钙钛矿氧化物催化氧化VOCs的研究进展
Recent Advances in Catalytic Oxidation of VOCs Using Perovskite Oxide
DOI: 10.12677/aac.2024.144033, PDF, HTML, XML,    科研立项经费支持
作者: 安则瑶, 张文静, 朱薇丽:南通大学化学化工学院,江苏 南通;刘敬印, 刘立忠*:南通大学化学化工学院,江苏 南通;南通大学碳中和技术研究院,江苏 南通
关键词: 钙钛矿氧化物催化氧化挥发性有机物反应机理Perovskite Oxides Catalytic Oxidation Volatile Organic Compounds Reaction Mechanism
摘要: 钙钛矿氧化物(ABO3)催化剂具有高活性和热稳定性,以及可调节的元素组成和可调控的氧化还原性质,使其性能得到改善,因此是VOCs催化氧化领域最具竞争力的材料之一。尽管ABO3催化剂具有广泛的应用潜力,但其使用受到失活和烧结敏感性的限制,这可能会影响其长期性能,从而限制其在工业中的使用。本文从非掺杂、掺杂(A位点、B位点和A/B位点掺杂)和负载型ABO3三个方面总结了当前研究的相关进展。与非掺杂ABO3氧化物相比,掺杂型催化剂表现出更高的活性和稳定性。此外,本文提出了ABO3氧化物催化氧化VOCs存在的三种机理。最后,对ABO3催化剂催化VOCs燃烧的问题及展望进行了探讨,为进一步设计新型高效低温催化剂提供了思路。
Abstract: Perovskite oxide (ABO3) catalysts are among the most competitive substances in the domain of volatile organic compounds (VOCs) catalytic oxidation because of their high activity, thermal stability, adjustable elemental composition and flexible structure. Despite the broad range of potential applications of ABO3 catalysts, their utilization is constrained by inactivation and sintering susceptibility, which could impact their long-term performance and thereby limit their application in industry. In this article, the contemporary research progress is summarized from three aspects: non-doping, doping (doping at A site, B site and A/B site) and supported ABO3. Compared with undoped ABO3 oxides, doped catalysts demonstrated higher activity and stability. Three mechanisms of VOCs catalytic oxidation were put forward. Ultimately, the problems and prospects of VOCs combustion catalyzed by ABO3 catalysts were discussed, which provided insights for the further design of new high-efficiency and low-temperature catalysts.
文章引用:安则瑶, 张文静, 朱薇丽, 刘敬印, 刘立忠. 钙钛矿氧化物催化氧化VOCs的研究进展[J]. 分析化学进展, 2024, 14(4): 287-302. https://doi.org/10.12677/aac.2024.144033

1. 引言

挥发性有机化合物(VOCs)是一种在室温和大气压下的沸点为50℃~260℃的空气污染物,对自然环境具有严重威胁[1]。VOCs排放后与氮氧化物等其他气体反应,会形成二次污染物,产生臭氧和PM2.5 (直径通常为2.5 μm及以下的可吸入颗粒物),对空气质量造成负面影响[2]。此外,部分VOCs还会参与化学反应,破坏大气中的臭氧层,增加紫外线的穿透量,加剧全球变暖问题。除了是臭氧、PM2.5等污染物的常见前体外,VOCs对人类构成严重的健康风险,具有致癌性和致畸性[3]。随着工业化和经济增长的加速,近年来中国挥发性有机化合物的年排放量急剧增加。例如,2015年中国的挥发性有机化合物排放量接近3112万吨[4]。如图1所示,工业生产(石化、化学工程、涂料和印刷)占当年中国挥发性有机化合物人为来源的43%。由于挥发性有机化合物对环境和人类健康的极端不利影响,以及挥发性有机化合物排放量的不断增长,世界各国政府制定了越来越严格的排放标准来限制各行各业产生的挥发性有机化合物[5]。因此,在工业和研究领域,通过开发实用的环境修复工具和技术来有效去除挥发性有机化合物面临着巨大的挑战。

