[1]
|
Li, W.B., Wang, J.X. and Gong, H. (2009) Catalytic Combustion of Vocs on Non-Noble Metal Catalysts. Catalysis Today, 148, 81-87. https://doi.org/10.1016/j.cattod.2009.03.007
|
[2]
|
Yang, H., Gupta, S.K., Dhital, N.B., Wang, L. and Elumalai, S.P. (2020) Comparative Investigation of Coal-and Oil-Fired Boilers Based on Emission Factors, Ozone and Secondary Organic Aerosol Formation Potentials of Vocs. Journal of Environmental Sciences, 92, 245-255. https://doi.org/10.1016/j.jes.2020.02.024
|
[3]
|
Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T. and Bayram, A. (2014) Spatial and Seasonal Variation and Source Apportionment of Volatile Organic Compounds (Vocs) in a Heavily Industrialized Region. Atmospheric Environment, 98, 168-178. https://doi.org/10.1016/j.atmosenv.2014.08.048
|
[4]
|
Zhang, S., You, J., Kennes, C., Cheng, Z., Ye, J., Chen, D., et al. (2018) Current Advances of Vocs Degradation by Bioelectrochemical Systems: A Review. Chemical Engineering Journal, 334, 2625-2637. https://doi.org/10.1016/j.cej.2017.11.014
|
[5]
|
Son, Y. (2017) Decomposition of Vocs and Odorous Compounds by Radiolysis: A Critical Review. Chemical Engineering Journal, 316, 609-622. https://doi.org/10.1016/j.cej.2017.01.063
|
[6]
|
Zhang, X., Gao, B., Creamer, A.E., Cao, C. and Li, Y. (2017) Adsorption of Vocs onto Engineered Carbon Materials: A Review. Journal of Hazardous Materials, 338, 102-123. https://doi.org/10.1016/j.jhazmat.2017.05.013
|
[7]
|
Gales, L., Mendes, A. and Costa, C. (2002) Removal of Acetone, Ethyl Acetate and Ethanol Vapors from Air Using a Hollow Fiber PDMS Membrane Module. Journal of Membrane Science, 197, 211-222. https://doi.org/10.1016/s0376-7388(01)00628-7
|
[8]
|
Xu, H., Xu, X., Chen, L., Guo, J. and Wang, J. (2022) A Novel Cryogenic Condensation System Combined with Gas Turbine with Low Carbon Emission for Volatile Compounds Recovery. Energy, 248, Article ID: 123604. https://doi.org/10.1016/j.energy.2022.123604
|
[9]
|
Le Cloirec, P. (2012) Treatments of Polluted Emissions from Incinerator Gases: A Succinct Review. Reviews in Environmental Science and Bio/Technology, 11, 381-392. https://doi.org/10.1007/s11157-012-9265-z
|
[10]
|
Zhang, H., Gao, X., Gong, B., Shao, S., Tu, C., Pan, J., et al. (2022) Catalytic Combustion of Cvocs over MOOX/CeO2 Catalysts. Applied Catalysis B: Environmental, 310, Article ID: 121240. https://doi.org/10.1016/j.apcatb.2022.121240
|
[11]
|
Delhoménie, M. and Heitz, M. (2005) Biofiltration of Air: A Review. Critical Reviews in Biotechnology, 25, 53-72. https://doi.org/10.1080/07388550590935814
|
[12]
|
Zhang, P. (2022) The Adsorption of Vocs by Honeycomb Ceramics Loaded with Molecular Sieves. Journal of Chemistry, 2022, Article ID: 7207403. https://doi.org/10.1155/2022/7207403
|
[13]
|
Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., et al. (2019) Abatement of Various Types of Vocs by Adsorption/Catalytic Oxidation: A Review. Chemical Engineering Journal, 370, 1128-1153. https://doi.org/10.1016/j.cej.2019.03.232
|
[14]
|
