脂肪酶合成糖酯的区域选择性及机制的研究进展
Regioselectivity of Lipase on the Synthesis of Sugar Esters and the Recent Progress of the Mechanistic Study
DOI: 10.12677/isl.2024.84061, PDF, HTML, XML,    科研立项经费支持
作者: 任康梓, 陈桂林*:中南林业科技大学食品科学与工程学院,湖南 长沙
关键词: 糖酯脂肪酶区域选择性分子对接分子模拟机理Sugar Esters Lipase Regioselectivity Molecular Docking Molecular Modeling Mechanism
摘要: 糖–脂肪酸酯(糖酯)是由糖和脂肪酸通过酯化反应生成的表面活性剂,在各行业中有广泛应用。糖酯可通过脂肪酶进行催化反应获得。脂肪酶在不同的条件下对于糖基分子上的羟基具有区域选择性,其催化后的产物结构对于产物的功能有重要影响。本文总结了脂肪酶对于重要糖分子羟基的区域选择性以及不同因素对于区域选择性的影响,并简要描述了分子模拟和分子动力学对于酶催化反应机理的研究方法,以期为行业技术人员为糖酯的应用提供一定的信息,也为酶对于糖的区域选择性的机理研究提供研究思路。
Abstract: Sugar-fatty acid esters are surfactants that are formed by esterification between sugar and fatty acids. Sugar-fatty acids are widely used in many industries, and they can be synthesized by lipase-catalyzed reactions. The lipase has different regioselectivities on the hydroxyl groups of sugar molecules in different circumstances, and the structures of the esters were essential in determining the functionalities. This article summarizes the regioselectivities of lipase and factors influencing these on some important sugar molecules. Also, the article stated that molecular docking and modeling were used to study the regioselectivities of enzymes. This article can provide information on the selection of sugar esters for some applications and provide insights into the regioselectivity mechanism studies.
文章引用:任康梓, 陈桂林. 脂肪酶合成糖酯的区域选择性及机制的研究进展[J]. 交叉科学快报, 2024, 8(4): 478-488. https://doi.org/10.12677/isl.2024.84061

1. 引言

糖酯是一类无毒、无味、可降解的非离子型表面活性剂,可通过碳水化合物与脂肪酸及其衍生物通过酶法或发酵法发生酰基化反应获得,为消费者信赖的生物表面活性剂[1]。目前,已有些糖酯作为乳化剂、保湿剂等在食品[2]、医药[3]、化妆品[4]等工业被应用。除此之外,糖酯还具有抗菌[5]、抗氧化[6]、杀虫[7]和抗肿瘤[8]等生物活性。

脂肪酶是酶法合成糖酯的主要酶类,可催化糖分子与脂肪酸或脂肪酸乙烯酯发生酯化反应。因南极假丝酵母(Candida antarctica)产的B类脂肪酶(简称CALB)具有较好的溶剂稳定性和活性,大部分研究者使用该酶进行糖酯合成[9]。CALB作用于水–油表面,在pH值3.5~9.5范围内有活性,在50℃~60℃范围内活性较强。其活性中心的催化三联体为丝氨酸–组氨酸–天冬氨酸。催化机制为乒乓机理(ping-pong mechanism) [10],即丝氨酸结合第一个反应物(酰基供体)形成第一个酰基脂肪酶四面体,释放出一个产物,再捕获另一个反应物(酰基受体)形成第二个酰基脂肪酶四面体,最后释放出另一个产物和酶。脂肪酶的催化活性中心在一个较深的口袋结构(10 × 4 Å宽,12 Å深)底部。X射线结晶技术表明酰基供体和酰基受体接近催化中心是通过两个不同的通道,其中酰基受体的通道要更狭窄,因此,此酶对于酰基受体的选择性较供体更强[11]。在糖酯的合成过程中,该酶对于糖环上的羟基具有较强的选择性。受到活性中心酰基供体和受体通道大小的影响,脂肪酶对于糖分子的羟基有区域选择性,其会受到溶剂、底物结构与比例以及酶的载体性质的影响[12] [13]。脂肪酶的区域选择性对于产物的结构与功能有重要影响。然而,目前脂肪酶对于糖类的区域选择性机理研究尚在起始阶段。进一步的研究将有助于提高脂肪酶的区域选择性和合成产率,拓宽其应用范围,并为相关产业的发展提供技术支持。本文将对脂肪酶合成糖酯区域选择性及机制研究方法进行综述。首先,本文将总结脂肪酶对不同糖类化合物的区域选择性,然后,本文将阐述底物结构与反应溶剂对于区域选择性的影响。最后,我们将总结利用分子对接和分子模拟方法来研究酶的区域选择性机制的研究方法。

2. 脂肪酶对于不同糖类的区域选择性

脂肪酶为微生物的代谢产物,不同微生物生产的脂肪酶有不同的区域选择性,其区域选择性也和糖的结构相关,表1总结了不同的脂肪酶对于重要糖类的区域选择性。图1展示了各种重要糖类的主要催化位点。

Figure 1. Most probable acylation positions on sugar molecules

1. 不同糖类的主要催化位点

脂肪酶可以催化单糖酯的生成。不同种类的酶对于单糖上的羟基有不同的区域选择性。表1展示了不同的脂肪酶对于葡萄糖、半乳糖、甘露糖、果糖、木糖、阿拉伯糖和一些其他糖类的区域选择性。对于葡萄糖、半乳糖、甘露糖,脂肪酶的酯化位点为6-OH [1] [14],对于呋喃结构的果糖,酯化位点可能在6-OH或1-OH [14]-[16]。五碳糖糖酯是目前研究较新的单糖酯。Tracy等研究合成了木糖酯和阿拉伯糖酯[17],表明脂肪酶的区域选择性主要表现在5-OH上。Jocquel等[18]利用Lipase N453催化得到了5-O-月桂酸木糖单酯(5-O-lauryl-D-xylofuranose),Méline等在2-甲基-2丁醇中利用Lipase N453催化合成了5-O-月桂酸阿拉伯糖单酯(5-O-lauryl-L-arabinofuranose)和3,5-di-O-月桂酸阿拉伯糖二酯(3,5-di-O-lauryl-L-arabinofuranose) [19]

