Characterization of Myristoyl Maltose Ester. European Food Research and Technology, 233, 253-258. [Google Scholar] [CrossRef]
|
|
[36]
|
Ji, S., Jia, C., Cao, D., Li, S. and Zhang, X. (2020) Direct and Selective Enzymatic Synthesis of Trehalose Unsaturated Fatty Acid Diesters and Evaluation of Foaming and Emulsifying Properties. Enzyme and Microbial Technology, 136, Article ID: 109516. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gérard, D., Méline, T., Muzard, M., Deleu, M., Plantier-Royon, R. and Rémond, C. (2020) Enzymatically-Synthesized Xylo-Oligosaccharides Laurate Esters as Surfactants of Interest. Carbohydrate Research, 495, Article ID: 108090. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ferrer, M., Angeles Cruces, M., Plou, F.J., Bernabé, M. and Ballesteros, A. (2000) A Simple Procedure for the Regioselective Synthesis of Fatty Acid Esters of Maltose, Leucrose, Maltotriose and N-Dodecyl Maltosides. Tetrahedron, 56, 4053-4061. [Google Scholar] [CrossRef]
|
|
[39]
|
Nguyen, P.C., Nguyen, M.T.T., Lee, C., Oh, I., Kim, J., Hong, S., et al. (2019) Enzymatic Synthesis and Characterization of Maltoheptaose-Based Sugar Esters. Carbohydrate Polymers, 218, 126-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Udomrati, S. and Gohtani, S. (2014) Enzymatic Esterification of Tapioca Maltodextrin Fatty Acid Ester. Carbohydrate Polymers, 99, 379-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
van Kempen, S.E.H.J., Boeriu, C.G., Schols, H.A., de Waard, P., van der Linden, E. and Sagis, L.M.C. (2013) Novel Surface-Active Oligofructose Fatty Acid Mono-Esters by Enzymatic Esterification. Food Chemistry, 138, 1884-1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Adachi, S. and Kobayashi, T. (2005) Synthesis of Esters by Immobilized-Lipase-Catalyzed Condensation Reaction of Sugars and Fatty Acids in Water-Miscible Organic Solvent. Journal of Bioscience and Bioengineering, 99, 87-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Arcens, D., Grau, E., Grelier, S., Cramail, H. and Peruch, F. (2020) Impact of Fatty Acid Structure on Calb‐Catalyzed Esterification of Glucose. European Journal of Lipid Science and Technology, 122, Article ID: 1900294. [Google Scholar] [CrossRef]
|
|
[44]
|
Wang, Y.F., Lalonde, J.J., Momongan, M., Bergbreiter, D.E. and Wong, C.H. (1988) Lipase-catalyzed Irreversible Transesterifications Using Enol Esters as Acylating Reagents: Preparative Enantio-and Regioselective Syntheses of Alcohols, Glycerol Derivatives, Sugars and Organometallics. Journal of the American Chemical Society, 110, 7200-7205. [Google Scholar] [CrossRef]
|
|
[45]
|
Weber, H.K., Stecher, H. and Faber, K. (1995) Sensitivity of Microbial Lipases to Acetaldehyde Formed by Acyl-Transfer Reactions from Vinyl Esters. Biotechnology Letters, 17, 803-808. [Google Scholar] [CrossRef]
|
|
[46]
|
Kamal, M.Z., Yedavalli, P., Deshmukh, M.V. and Rao, N.M. (2013) Lipase in Aqueous‐Polar Organic Solvents: Activity, Structure, and Stability. Protein Science, 22, 904-915. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Shin, D.W., Mai, N.L., Bae, S. and Koo, Y. (2019) Enhanced Lipase-Catalyzed Synthesis of Sugar Fatty Acid Esters Using Supersaturated Sugar Solution in Ionic Liquids. Enzyme and Microbial Technology, 126, 18-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ballesteros, A., Plou, F.J., Alcalde, M., Ferrer, M., Garcia‐Arellano, H., Reyes‐Duarte, D., et al. (2008) Cheminform Abstract: Enzymatic Synthesis of Sugar Esters and Oligosaccharides from Renewable Resources. ChemInform, 39, 463-481. [Google Scholar] [CrossRef]