Dwivedi, P., Gaur, V., Sharma, A. and Verma, N. (2004) Comparative Study of Removal of Volatile Organic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber. Separation and Purification Technology, 39, 23-37. https://doi.org/10.1016/j.seppur.2003.12.016
|
[15]
|
Kamal, M.S., Razzak, S.A. and Hossain, M.M. (2016) Catalytic Oxidation of Volatile Organic Compounds (Vocs)—A Review. Atmospheric Environment, 140, 117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031
|
[16]
|
Dai, C., Zhou, Y., Peng, H., Huang, S., Qin, P., Zhang, J., et al. (2018) Current Progress in Remediation of Chlorinated Volatile Organic Compounds: A Review. Journal of Industrial and Engineering Chemistry, 62, 106-119. https://doi.org/10.1016/j.jiec.2017.12.049
|
[17]
|
Guo, Y., Sun, Y., Yang, D., Dai, J., Liu, Z., Chen, Y., et al. (2019) Biogenic Pt/CaCO3 Nanocomposite as a Robust Catalyst toward Benzene Oxidation. ACS Applied Materials & Interfaces, 12, 2469-2480. https://doi.org/10.1021/acsami.9b18490
|
[18]
|
Bai, B., Qiao, Q., Li, J. and Hao, J. (2016) Progress in Research on Catalysts for Catalytic Oxidation of Formaldehyde. Chinese Journal of Catalysis, 37, 102-122. https://doi.org/10.1016/s1872-2067(15)61007-5
|
[19]
|
Gelles, T., Krishnamurthy, A., Adebayo, B., Rownaghi, A. and Rezaei, F. (2020) Abatement of Gaseous Volatile Organic Compounds: A Material Perspective. Catalysis Today, 350, 3-18. https://doi.org/10.1016/j.cattod.2019.06.017
|
[20]
|
He, J., Xu, X., Li, M., Zhou, S. and Zhou, W. (2023) Recent Advances in Perovskite Oxides for Non-Enzymatic Electrochemical Sensors: A Review. Analytica Chimica Acta, 1251, Article ID: 341007. https://doi.org/10.1016/j.aca.2023.341007
|
[21]
|
Xu, X., Wang, W., Zhou, W. and Shao, Z. (2018) Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications. Small Methods, 2, Article ID: 1800071. https://doi.org/10.1002/smtd.201800071
|
[22]
|
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S. and Hao, Z. (2019) Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119, 4471-4568. https://doi.org/10.1021/acs.chemrev.8b00408
|
[23]
|
Kustov, A.L., Tkachenko, O.P., Kustov, L.M. and Romanovsky, B.V. (2011) Lanthanum Cobaltite Perovskite Supported onto Mesoporous Zirconium Dioxide: Nature of Active Sites of VOC Oxidation. Environment International, 37, 1053-1056. https://doi.org/10.1016/j.envint.2011.05.002
|
[24]
|
Guelli Ulson de Souza, S.M.d.A., da Luz, A.D., da Silva, A. and Ulson de Souza, A.A. (2012) Removal of Mono-and Multicomponent BTX Compounds from Effluents Using Activated Carbon from Coconut Shell as the Adsorbent. Industrial & Engineering Chemistry Research, 51, 6461-6469. https://doi.org/10.1021/ie2026772
|
[25]
|
Spinicci, R., Faticanti, M., Marini, P., De Rossi, S. and Porta, P. (2003) Catalytic Activity of Lamno3 and Lacoo3 Perovskites Towards Vocs Combustion. Journal of Molecular Catalysis A: Chemical, 197, 147-155. https://doi.org/10.1016/s1381-1169(02)00621-0
|
[26]
|
Liu, L., Sun, J., Ding, J., Zhang, Y., Jia, J. and Sun, T. (2019) Catalytic Oxidation of Vocs over Smmno3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorganic Chemistry, 58, 14275-14283. https://doi.org/10.1021/acs.inorgchem.9b02518