Table 1. The regioselectivity of lipases on different sugar molecules

1. 脂肪酶对不同类型碳水化合物的区域选择性

酰基受体

酰基供体

反应溶剂

产物

参考文献

葡萄糖

月桂酸甲酯

Candida antarctica B lipase

叔戊醇

6-O-lauryl-D-glucopyranose

[1]

D-半乳糖

N-棕榈酰甘氨酸

Lipozyme TLIM

叔丁醇

1-O-(N-palmitoylvalineyl)-D-galactosyl ester

[31]

甘露糖

月桂酸甲酯

Novozym 435

丙酮

6-O-lauryl mannose

[32]

半乳糖

棕榈油脂肪酸馏分

Novozym SP435

丙酮

6-O-Palmitoyl-a-D-galactopyranose

[14]

D-木糖

月桂酸甲酯

Novozym 435

叔戊醇

5-O-lauryl-D-xylofuranose

[18]

L-阿拉伯糖

月桂酸乙烯酯

Candida antarctica B

叔戊醇

5-O-lauryl-L-arabinofuranose

[19]

3,5-di-O-lauryl-L-arabinofuranose

L-阿拉伯糖

月桂酸乙烯酯

Lipozyme RM IM

2-丁酮

5-O-lauryl-L-arabinofuranose

[33]

蔗糖

脂肪酸乙烯酯

Thermomyces lanuginosus lipase

叔戊醇、二甲基亚砜混合物(4:1 v/v)

6-O-vinyl carboxylate sucrose

[34]

D-乳糖

脂肪酸乙烯酯(C6~C18)

Lipozyme TLIM (Thermomyces lanuginosus)

四氢呋喃、吡啶混合物(1:1, v/v)

6'-O-acyllactose esters

[21]

麦芽糖

肉豆蔻酸

Novozym 435

叔丁醇

6'-myristoyl maltose

[35]

麦芽糖

月桂酸

Candida antarctica lipase B

丙酮、正己烷混合物 (60:40, v/v)

6'-O-Lauroylmaltose

[24]

6,6' -di-O-lauroylmaltose

海藻糖

芥酸

Novozym 435

丙酮

6,6'-di-O-erucoyltrehalose

[36]

海藻糖

硫辛酸

Candida antarctica lipase B

叔戊醇、二甲基亚砜混合物(4:1 v/v)

6-O-trehalose lipoate

[6]

木二糖

月桂酸乙烯酯

Novozym 435

叔戊醇

4'-O-laurylxylobiose

[37]

麦芽三糖

月桂酸乙烯酯

Thermomyces lanuginosus

叔戊醇、二甲基亚砜混合物(4:1 v/v)

6''-O-dodecanoyl maltotriose

[38]

棕榈酸乙烯酯

6''-O-palmitoyl maltotriose

麦芽三糖

月桂酸乙烯酯

Thermomyces lanuginosus

叔戊醇、二甲基亚砜混合物(4:1 v/v)

6'' -O-lauroyl maltotriose

[25]

棉子糖

脂肪酸乙烯酯 (C6-C18)

Lipozyme TLIM

叔丁醇、吡啶混合物(11:9 v/v)

6-O-Acylraffifinose esters

[26]

蔗果三糖

月桂酸乙烯酯

Lipozyme 435 (CALB)

叔戊醇

6''-O-lauroyl-1-kestose

[27]

蔗果四糖

月桂酸乙烯酯

Lipozyme 435 (CALB)

叔戊醇

6'''-O-lauroylnystose

[27]

麦芽七糖

棕榈酸乙烯酯

Candida antarctica lipase A (CALA)

二甲基亚砜、叔丁醇混合物(1:9 v/v)

6-O-palmitic maltoheptaose

[39]

糊精

C2~C12脂肪酸

Thermomyces lanuginosus lipase

二甲基亚砜

6-O-mono-substituted dextrin esters

[28]

麦芽糊精

C10~C16 fatty acids

Thermomyces lanuginosus

二甲基亚砜

6-O-maltodextrin fatty acid ester

[40]

低聚糖

C8~C18 fatty acids

Candida antarctica B

二甲基亚砜、叔丁醇混合物(1:9 v/v)

6-O-mono-esters/1-O-mono-esters

[41]

脂肪酶可以催化双糖酯的生成。蔗糖酯、乳糖酯、麦芽糖酯和海藻糖酯是研究较多的糖酯,其区域选择性也展示在了表1。疏棉状嗜热丝孢菌(T. lanuginosus)、疏棉状腐质霉(H. lanuginosa)产的脂肪酶的酰基化区域选择性表现在6-OH,而南极假丝酵母(C. antarctica)产的脂肪酶(CALB)的主要酰基化位点为6-OH和6'-OH [20]。对于乳糖,大多数脂肪酶在半乳糖环上的非还原端C6′羟基进行酯化反应,得到6′-O-乳糖单酯[21] [22]。麦芽糖与海藻糖是由两个葡萄糖构成的二糖,分别由1,4糖苷键和1,1糖苷键相连,脂肪酶对两者羟基的选择性存在差异。对于麦芽糖,选择性主要表现在非还原端的6'-OH [23],在一定条件下6-OH和6'-OH都能得到酯化[24]。对于海藻糖,脂肪酶的选择性主要表现在6-OH [6]