|
|
[49]
|
Reyes-Duarte, D., López-Cortés, N., Ferrer, M., Plou, F.J. and Ballesteros, A. (2005) Parameters Affecting Productivity in the Lipase-Catalysed Synthesis of Sucrose Palmitate. Biocatalysis and Biotransformation, 23, 19-27. [Google Scholar] [CrossRef]
|
|
[50]
|
Ferrer, M., Cruces, M.A., Bernabe, M., Ballesteros, A. and Plou, F.J. (1999) Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures. Biotechnology and Bioengineering, 65, 10-16. [Google Scholar] [CrossRef]
|
|
[51]
|
Yang, Z. and Huang, Z. (2012) Enzymatic Synthesis of Sugar Fatty Acid Esters in Ionic Liquids. Catalysis Science & Technology, 2, 1767-1775. [Google Scholar] [CrossRef]
|
|
[52]
|
Kaar, J.L., Jesionowski, A.M., Berberich, J.A., Moulton, R. and Russell, A.J. (2003) Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability. Journal of the American Chemical Society, 125, 4125-4131. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
van Rantwijk, F., Secundo, F. and Sheldon, R.A. (2006) Structure and Activity of Candida antarctica Lipase B in Ionic Liquids. Green Chem., 8, 282-286. [Google Scholar] [CrossRef]
|
|
[54]
|
Tariq, M., Carvalho, P.J., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C. and Rebelo, L.P.N. (2011) Viscosity of (C2-C14) 1-Alkyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids in an Extended Temperature Range. Fluid Phase Equilibria, 301, 22-32. [Google Scholar] [CrossRef]
|
|
[55]
|
Lai, J., Li, Z., Lü, Y. and Yang, Z. (2011) Specific Ion Effects of Ionic Liquids on Enzyme Activity and Stability. Green Chemistry, 13, 1860-1868. [Google Scholar] [CrossRef]
|
|
[56]
|
Shao, S., Shi, Y., Wu, Y., Bian, L., Zhu, Y., Huang, X., et al. (2018) Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules, 23, Article No. 1118. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Andler, S.M., Wang, L., Rotello, V.M. and Goddard, J.M. (2017) Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent. Journal of Agricultural and Food Chemistry, 65, 1907-1914. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Park, S. and Kazlauskas, R.J. (2001) Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio-and Regioselective Acylations. The Journal of Organic Chemistry, 66, 8395-8401. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
王哲, 王普, 黄金. 分子模拟技术在脂肪酶性质及催化机理研究中的应用进展[J]. 化工进展, 2013, 32(10): 2475-2479, 2485.
|
|
[60]
|
García-Oliva, C., Perona, A., Rumbero, Á., Hoyos, P. and Hernáiz, M.J. (2022) Enzymatic Synthesis and Molecular Modelling Studies of Rhamnose Esters Using Lipase from Pseudomonas Stutzeri. International Journal of Molecular Sciences, 23, Article 2239. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Toledo, M.V., Briand, L.E. and Ferreira, M.L. (2022) A Simple Molecular Model to Study the Substrate Diffusion into the Active Site of a Lipase-Catalyzed Esterification of Ibuprofen and Ketoprofen with Glycerol. Topics in Catalysis, 65, 944-956. [Google Scholar] [CrossRef]
|
|
[62]
|
Doerr, M., Romero, A. and Daza, M.C. (2021) Effect of the Acyl-Group Length on the Chemoselectivity of the Lipase-Catalyzed Acylation of Propranolol—A Computational Study. Journal of Molecular Modeling, 27, Article No. 198. [Google Scholar] [CrossRef] [PubMed]
|