|
[27]
|
Wu, M., Li, H., Ma, S., Chen, S. and Xiang, W. (2021) Boosting the Surface Oxygen Activity for High Performance Iron-Based Perovskite Oxide. Science of the Total Environment, 795, Article ID: 148904. https://doi.org/10.1016/j.scitotenv.2021.148904
|
[28]
|
Si, W., Wang, Y., Zhao, S., Hu, F. and Li, J. (2016) A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. Environmental Science & Technology, 50, 4572-4578. https://doi.org/10.1021/acs.est.5b06255
|
[29]
|
Li, B., Yang, Q., Peng, Y., Chen, J., Deng, L., Wang, D., et al. (2019) Enhanced Low-Temperature Activity of LaMnO3 for Toluene Oxidation: The Effect of Treatment with an Acidic KMnO4. Chemical Engineering Journal, 366, 92-99. https://doi.org/10.1016/j.cej.2019.01.139
|
[30]
|
Wu, M., Chen, S. and Xiang, W. (2020) Oxygen Vacancy Induced Performance Enhancement of Toluene Catalytic Oxidation Using LaFeO3 Perovskite Oxides. Chemical Engineering Journal, 387, Article ID: 124101. https://doi.org/10.1016/j.cej.2020.124101
|
[31]
|
Zhang, J., Tan, D., Meng, Q., Weng, X. and Wu, Z. (2015) Structural Modification of LaCoO3 Perovskite for Oxidation Reactions: The Synergistic Effect of Ca2+ and Mg2+ Co-Substitution on Phase Formation and Catalytic Performance. Applied Catalysis B: Environmental, 172, 18-26. https://doi.org/10.1016/j.apcatb.2015.02.006
|
[32]
|
Pecchi, G., Jiliberto, M.G., Delgado, E.J., Cadús, L.E. and Fierro, J.L.G. (2011) Effect of B‐Site Cation on the Catalytic Activity of La1−xCaxBO3 (B = Fe, Ni) Perovskite‐Type Oxides for Toluene Combustion. Journal of Chemical Technology & Biotechnology, 86, 1067-1073. https://doi.org/10.1002/jctb.2611
|
[33]
|
Zhang, C., Guo, Y., Guo, Y., Lu, G., Boreave, A., Retailleau, L., et al. (2014) LaMnO3 Perovskite Oxides Prepared by Different Methods for Catalytic Oxidation of Toluene. Applied Catalysis B: Environmental, 148, 490-498. https://doi.org/10.1016/j.apcatb.2013.11.030
|
[34]
|
Sihaib, Z., Puleo, F., Pantaleo, G., La Parola, V., Valverde, J.L., Gil, S., et al. (2019) The Effect of Citric Acid Concentration on the Properties of Lamno3 as a Catalyst for Hydrocarbon Oxidation. Catalysts, 9, Article No. 226. https://doi.org/10.3390/catal9030226
|
[35]
|
Liu, L., Jia, J., Sun, T. and Zhang, H. (2018) A Facile Method for Scalable Preparation of Mesoporous Structured Smmno3 Perovskites Sheets for Efficient Catalytic Oxidation of Toluene. Materials Letters, 212, 107-110. https://doi.org/10.1016/j.matlet.2017.10.048
|
[36]
|
Guo, M., Liu, L., Gu, J., Zhang, H., Min, X., Liang, J., et al. (2021) Catalytic Performance Improvement of Volatile Organic Compounds Oxidation over MnO and GdMnO3 Composite Oxides from Spent Lithium-Ion Batteries: Effect of Acid Treatment. Chinese Journal of Chemical Engineering, 34, 278-288. https://doi.org/10.1016/j.cjche.2020.08.015
|
[37]
|
Bai, H., Wang, Z., Zhang, J., Wu, J., Yue, Y., Liu, Q., et al. (2021) Synthesis of a Perovskite-Type Catalyst from Cr Electroplating Sludge for Effective Catalytic Oxidization of Voc. Journal of Environmental Management, 294, Article ID: 113025. https://doi.org/10.1016/j.jenvman.2021.113025