脂肪酶除了对单糖和二糖有区域选择性外,对一些三糖、四糖、糊精以及低聚糖也存在区域选择性。脂肪酶对三糖、四糖的区域选择性主要表现在伯羟基上。例如,T. lanuginosus lipase在麦芽三糖分子的酰基化位点为6''-OH [20] [25],催化棉籽糖的位点为6-OH [26]C. antarctica B lipase催化蔗果三糖、蔗果四糖与月桂酸乙烯酯合成了6''-O-月桂酸蔗果三糖单酯(6''-O-lauroyl-1-kestose),6'''-O-蔗果四糖单酯(6'''-O-lauroylnystose) [27]。对于糊精,脂肪酶的酰化位置主要为葡萄糖环非还原端的6-OH [28]

值得注意的是,一些蛋白酶的催化中心三联体与脂肪酶一致(Ser-His-Asp),它们也可以催化酯化反应,但其区域选择性与脂肪酶存在一定的差异性。如脂肪酶对对蔗糖酯的区域选择性主要表现在6-OH和6'-OH,蛋白酶则表现在1'-OH [29] [30]

3. 酰基供体(脂肪酸)对于脂肪酶催化效率与区域选择性的影响

酰基供体的种类和结构(如链长、饱和度等)会对脂肪酶的催化效率和区域选择性产生影响。

脂肪酸的结构(包括双键的位置、支链的存在、链长等)能够影响酰基化的反应速率和选择性。在酶法合成中,用脂肪酸乙烯酯做底物比脂肪酸具有更快的反应速率,因为脂肪酸乙烯酯的电子云密度比脂肪酸大,导致脂肪酸乙烯酯反应速率更快[42]。另外,脂肪酸乙烯酯与糖发生的是不可逆的酯交换反应,在该酰基化过程中形成的乙烯醇变成低沸点乙醛,使平衡向酯形成方向转变,具有较高的反应速率和产率[43]。Wang研究证明含羟基化合物(包括糖)与乙烯酯的酯交换速率比烷基酯快20~100倍[44]。然而,有研究报道称,有些脂肪酶(如皱褶假丝酵母脂肪酶Candida rugosa lipase)在暴露于乙醛后会丧失活性[45]。此外,有研究表明随着脂肪酸链长的增加,空间位阻增加,其反应初始化反应速率降低,产量也降低,且产物酯化位点存在差异。例如,Pedersen等利用了CALB作为催化剂,使用丁酸和月桂酸和麦芽糖反应,前者的初始反应速率为约为后者的21倍,当蔗糖作为酰基受体时,其可以与丁酸生成二酯,而与月桂酸反应时,仅有单酯生成[23]

脂肪酸的饱和度对酶促反应的转化率也会产生影响,不饱和脂肪酸作为酰基供体时,随着双键数目的增加,合成糖酯的转化率逐渐降低,其初始转化率也降低。例如,Arcens等使用CALB在乙腈溶剂中催化硬脂酸、油酸与亚油酸葡萄糖酯,其转化率随着双键的增加而减少,且反式脂肪酸乙烯酯的糖酯转化率和初始转化率均高于顺式脂肪酸乙烯酯[43]。该研究表明顺式构型可能会引起更大的空间位阻,使脂肪酸乙烯酯更难进入酶活性位点,从而大大减少了糖酯的形成。双键数目增加,转化率下降可能是由于双键的存在导致了链迁移率的降低。

4. 溶剂对于脂肪酶区域选择性的影响

酶催化的糖酯合成反应几乎都在非水相中进行,原因有两点:过量的水会破坏脂肪酶活性中心周围氨基酸的构象,导致酶失活;且会导致逆反应(水解)的进行,不利于合成反应的进行。酶法合成的糖酯的反应体系有有机溶剂体系、无溶剂体系、离子液体体系和二氧化碳超临界体系。因无溶剂体系、超临界体系研究较少,离子液体合成、分离步骤较为繁琐,本部分将论述有机溶剂体系对于脂肪酶区域选择性的影响。

在使用有机溶剂作为反应基底的研究中,常用的有机溶剂有二甲基亚砜、乙腈、丙酮、叔丁醇、叔戊醇、正己烷、吡啶、N,N-二甲基甲酰胺、四氢呋喃等(如表1所示)。溶剂的极性是影响酶的活性、结构和稳定性的最重要的因素之一,同时还能通过影响底物的溶剂化和过渡态,来影响底物与酶分子的结合[46]。一般来说,有机溶剂极性大时,对糖的溶解度高[47],但酶在极性溶剂中催化活性中心的构型不稳定,容易失去活性。例如,在极性较大的溶剂中,如二氯甲烷、N,N-二甲基甲酰胺、二甲基亚砜和吡啶中,CALB活性较小[48]。Jia等人研究表明在常用的有机溶剂中,麦芽糖在DMSO中的溶解度最强,反应转化率却为0 [24]。为了解决这一矛盾,可采用混合溶剂以兼顾糖类底物的溶解性并保持酶的活性。例如在混合有机溶剂叔戊醇:二甲基亚砜(4:1, v/v)中得到高产量的糖酯[49]

不同的有机溶剂会影响酶的区域选择性。Ji报道了在丙酮中,通过Novozym 435催化合成得到海藻糖二酯(6,6′-di-O-erucoyltrehalose),在叔丁醇和叔戊醇中,产生单酯较多,只有少量的二酯产生[36]。Jia等人报道在丙酮中,通过Novozym 435催化得到54%的6'-O-月桂酸麦芽糖单酯(6'-O-lauroylmaltose),12%为二酯产物6,6'-di-O-月桂酸麦芽糖二酯(6,6'-di-O-lauroylmaltose),在乙腈和叔戊醇中只有6'-O-月桂酸麦芽糖单酯产生[24]。此外,溶剂的极性会影响底物接近酶活性位点的程度,从而影响产物结构。例如,Ferrer 等发现溶剂极性增强时(二甲基亚砜:叔戊醇1:4, v/v)有利于6-O-月桂酸蔗糖单酯(6-O-lauroylsucrose)的形成(单酯和双酯的生成率分别为62%和5%),减弱时(二甲基亚砜:叔戊醇1:19, v/v)有利于蔗糖双酯(6,1'-di-和6,6'-di-O-lauroylsucrose)的形成(单酯和双酯生成率分别为95%和10%),这可能是因为较弱的极性不利于蔗糖在溶液中扩散,而有利于蔗糖被酶俘获而生成双酯[50]