|
[38]
|
Wang, W., Xu, M., Xu, X., Zhou, W. and Shao, Z. (2019) Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting. Angewandte Chemie International Edition, 59, 136-152. https://doi.org/10.1002/anie.201900292
|
[39]
|
Zhang, R., Shi, D., Liu, N., Cao, Y. and Chen, B. (2014) Mesoporous SBA-15 Promoted by 3d-Transition and Noble Metals for Catalytic Combustion of Acetonitrile. Applied Catalysis B: Environmental, 146, 79-93. https://doi.org/10.1016/j.apcatb.2013.03.028
|
[40]
|
Yadav, P.K., Kumari, S., Naveena, U., Deshpande, P.A. and Sharma, S. (2022) Insights into the Substitutional Chemistry of La1−xSrxCo1−yMyO3 (M = Pd, Ru, Rh, and Pt) Probed by in Situ DRIFTS and DFT Analysis of CO Oxidation. Applied Catalysis A: General, 643, Article ID: 118768. https://doi.org/10.1016/j.apcata.2022.118768
|
[41]
|
Onrubia-Calvo, J.A., Pereda-Ayo, B., De-La-Torre, U. and González-Velasco, J.R. (2017) Key Factors in Sr-Doped LaBO3 (B = Co or Mn) Perovskites for NO Oxidation in Efficient Diesel Exhaust Purification. Applied Catalysis B: Environmental, 213, 198-210. https://doi.org/10.1016/j.apcatb.2017.04.068
|
[42]
|
Guo, L., Bo, L., Li, Y., Jiang, Z., Tian, Y. and Li, X. (2021) Sr Doping Effect on the Structure Property and NO Oxidation Performance of Dual-Site Doped Perovskite La(Sr)Co(Fe)O3. Solid State Sciences, 113, Article ID: 106519. https://doi.org/10.1016/j.solidstatesciences.2020.106519
|
[43]
|
Rossetti, I., Buchneva, O., Biffi, C. and Rizza, R. (2009) Effect of Sulphur Poisoning on Perovskite Catalysts Prepared by Flame-Pyrolysis. Applied Catalysis B: Environmental, 89, 383-390. https://doi.org/10.1016/j.apcatb.2008.12.017
|
[44]
|
Wang, L., Wang, C., Xie, H., Zhan, W., Guo, Y. and Guo, Y. (2019) Catalytic Combustion of Vinyl Chloride over Sr Doped LaMnO3. Catalysis Today, 327, 190-195. https://doi.org/10.1016/j.cattod.2018.05.005
|
[45]
|
Xiao, G., Xin, S., Wang, H., Zhang, R., Wei, Q. and Lin, Y. (2019) Catalytic Oxidation of Styrene over Ce-Substituted La1–xCexMnO3 Catalysts. Industrial & Engineering Chemistry Research, 58, 5388-5396. https://doi.org/10.1021/acs.iecr.8b05674
|
[46]
|
Zhang, C., Hua, W., Wang, C., Guo, Y., Guo, Y., Lu, G., et al. (2013) The Effect of A-Site Substitution by Sr, Mg and Ce on the Catalytic Performance of LaMnO3 Catalysts for the Oxidation of Vinyl Chloride Emission. Applied Catalysis B: Environmental, 134, 310-315. https://doi.org/10.1016/j.apcatb.2013.01.031
|
[47]
|
Chen, H., Wei, G., Liang, X., Liu, P., He, H., Xi, Y., et al. (2019) The Distinct Effects of Substitution and Deposition of Ag in Perovskite LaCoO3 on the Thermally Catalytic Oxidation of Toluene. Applied Surface Science, 489, 905-912. https://doi.org/10.1016/j.apsusc.2019.06.009
|
[48]
|
Kucharczyk, B., Adamska, K., Tylus, W., Miśta, W., Szczygieł, B. and Winiarski, J. (2019) Effect of Silver Addition to LaFeO3 Perovskite on the Activity of Monolithic La1−xAgxFeO3 Perovskite Catalysts in Methane Hexane Oxidation. Catalysis Letters, 149, 1919-1933. https://doi.org/10.1007/s10562-019-02779-7
|
[49]
|
Utsumi, S., Vallejos-Burgos, F.E., Campos, C.M., García, X., Gordon, A.L., Pecchi, G., et al. (2007) Preparation and Characterization of Inexpensive Heterogeneous Catalysts for Air Pollution Control: Two Case Studies. Catalysis Today, 123, 208-217. https://doi.org/10.1016/j.cattod.2007.01.009
|
[50]
|
Merino, N., Barbero, B., Grange, P. and Cadus, L. (2005) LaCaCoO Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane. Journal of Catalysis, 231, 232-244. https://doi.org/10.1016/j.jcat.2005.01.003
|
[51]
|
Cui, X., Yang, H., Zhang, J., Wu, T., Zhao, P. and Guo, Q. (2021) Characterization and Performance of Ca-Substituted La1−xCaxCoO3−δ Perovskite for Efficient Catalytic Oxidation of Toluene. Catalysis Letters, 151, 3323-3333. https://doi.org/10.1007/s10562-021-03566-z
|
[52]
|
Chen, S., Wang, Y., Jia, A., Liu, H., Luo, M. and Lu, J. (2014) Enhanced Activity for Catalytic Oxidation of 1,2-Dichloroethane over Al-Substituted LaMnO3 Perovskite Catalysts. Applied Surface Science, 307, 178-188. https://doi.org/10.1016/j.apsusc.2014.04.012
|
[53]
|
Hu, J., Zhou, J., Zhang, T., Liu, S. and Du, K. (2022) Characterization and Performance of SmxA1-XMnO3 (A = Ce, Sr, Ca) Perovskite for Efficient Catalytic Oxidation of Toluene. Korean Journal of Chemical Engineering, 39, 3032-3038. https://doi.org/10.1007/s11814-022-1194-0
|
[54]
|
Zhao, Z., Dai, H., Deng, J., Du, Y., Liu, Y. and Zhang, L. (2012) Three-Dimensionally Ordered Macroporous La0.6Sr0.4FeO3−δ: High-Efficiency Catalysts for the Oxidative Removal of Toluene. Microporous and Mesoporous Materials, 163, 131-139. https://doi.org/10.1016/j.micromeso.2012.07.006
|
[55]
|
Ji, K., Dai, H., Deng, J., Jiang, H., Zhang, L., Zhang, H., et al. (2013) Catalytic Removal of Toluene over Three-Dimensionally Ordered Macroporous Eu1−xSrxFeO3. Chemical Engineering Journal, 214, 262-271. https://doi.org/10.1016/j.cej.2012.10.083
|
[56]
|
Heidinger, B., Royer, S., Giraudon, J., Gardoll, O., Alamdari, H. and Lamonier, J. (2020) Reactive Grinding Synthesis of La(Sr, Ce)CoO3 and Their Properties in Toluene Catalytic Total Oxidation. ChemCatChem, 12, 2271-2282. https://doi.org/10.1002/cctc.201902112
|
[57]
|
Kim, K., Koo, B., Jo, Y., Lee, S., Kim, J.K., Kim, B., et al. (2020) Control of Transition Metal-Oxygen Bond Strength Boosts the Redox Ex-Solution in a Perovskite Oxide Surface. Energy & Environmental Science, 13, 3404-3411. https://doi.org/10.1039/d0ee01308k
|
[58]
|
Hueso, J.L., Holgado, J.P., Pereñíguez, R., Gonzalez-DelaCruz, V.M. and Caballero, A. (2015) Structural and Chemical Reactivity Modifications of a Cobalt Perovskite Induced by Sr-Substitution. An in Situ XAS Study. Materials Chemistry and Physics, 151, 29-33. https://doi.org/10.1016/j.matchemphys.2014.11.015
|
[59]
|
Lv, C., Zhang, J., Yan, L., Chen, H. and Hu, M. (2022) Boosting Sulfur Tolerance and Catalytic Performance in Toluene Combustion via Enhanced-Mechanism of Ce-Fe Dopants Incorporation of LaCoO3 Perovskite. Journal of Environmental Chemical Engineering, 10, Article ID: 108372. https://doi.org/10.1016/j.jece.2022.108372
|
[60]
|