有机溶剂在酶促反应中的应用对工业具有较大优势,如其可调节的极性,与较为明显的选择性。然而,因消费者对于“清洁标签”添加剂的青睐逐年增高,有机溶剂合成系统的接受度可能会受到影响。因此,有学者研究了新型绿色离子液体。离子液体是由有机阳离子和阴离子组成的一种低熔点非水溶剂,在室温条件下,能以稳定液态形式存在的熔盐,具有极低的蒸汽、不易挥发、热稳定性好、对环境友好、可循环使用、对物质溶解性好等优点[51] (Ionic Liquids in Synthesis)。常用的离子液体阳离子有咪唑盐离子(imidazolium ion)、吡啶盐离子(pyridinium ion)、季铵盐离子(quaternary ammonium ion)和季磷盐离子(quaternary phosphonium ion)等,常见的阴离子有四氟硼酸根离子( BF 4 )、六氟磷酸根离子( PF 6 )、硝酸根离子( NO 3 )等,它们表现出优异的物理化学特性,包括溶解极性、非极性、有机、无机和聚合化合物的能力。离子液体的理化性质(极性、疏水性、粘度等)以及离子液体的阴离子的氢键形成能力和亲核性对酶的结构、反应活性、选择性和稳定性产生较大影响[52]。与有机溶剂类似,不同的离子液体对单糖、双糖、低聚糖和多糖的溶解性不同,但大多数对糖溶解性好的离子液体对酶是有害的。例如,[BMIM][dca]可以溶解大量不同的糖,但使脂肪酶不可逆地失活。Van Rantwijk等研究表明,Candida antarctica lipase B在[BMIM]中活性为0,使该酶完全失活[53]。ILs比传统的有机溶剂具有更高的粘度[54],离子液体的粘度可能会影响酶的稳定性和活性。Lai等研究脂肪酶的稳定性和活性与粘度系数之间的趋势,粘度系数越高,脂肪酶的稳定性和活性逐渐降低[55]。虽然糖类化合物在离子液体中的溶解度好,由于离子液体粘度较高,传质阻力较大,导致产物转化率降低,此外,还存在分离产物和酶回收困难的问题。研究表明,向离子液体中加入有机溶剂可以降低离子液体的粘度,提高反应转化率。例如Shao等研究利用[3CIM(EO)][NTf2]与2M2B (1.5:1, v/v)混合得到高产量的6-O-palmitylsucrose [56]。另外,离子液体还有一些其他缺点,例如成本高,反应时间长,低收率,酶变性,以及离子液体和酶的重复利用,产物分离纯化等问题[57]

在不同的反应体系中,脂肪酶的催化活性以及选择性存在差异。例如,Park等利用Novozym 435分别在离子液体和有机溶剂中催化葡萄糖与乙酸乙烯酯进行酰基化反应。反应36 h后,在[MOEMIM][BF4]中,该反应转化率高达99%,并且有93%的产物是6-O-acyl-D-glucose,还有少量3,6-O-diacylglucose产生,在[PMIM][BF4]中,该反应转化率仅为28%,得到的产物全是6-O-acyl-D-glucose,无二酯产生;在THF中获得了99%的转化率,但其中只有53%为所需的6-O-acyl-D-glucose,其余为副产物3,6-O-diacylglucose [58]

综上所述,反应溶剂会影响酶的活性和反应物的溶解性,酶的区域选择性会受到反应溶剂的影响。

5. 利用分子对接与分子模拟方法研究区域选择性的机理

随着计算机技术、生物信息学和结构生物学等研究领域的快速发展,越来越多的学者利用信息化技术来研究酶的催化机理。分子对接技术是通过几何匹配、能量匹配和化学环境匹配来寻找复合物的最优状态[59]。分子动力学模拟可以用动态分析原子微观相互作用,经过一段时间的动态模拟后,通过比较到达平衡态的轨迹,来分析分子的构象变化从而解释其宏观特性。对于CALB,已经有学者对其在一些底物识别的过程和机制中做出研究。例如,Garcia-Oliva [60]利用这两种技术来研究在四氢呋喃中使用斯式假单胞菌(Pseudomonas stutzeri)脂肪酶合成的鼠李糖酯,他们先用分子对接找出第一个酰基化酶四面体的最佳构型,然后进行第二轮对接找出其与酰基受体的最佳对接构型,再将最佳构型置于用分子模拟的四氢呋喃环境中,研究分子的稳定性。该酶的区域选择性可由分子对接结果预测:C4位的羟基与其他位的羟基相比,其距离与活性中心三联体中的酰基化丝氨酸最近,且在分子模拟的过程中(50 ns内),α-鼠李糖和β-鼠李糖与活性中心三联体中的组氨酸距离,C4-OH和丝氨酸中的氧原子距离稳定,表明该反应可以持续。其对接结果最稳定的情况与实验结果得出的区域选择性一致。Toledo [61]等利用分子模拟技术探究外消旋布洛芬和酮洛芬与甘油之间的酯化反应中甘油在供体通道中扩散时与氨基酸的空间位阻能(steric energy)、构象形成焓(formation enthaply)和底物之间的键距,发现R型异构体在甘油分子扩散的每一步中有更负的空间位阻能,因此更容易形成。酮洛芬因有一个甲苯基,在甘油分子在活性中心的扩散过程中提供了更大的空间位阻,使甘油分子更长时间地停留在酰基化的酶活性中心,有利于二酯产物的形成。而空间位阻小的布洛芬分子被酯化后有更多的一酯产物。Doerr [62]等研究了链长不同的酰基供体对于CALB于药物分子普萘洛尔中羟基和氨基的酰基化选择性,他们使用分子对接和分子模拟技术来逐步构建酰基化酶(过渡态中间体),通过评价底物与活性中心丝氨酸和组氨酸的亲核攻击键距来解释对于羟基或氨基的选择性。研究者们发现当短链酰基供体参与反应时,与羟基形成短距离氢键的过渡态分子数量多于与氨基形成氢键的分子;当中长链酰基供体参与反应时,趋势相反,这有可能是造成产物是酯或是酰胺的原因。该评价方法与实验结果吻合。这些研究的方法的思路为:实验获得酶的催化规律→利用分子对接或者分子模拟技术来构建酶–底物过渡态并模拟催化过程→通过一些评价方法解释催化特异性→预测酶对于新的底物或者在新环境下的特异性→再次实验验证预测结果,为理论模拟计算实验三位一体的研究方法。然而,该研究方法尚未在糖酯的合成中广泛应用。

6. 结论

脂肪酶的区域选择性与酶本身的性质、底物结构与反应条件密切相关。阐明其相关性对于糖酯的定向合成有至关重要的作用。结合计算方法和实验技术,明确脂肪酶的催化机制和以上因素对于区域选择性的影响能为酶的改性提供一定的指导。未来的研究可以继续深入探索脂肪酶的结构和功能,通过酶工程和合成生物学的方法开发更具有选择性和高效的脂肪酶催化体系,以满足糖酯合成技术在食品、药物和化妆品等领域的应用需求。

基金项目

湖南省教育厅优秀青年项目“月桂酸葡萄糖单酯对于大肠杆菌和单核细胞增生李斯特菌的抑菌机理研究”(项目编号21B0254)。

中南林业科技大学引进人才科研启动基金项目“月桂酸葡萄糖单酯对于大肠杆菌和单核细胞增生李斯特菌的抑菌机理研究”(项目编号2021YJ027)。

洞庭实验室2024科研项目“油脂加工中缩水甘油酯和氯丙醇酯的防控技术研究与应用”(项目编号:2024-DTPY-008)。

NOTES

*通讯作者。

参考文献

[1] Martinez‐Garcia, M., Dejonghe, W., Cauwenberghs, L., Maesen, M., Vanbroekhoven, K. and Satyawali, Y. (2020) Enzymatic Synthesis of Glucose‐ and Xylose Laurate Esters Using Different Acyl Donors, Higher Substrate Concentrations, and Membrane Assisted Solvent Recovery. European Journal of Lipid Science and Technology, 123, Article ID: 2000225.
https://doi.org/10.1002/ejlt.202000225
[2] Neta, N.D.A.S., Santos, J.C.S.D., Sancho, S.D.O., Rodrigues, S., Gonçalves, L.R.B., Rodrigues, L.R., et al. (2012) Enzymatic Synthesis of Sugar Esters and Their Potential as Surface-Active Stabilizers of Coconut Milk Emulsions. Food Hydrocolloids, 27, 324-331.
https://doi.org/10.1016/j.foodhyd.2011.10.009
[3] El-Laithy, H.M., Shoukry, O. and Mahran, L.G. (2011) Novel Sugar Esters Proniosomes for Transdermal Delivery of Vinpocetine: Preclinical and Clinical Studies. European Journal of Pharmaceutics and Biopharmaceutics, 77, 43-55.
https://doi.org/10.1016/j.ejpb.2010.10.011
[4] Khan, N.R. and Rathod, V.K. (2015) Enzyme Catalyzed Synthesis of Cosmetic Esters and Its Intensification: A Review. Process Biochemistry, 50, 1793-1806.
https://doi.org/10.1016/j.procbio.2015.07.014
[5] Lucarini, S., Fagioli, L., Campana, R., Cole, H., Duranti, A., Baffone, W., et al. (2016) Unsaturated Fatty Acids Lactose Esters: Cytotoxicity, Permeability Enhancement and Antimicrobial Activity. European Journal of Pharmaceutics and Biopharmaceutics, 107, 88-96.
https://doi.org/10.1016/j.ejpb.2016.06.022
[6] Hsieh, S., Lee, M., Tsai, C., Lai, L., Yeh, T., Hsieh, C., et al. (2015) Enzymatic Synthesis, Purification and Identification of Bioactive Trehalose Ester Derivatives for Health Applications. Food and Bioproducts Processing, 95, 163-172.
https://doi.org/10.1016/j.fbp.2015.05.003
[7] Puterka, G.J., Farone, W., Palmer, T. and Barrington, A. (2003) Structure-Function Relationships Affecting the Insecticidal and Miticidal Activity of Sugar Esters. Journal of Economic Entomology, 96, 636-644.
https://doi.org/10.1093/jee/96.3.636
[8] Okabe, S., Suganuma, M., Tada, Y., Ochiai, Y., Sueoka, E., Kohya, H., et al. (1999) Disaccharide Esters Screened for Inhibition of Tumor Necrosis Factor‐α Release Are New Anti‐Cancer Agents. Japanese Journal of Cancer Research, 90, 669-676.
https://doi.org/10.1111/j.1349-7006.1999.tb00799.x
[9] Ren, K. and Lamsal, B.P. (2017) Synthesis of Some Glucose-Fatty Acid Esters by Lipase from Candida antarctica and Their Emulsion Functions. Food Chemistry, 214, 556-563.
https://doi.org/10.1016/j.foodchem.2016.07.031
[10] Uppenberg, J., Hansen, M.T., Patkar, S. and Jones, T.A. (1994) The Sequence, Crystal Structure Determination and Refinement of Two Crystal Forms of Lipase B from Candida antarctica. Structure, 2, 293-308.
https://doi.org/10.1016/s0969-2126(00)00031-9
[11] Anderson, E.M., Larsson, K.M. and Kirk, O. (1998) One Biocatalyst-Many Applications: The Use of Candida antarctica B-Lipase in Organic Synthesis. Biocatalysis and Biotransformation, 16, 181-204.
https://doi.org/10.3109/10242429809003198
[12] Gonçalves, M.C.P., Cansian, A.B.M., Tardioli, P.W. and Saville, B.A. (2023) Production of Sugars from Mixed Hardwoods for Use in the Synthesis of Sugar Fatty Acid Esters Catalyzed by Immobilized‐Stabilized Derivatives of candida Antarctica Lipase B. Biofuels, Bioproducts and Biorefining, 17, 1236-1250.
https://doi.org/10.1002/bbb.2517
[13] Bernal, C., Poveda-Jaramillo, J.C. and Mesa, M. (2018) Raising the Enzymatic Performance of Lipase and Protease in the Synthesis of Sugar Fatty Acid Esters, by Combined Ionic Exchange-Hydrophobic Immobilization Process on Aminopropyl Silica Support. Chemical Engineering Journal, 334, 760-767.
https://doi.org/10.1016/j.cej.2017.10.082