Liu, M., Yang, X., Tian, Z., Wang, H., Yin, L., Chen, J., et al. (2022) Insights into the Role of Strontium in Catalytic Combustion of Toluene over La1−xSrxCoO3 Perovskite Catalysts. Physical Chemistry Chemical Physics, 24, 3686-3694. https://doi.org/10.1039/d1cp04224f
|
[61]
|
Hosseini, S.A., Sadeghi, M.T., Alemi, A., Niaei, A., Salari, D. and Kafi-Ahmadi, L. (2010) Synthesis, Characterization, and Performance of LaZnxFe1−XO3 Perovskite Nanocatalysts for Toluene Combustion. Chinese Journal of Catalysis, 31, 747-750. https://doi.org/10.1016/s1872-2067(09)60083-8
|
[62]
|
Lv, C., Hu, M., Yuan, T., Yan, L. and Chen, H. (2022) Dopant-driven Tuning of Toluene Oxidation and Sulfur Resistance at the B-Site of LaCo1−xMxO3 (M = Fe, Cr, Cu) Perovskites. Catalysis Science & Technology, 12, 3670-3684. https://doi.org/10.1039/d2cy00476c
|
[63]
|
Qi, S., Zhang, W., Li, X., Wang, Q., Zhu, Z., Zhou, T., et al. (2022) Catalytic Oxidation of Toluene over B‐Site Doped La‐Based Perovskite LaNixB1−xO3 (B = Co, Cu) Catalysts. Environmental Progress & Sustainable Energy, 42, e13965. https://doi.org/10.1002/ep.13965
|
[64]
|
Suárez-Vázquez, S.I., Gil, S., García-Vargas, J.M., Cruz-López, A. and Giroir-Fendler, A. (2018) Catalytic Oxidation of Toluene by Srti1-XBxO3 (B = Cu and Mn) with Dendritic Morphology Synthesized by One Pot Hydrothermal Route. Applied Catalysis B: Environmental, 223, 201-208. https://doi.org/10.1016/j.apcatb.2017.04.042
|
[65]
|
Zhang, C., Wang, C., Zhan, W., Guo, Y., Guo, Y., Lu, G., et al. (2013) Catalytic Oxidation of Vinyl Chloride Emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) Catalysts. Applied Catalysis B: Environmental, 129, 509-516. https://doi.org/10.1016/j.apcatb.2012.09.056
|
[66]
|
Zhu, Y., Zhou, W., Sunarso, J., Zhong, Y. and Shao, Z. (2016) Phosphorus‐Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 26, 5862-5872. https://doi.org/10.1002/adfm.201601902
|
[67]
|
Luo, Y., Zheng, Y., Feng, X., Lin, D., Qian, Q., Wang, X., et al. (2020) Controllable P Doping of the LaCoO3 Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Applied Materials & Interfaces, 12, 23789-23799. https://doi.org/10.1021/acsami.0c01599
|
[68]
|
Zheng, Y., Chen, Y., Wu, E., Liu, X., Huang, B., Xue, H., et al. (2021) Amorphous Boron Dispersed in LaCoO3 with Large Oxygen Vacancies for Efficient Catalytic Propane Oxidation. Chemistry—A European Journal, 27, 4738-4745. https://doi.org/10.1002/chem.202004848
|
[69]
|
Fang, F., Zhao, P., Feng, N., Chen, C., Li, X., Liu, G., et al. (2019) Construction of a Hollow Structure in La0.9K0.1CoO3−δ Nanofibers via Grain Size Control by Sr Substitution with an Enhanced Catalytic Performance for Soot Removal. Catalysis Science & Technology, 9, 4938-4951. https://doi.org/10.1039/c9cy01332f
|
[70]
|
Iqbal, R.M., Nurherdiana, S.D., Sahasrikirana, M.S., Harmelia, L., Utomo, W.P., Setyaningsih, E.P. and Fansuri, H. (2018) The Compatibility of NiO, CeO2 and NiO-CeO2 as a Coating on La0.6Sr0.4Co0.2Fe0.8O3−δ, La0.7Sr0.3Co0.2Fe0.8O3−δ and La0.7Sr0.3Mn0.3O3−δ Ceramic Membranes and Their Mechanical Properties. IOP Conference Series: Materials Science and Engineering, 367, Article ID: 012032.