[14] Chaiyaso, T., H-kittikun, A. and Zimmermann, W. (2006) Biocatalytic Acylation of Carbohydrates with Fatty Acids from Palm Fatty Acid Distillates. Journal of Industrial Microbiology & Biotechnology, 33, 338-342.
https://doi.org/10.1007/s10295-005-0073-0
[15] Sin, Y.M., Cho, K.W. and Lee, T.H. (1998) Synthesis of Fructose Esters by Pseudomonas sp. Lipase in Anhydrous Pyridine. Biotechnology Letters, 20, 91-94.
https://doi.org/10.1023/a:1005399601867
[16] Scheckermann, C., Schlotterbeck, A., Schmidt, M., Wray, V. and Lang, S. (1995) Enzymatic Monoacylation of Fructose by Two Procedures. Enzyme and Microbial Technology, 17, 157-162.
https://doi.org/10.1016/0141-0229(94)00005-c
[17] Tracy, P., Dasgupta, D. and More, S. (2023) Challenges and Opportunities for Production of C5 Sugar Fatty Acid Esters (SFAEs) from Renewable Resources. Industrial Crops and Products, 193, Article ID: 116170.
https://doi.org/10.1016/j.indcrop.2022.116170
[18] Jocquel, C., Muzard, M., Plantier-Royon, R. and Rémond, C. (2021) An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/xylose Laurate Esters from Wheat Bran. Frontiers in Bioengineering and Biotechnology, 9, Article 647442.
https://doi.org/10.3389/fbioe.2021.647442
[19] Méline, T., Muzard, M., Deleu, M., Rakotoarivonina, H., Plantier-Royon, R. and Rémond, C. (2018) D-Xylose and L-Arabinose Laurate Esters: Enzymatic Synthesis, Characterization and Physico-Chemical Properties. Enzyme and Microbial Technology, 112, 14-21.
https://doi.org/10.1016/j.enzmictec.2018.01.008
[20] Ferrer, M., Soliveri, J., Plou, F.J., López-Cortés, N., Reyes-Duarte, D., Christensen, M., et al. (2005) Synthesis of Sugar Esters in Solvent Mixtures by Lipases from Thermomyces lanuginosus and Candida antarctica B, and Their Antimicrobial Properties. Enzyme and Microbial Technology, 36, 391-398.
https://doi.org/10.1016/j.enzmictec.2004.02.009
[21] Liang, M., Banwell, M.G., Wang, Y. and Lan, P. (2018) Effect of Variations in the Fatty Acid Residue of Lactose Monoesters on Their Emulsifying Properties and Biological Activities. Journal of Agricultural and Food Chemistry, 66, 12594-12603.
https://doi.org/10.1021/acs.jafc.8b05794
[22] Enayati, M., Gong, Y., Goddard, J.M. and Abbaspourrad, A. (2018) Synthesis and Characterization of Lactose Fatty Acid Ester Biosurfactants Using Free and Immobilized Lipases in Organic Solvents. Food Chemistry, 266, 508-513.
https://doi.org/10.1016/j.foodchem.2018.06.051
[23] Pedersen, N.R., Wimmer, R., Emmersen, J., Degn, P. and Pedersen, L.H. (2002) Effect of Fatty Acid Chain Length on Initial Reaction Rates and Regioselectivity of Lipase-Catalysed Esterification of Disaccharides. Carbohydrate Research, 337, 1179-1184.
https://doi.org/10.1016/s0008-6215(02)00112-x
[24] Jia, C., Zhao, J., Feng, B., Zhang, X. and Xia, W. (2010) A Simple Approach for the Selective Enzymatic Synthesis of Dilauroyl Maltose in Organic Media. Journal of Molecular Catalysis B: Enzymatic, 62, 265-269.
https://doi.org/10.1016/j.molcatb.2009.11.003
[25] Gonzalez-Alfonso, J.L., Casas-Godoy, L., Arrizon, J., Arrieta-Baez, D., Ballesteros, A.O., Sandoval, G., et al. (2018) Lipase-Catalyzed Synthesis of Fatty Acid Esters of Trisaccharides. In: Sandoval, G., Ed., Lipases and Phospholipases, Springer, 287-296.
https://doi.org/10.1007/978-1-4939-8672-9_15
[26] Li, X., Hai, Y., Ma, D., Chen, J., Banwell, M.G. and Lan, P. (2019) Fatty Acid Ester Surfactants Derived from Raffinose: Synthesis, Characterization and Structure-Property Profiles. Journal of Colloid and Interface Science, 556, 616-627.
https://doi.org/10.1016/j.jcis.2019.08.070
[27] Campos-Valdez, A.R., Casas-Godoy, L., Sandoval, G., Hernández, L., Sassaki, G.L., Alencar de Menezes, L.R., et al. (2021) Regioselective Synthesis of 6''-O-Lauroyl-1-Kestose and 6'''-O-Lauroylnystose by Sequential Enzymatic Reactions of Transfructosylation and Acylation. Biocatalysis and Biotransformation, 40, 133-143.
https://doi.org/10.1080/10242422.2021.1952192
[28] Lee, H.Y., Kimura, S. and Iwata, T. (2018) Lipase-catalyzed Regioselective Synthesis of Dextrin Esters. Biomacromolecules, 20, 705-711.
https://doi.org/10.1021/acs.biomac.8b01374
[29] Riva, S., Chopineau, J., Kieboom, A.P.G. and Klibanov, A.M. (1988) Protease-Catalyzed Regioselective Esterification of Sugars and Related Compounds in Anhydrous Dimethylformamide. Journal of the American Chemical Society, 110, 584-589.
https://doi.org/10.1021/ja00210a045
[30] Patil, D.R., Rethwisch, D.G. and Dordick, J.S. (1991) Enzymatic Synthesis of a Sucrose‐Containing Linear Polyester in Nearly Anhydrous Organic Media. Biotechnology and Bioengineering, 37, 639-646.
https://doi.org/10.1002/bit.260370706
[31] An, D., Zhao, X. and Ye, Z. (2015) Enzymatic Synthesis and Characterization of Galactosyl Monoesters. Carbohydrate Research, 414, 32-38.
https://doi.org/10.1016/j.carres.2015.05.011
[32] Jia, C., Wang, H., Zhang, W., Zhang, X. and Feng, B. (2018) Efficient Enzyme-Selective Synthesis of Monolauryl Mannose in a Circulating Fluidized Bed Reactor. Process Biochemistry, 66, 28-32.
https://doi.org/10.1016/j.procbio.2017.12.002
[33] Giorgi, V., Botto, E., Fontana, C., Della Mea, L., Vaz, S., Menéndez, P., et al. (2022) Enzymatic Production of Lauroyl and Stearoyl Monoesters of D-Xylose, L-Arabinose, and D-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts, 12, Article No. 610.
https://doi.org/10.3390/catal12060610
[34] Du, L. and Luo, X. (2012) Lipase-Catalyzed Regioselective Acylation of Sugar in Microreactors. RSC Advances, 2, 2663-2665.
https://doi.org/10.1039/c2ra01112c
[35] Sun, P., Chen, Y., Wang, H., Li, J., Gao, J., Wang, H., et al. (2011) Lipase-Catalyzed Synthesis and Characterization of Myristoyl Maltose Ester. European Food Research and Technology, 233, 253-258.
https://doi.org/10.1007/s00217-011-1490-0
[36] Ji, S., Jia, C., Cao, D., Li, S. and Zhang, X. (2020) Direct and Selective Enzymatic Synthesis of Trehalose Unsaturated Fatty Acid Diesters and Evaluation of Foaming and Emulsifying Properties. Enzyme and Microbial Technology, 136, Article ID: 109516.
https://doi.org/10.1016/j.enzmictec.2020.109516
[37] Gérard, D., Méline, T., Muzard, M., Deleu, M., Plantier-Royon, R. and Rémond, C. (2020) Enzymatically-Synthesized Xylo-Oligosaccharides Laurate Esters as Surfactants of Interest. Carbohydrate Research, 495, Article ID: 108090.
https://doi.org/10.1016/j.carres.2020.108090
[38] Ferrer, M., Angeles Cruces, M., Plou, F.J., Bernabé, M. and Ballesteros, A. (2000) A Simple Procedure for the Regioselective Synthesis of Fatty Acid Esters of Maltose, Leucrose, Maltotriose and N-Dodecyl Maltosides. Tetrahedron, 56, 4053-4061.
https://doi.org/10.1016/s0040-4020(00)00319-7
[39] Nguyen, P.C., Nguyen, M.T.T., Lee, C., Oh, I., Kim, J., Hong, S., et al. (2019) Enzymatic Synthesis and Characterization of Maltoheptaose-Based Sugar Esters. Carbohydrate Polymers, 218, 126-135.
https://doi.org/10.1016/j.carbpol.2019.04.079
[40] Udomrati, S. and Gohtani, S. (2014) Enzymatic Esterification of Tapioca Maltodextrin Fatty Acid Ester. Carbohydrate Polymers, 99, 379-384.
https://doi.org/10.1016/j.carbpol.2013.07.081
[41] van Kempen, S.E.H.J., Boeriu, C.G., Schols, H.A., de Waard, P., van der Linden, E. and Sagis, L.M.C. (2013) Novel Surface-Active Oligofructose Fatty Acid Mono-Esters by Enzymatic Esterification. Food Chemistry, 138, 1884-1891.
https://doi.org/10.1016/j.foodchem.2012.09.133
[42] Adachi, S. and Kobayashi, T. (2005) Synthesis of Esters by Immobilized-Lipase-Catalyzed Condensation Reaction of Sugars and Fatty Acids in Water-Miscible Organic Solvent. Journal of Bioscience and Bioengineering, 99, 87-94.
https://doi.org/10.1263/jbb.99.87
[43] Arcens, D., Grau, E., Grelier, S., Cramail, H. and Peruch, F. (2020) Impact of Fatty Acid Structure on Calb‐Catalyzed Esterification of Glucose. European Journal of Lipid Science and Technology, 122, Article ID: 1900294.
https://doi.org/10.1002/ejlt.201900294
[44] Wang, Y.F., Lalonde, J.J., Momongan, M., Bergbreiter, D.E. and Wong, C.H. (1988) Lipase-catalyzed Irreversible Transesterifications Using Enol Esters as Acylating Reagents: Preparative Enantio-and Regioselective Syntheses of Alcohols, Glycerol Derivatives, Sugars and Organometallics. Journal of the American Chemical Society, 110, 7200-7205.
https://doi.org/10.1021/ja00229a041
[45] Weber, H.K., Stecher, H. and Faber, K. (1995) Sensitivity of Microbial Lipases to Acetaldehyde Formed by Acyl-Transfer Reactions from Vinyl Esters. Biotechnology Letters, 17, 803-808.