|
[71]
|
Dhongde, V., Singh, A., Kala, J., Anjum, U., Haider, M.A. and Basu, S. (2022) Radio-Frequency Magnetron Sputtered Thin-Film La0.5Sr0.5Co0.95Nb0.05O3-Δ Perovskite Electrodes for Intermediate Temperature Symmetric Solid Oxide Fuel Cell (IT-SSOFC). Materials Reports: Energy, 2, Article ID: 100095. https://doi.org/10.1016/j.matre.2022.100095
|
[72]
|
Yuan, B., Tao, Y., Qi, S., Xie, A. and Luo, S. (2022) Effect of A, B-Site Cation on the Catalytic Activity of La1−xAxMn1-YByO3 (A = Ce, B = Ni) Perovskite-Type Oxides for Toluene Oxidation. Environmental Science and Pollution Research, 30, 36993-37003. https://doi.org/10.1007/s11356-022-24916-3
|
[73]
|
He, C.B., Pan, K.L. and Chang, M.B. (2018) Catalytic Oxidation of Trichloroethylene from Gas Streams by Perovskite-Type Catalysts. Environmental Science and Pollution Research, 25, 11584-11594. https://doi.org/10.1007/s11356-018-1440-5
|
[74]
|
Rousseau, S., Loridant, S., Delichere, P., Boreave, A., Deloume, J.P. and Vernoux, P. (2009) La1−xSrxCO1−xFeO3 Perovskites Prepared by Sol-Gel Method: Characterization and Relationships with Catalytic Properties for Total Oxidation of Toluene. Applied Catalysis B: Environmental, 88, 438-447. https://doi.org/10.1016/j.apcatb.2008.10.022
|
[75]
|
Levasseur, B. and Kaliaguine, S. (2009) Effects of Iron and Cerium in La1−xCexCO1−xFeO3 Perovskites as Catalysts for VOC Oxidation. Applied Catalysis B: Environmental, 88, 305-314. https://doi.org/10.1016/j.apcatb.2008.11.007
|
[76]
|
Deng, J., Dai, H., Jiang, H., Zhang, L., Wang, G., He, H., et al. (2010) Hydrothermal Fabrication and Catalytic Properties of La1−x SrxM1−yFeyO3 (M = Mn, Co) That Are Highly Active for the Removal of Toluene. Environmental Science & Technology, 44, 2618-2623. https://doi.org/10.1021/es9031997
|
[77]
|
Weng, X., Wang, W.L., Meng, Q. and Wu, Z. (2018) An Ultrafast Approach for the Syntheses of Defective Nanosized Lanthanide Perovskites for Catalytic Toluene Oxidation. Catalysis Science & Technology, 8, 4364-4372. https://doi.org/10.1039/c8cy01000e
|
[78]
|
Oskoui, S.A., Niaei, A., Tseng, H., Salari, D., Izadkhah, B. and Hosseini, S.A. (2013) Modeling Preparation Condition and Composition-Activity Relationship of Perovskite-Type LaxSr1–xFeyCo1–yO3 Nano Catalyst. ACS Combinatorial Science, 15, 609-621. https://doi.org/10.1021/co400017r
|
[79]
|
Li, Y., Liu, S., Yin, K., Jia, D., Sun, Y., Zhang, X., et al. (2023) Understanding the Mechanisms of Catalytic Enhancement of La-Sr-Co-Fe-O Perovskite-Type Oxides for Efficient Toluene Combustion. Journal of Environmental Chemical Engineering, 11, Article ID: 109050. https://doi.org/10.1016/j.jece.2022.109050
|
[80]
|
Einaga, H., Hyodo, S. and Teraoka, Y. (2010) Complete Oxidation of Benzene over Perovskite-Type Oxide Catalysts. Topics in Catalysis, 53, 629-634. https://doi.org/10.1007/s11244-010-9497-5
|
[81]
|
Liu, G., Li, J., Yang, K., Tang, W., Liu, H., Yang, J., et al. (2015) Effects of Cerium Incorporation on the Catalytic Oxidation of Benzene over Flame-Made Perovskite La1−xCexMnO3 Catalysts. Particuology, 19, 60-68. https://doi.org/10.1016/j.partic.2014.07.001
|
[82]
|
Tarjomannejad, A., Farzi, A., Niaei, A. and Salari, D. (2016) An Experimental and Kinetic Study of Toluene Oxidation over LaMn1−xBXO3 and La0.8A0.2Mn0.3B0.7O3 (A = Sr, Ce and B = Cu, Fe) Nano-Perovskite Catalysts. Korean Journal of Chemical Engineering, 33, 2628-2637. https://doi.org/10.1007/s11814-016-0108-4
|
[83]
|
Chen, J., Chen, X., Li, N., Liang, Y., Yu, C., Yao, L., et al. (2021) Enhanced Photocatalytic Activity of La1-XSrxCoO3/Ag3PO4 Induced by the Synergistic Effect of Doping and Heterojunction. Ceramics International, 47, 19923-19933. https://doi.org/10.1016/j.ceramint.2021.04.006
|
[84]
|
Giraudon, J., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukaïs, A., Lamonier, J., et al. (2007) Studies of the Activation Process over Pd Perovskite-Type Oxides Used for Catalytic Oxidation of Toluene. Applied Catalysis B: Environmental, 75, 157-166. https://doi.org/10.1016/j.apcatb.2007.04.005
|
[85]
|
Liu, Y., Dai, H., Deng, J., Zhang, L., Gao, B., Wang, Y., et al. (2013) PMMA-Templating Generation and High Catalytic Performance of Chain-Like Ordered Macroporous LaMnO3 Supported Gold Nanocatalysts for the Oxidation of Carbon Monoxide and Toluene. Applied Catalysis B: Environmental, 140, 317-326. https://doi.org/10.1016/j.apcatb.2013.04.025
|
[86]
|
Liu, Y., Dai, H., Deng, J., Li, X., Wang, Y., Arandiyan, H., et al. (2013) Au/3DOM La0.6Sr0.4MnO3: Highly Active Nanocatalysts for the Oxidation of Carbon Monoxide and Toluene. Journal of Catalysis, 305, 146-153. https://doi.org/10.1016/j.jcat.2013.04.025
|
[87]
|
Li, X., Chen, D., Li, N., Xu, Q., Li, H., He, J., et al. (2021) Highly Efficient Pd Catalysts Loaded on La1−xSrxMnO3 Perovskite Nanotube Support for Low-Temperature Toluene Oxidation. Journal of Alloys and Compounds, 871, Article ID: 159575. https://doi.org/10.1016/j.jallcom.2021.159575
|
[88]
|
Liotta, L.F. (2010) Catalytic Oxidation of Volatile Organic Compounds on Supported Noble Metals. Applied Catalysis B: Environmental, 100, 403-412. https://doi.org/10.1016/j.apcatb.2010.08.023
|
[89]
|
Liu, P., Liao, Y., Li, J., Chen, L., Fu, M., Wu, P., et al. (2021) Insight into the Effect of Manganese Substitution on Mesoporous Hollow Spinel Cobalt Oxides for Catalytic Oxidation of Toluene. Journal of Colloid and Interface Science, 594, 713-726. https://doi.org/10.1016/j.jcis.2021.03.093
|