https://doi.org/10.1007/bf00129008
[46] Kamal, M.Z., Yedavalli, P., Deshmukh, M.V. and Rao, N.M. (2013) Lipase in Aqueous‐Polar Organic Solvents: Activity, Structure, and Stability. Protein Science, 22, 904-915.
https://doi.org/10.1002/pro.2271
[47] Shin, D.W., Mai, N.L., Bae, S. and Koo, Y. (2019) Enhanced Lipase-Catalyzed Synthesis of Sugar Fatty Acid Esters Using Supersaturated Sugar Solution in Ionic Liquids. Enzyme and Microbial Technology, 126, 18-23.
https://doi.org/10.1016/j.enzmictec.2019.03.004
[48] Ballesteros, A., Plou, F.J., Alcalde, M., Ferrer, M., Garcia‐Arellano, H., Reyes‐Duarte, D., et al. (2008) Cheminform Abstract: Enzymatic Synthesis of Sugar Esters and Oligosaccharides from Renewable Resources. ChemInform, 39, 463-481.
https://doi.org/10.1002/chin.200822240
[49] Reyes-Duarte, D., López-Cortés, N., Ferrer, M., Plou, F.J. and Ballesteros, A. (2005) Parameters Affecting Productivity in the Lipase-Catalysed Synthesis of Sucrose Palmitate. Biocatalysis and Biotransformation, 23, 19-27.
https://doi.org/10.1080/10242420500071763
[50] Ferrer, M., Cruces, M.A., Bernabe, M., Ballesteros, A. and Plou, F.J. (1999) Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures. Biotechnology and Bioengineering, 65, 10-16.
https://doi.org/10.1002/(sici)1097-0290(19991005)65:1<10::aid-bit2>3.0.co;2-l
[51] Yang, Z. and Huang, Z. (2012) Enzymatic Synthesis of Sugar Fatty Acid Esters in Ionic Liquids. Catalysis Science & Technology, 2, 1767-1775.
https://doi.org/10.1039/c2cy20109g
[52] Kaar, J.L., Jesionowski, A.M., Berberich, J.A., Moulton, R. and Russell, A.J. (2003) Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability. Journal of the American Chemical Society, 125, 4125-4131.
https://doi.org/10.1021/ja028557x
[53] van Rantwijk, F., Secundo, F. and Sheldon, R.A. (2006) Structure and Activity of Candida antarctica Lipase B in Ionic Liquids. Green Chem., 8, 282-286.
https://doi.org/10.1039/b513062j
[54] Tariq, M., Carvalho, P.J., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C. and Rebelo, L.P.N. (2011) Viscosity of (C2-C14) 1-Alkyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids in an Extended Temperature Range. Fluid Phase Equilibria, 301, 22-32.
https://doi.org/10.1016/j.fluid.2010.10.018
[55] Lai, J., Li, Z., Lü, Y. and Yang, Z. (2011) Specific Ion Effects of Ionic Liquids on Enzyme Activity and Stability. Green Chemistry, 13, 1860-1868.
https://doi.org/10.1039/c1gc15140a
[56] Shao, S., Shi, Y., Wu, Y., Bian, L., Zhu, Y., Huang, X., et al. (2018) Lipase-Catalyzed Synthesis of Sucrose Monolaurate and Its Antibacterial Property and Mode of Action against Four Pathogenic Bacteria. Molecules, 23, Article No. 1118.
https://doi.org/10.3390/molecules23051118
[57] Andler, S.M., Wang, L., Rotello, V.M. and Goddard, J.M. (2017) Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent. Journal of Agricultural and Food Chemistry, 65, 1907-1914.
https://doi.org/10.1021/acs.jafc.6b05372
[58] Park, S. and Kazlauskas, R.J. (2001) Improved Preparation and Use of Room-Temperature Ionic Liquids in Lipase-Catalyzed Enantio-and Regioselective Acylations. The Journal of Organic Chemistry, 66, 8395-8401.
https://doi.org/10.1021/jo015761e
[59] 王哲, 王普, 黄金. 分子模拟技术在脂肪酶性质及催化机理研究中的应用进展[J]. 化工进展, 2013, 32(10): 2475-2479, 2485.
[60] García-Oliva, C., Perona, A., Rumbero, Á., Hoyos, P. and Hernáiz, M.J. (2022) Enzymatic Synthesis and Molecular Modelling Studies of Rhamnose Esters Using Lipase from Pseudomonas Stutzeri. International Journal of Molecular Sciences, 23, Article 2239.
https://doi.org/10.3390/ijms23042239
[61] Toledo, M.V., Briand, L.E. and Ferreira, M.L. (2022) A Simple Molecular Model to Study the Substrate Diffusion into the Active Site of a Lipase-Catalyzed Esterification of Ibuprofen and Ketoprofen with Glycerol. Topics in Catalysis, 65, 944-956.
https://doi.org/10.1007/s11244-022-01636-z
[62] Doerr, M., Romero, A. and Daza, M.C. (2021) Effect of the Acyl-Group Length on the Chemoselectivity of the Lipase-Catalyzed Acylation of Propranolol—A Computational Study. Journal of Molecular Modeling, 27, Article No. 198.
https://doi.org/10.1007/s00894-021-04808-y