Figure 1. Classification of VOCs degradation method

1. 2015年中国不同来源的VOCs排放

根据生产原理和理化性质,VOCs减排技术分为两大类。一是回收浓缩技术,目前最常用的技术有吸附[6]、膜分离[7]和冷凝[8]。二是降解技术,包括直接焚烧[9]、催化氧化[10]和生物降解[11]。由于回收浓缩技术不能直接降解VOCs,并且具有处理过程繁杂,处理成本高,效率低,还可能会造成二次污染等缺点,从而限制了回收浓缩技术的应用[12]-[14]。直接焚烧可以处理大多数挥发性有机化合物,但不完全的热燃烧会在焚烧炉烟气中产生不需要的副产物,如二噁英和一氧化碳[15]。生物处理具有特异性高、降解时间长、降解效率低等缺点,因此限制了其广泛应用[4]。相比之下,催化氧化能够在相对较低的温度(200℃~500℃)下完全转化VOCs,并且在最佳催化条件下,VOCs可以完全矿化为无毒无害的CO2和H2O,因此催化氧化法被认为是去除VOCs的最有效方法[16]

稳定高效的催化剂是催化燃烧的核心。已经报道了各种催化剂,包括贵金属基和非贵金属氧化物催化剂。贵金属催化剂具有低温活性好、稳定性高、耐腐蚀、再生性能好、选择性高等优点[17],但由于贵金属催化剂价格相对昂贵且容易因烧结或中毒而失活的缺点,极大地限制了其实际应用[18]。非贵金属催化剂因其表面积大、成本低、来源广、易于合成、抗毒性高等优点而被广泛应用[19]。在非贵金属催化剂体系中,钙钛矿氧化物因其在低温下具有高活性、高稳定性和易于调节的氧化还原特性而备受关注[20] [21]。与许多贵金属基催化剂相比,钙钛矿氧化物具有较大的比表面积,使其具有高活性和成本效益[22]。金属氧化物钙钛矿遵循通式ABO3,其中A代表稀土(La3+、Sr2+、Ce4+、Sm2+、Gd2+等)、碱金属离子(K+、Rb+、Cs+等)或碱土离子(Be2+、Mg2+、Ca2+、Ba2+等),B代表过渡金属离子(Co2+、Mn3+、Ni3+和Fe2+等) [23]。ABO3的三种典型结构如图2。值得注意的是,用具有相似半径的阳离子取代A位或B位点的阳离子可以产生缺陷和氧空位以提高催化性能[24]。本文综述了ABO3基催化剂催化氧化VOCs的最新进展,评估了ABO3的催化性能,包括非掺杂、掺杂(A位点、B位点和A/B位点掺杂)和负载型ABO3,总结了VOCs可能的氧化机理。

Figure 2. Three typical structures of ABO3-type perovskites

2. 型钙钛矿的三种典型结构

2. 钙钛矿氧化物催化氧化VOCs

2.1. 非掺杂型钙钛矿氧化物

在非掺杂型钙钛矿,La基ABO3因其结构稳定性和成分多功能性而被广泛研究。La基ABO3是各种反应的优良催化剂,主要用于醛和酮的还原,但也用于VOCs的氧化。Spinicci等人研究了使用LaMnO3和LaCoO3氧化苯的过程,前者具有更高的活性(T50%相差20℃)。氧化还原分析证实,LaCoO3中的Co完全处于Co3+,而LaMnO3除了Mn3+外还含有35%的Mn4+。因此,B位点的金属离子和价态对催化性能有显著影响[25]。Liu等人使用柠檬酸溶胶凝胶(SG)、自熔聚合(SMP)、浸渍(IM)和共沉淀(CP)技术合成了SmMnO3 (SMO),并将钙钛矿应用于甲苯的氧化,催化剂活性遵循SMO-SMP > SMO-SG > SMO-IM > SMO-CP趋势,与催化剂的比表面积和表面吸附氧的浓度一致[26]。Rezlescu等人比较了使用溶胶–凝胶自燃法制备的GdAlO3、SrMnO3、SrCoO3和MnFeO3完全催化氧化苯的活性,SrMnO3在低温下表现出最高的催化活性。催化活性的差异归因于所涉及的氧物种的不同反应性和钙钛矿表面活性位点数量的变化[27]。使用酸或碱溶液去除A位阳离子可以选择性地暴露额外的B位点并增加其表面积,进而增强其活性,Si等采用硝酸选择性地去除LaMnO3中过量的La,并分析其催化功能。酸处理导致La/Mn降低,Mn4+/Mn3+增高,表面晶格氧和吸附氧(Olatt/Oads)的比例增加,这些变化丰富了氧物种并提高了晶格氧迁移率,使得钙钛矿催化剂催化氧化性能VOCs性能显著提高[28]。如图3所示,Li等利用酸性高锰酸钾对催化剂表面进行处理,使LaMnO3暴露了更多的B位点,促进了B位点的Mn3+氧化为Mn4+。该催化剂对甲苯的低温活性进行评估发现,MnO2/LaMnO3在234℃下去除甲苯的效率为90%。样品显示出更大的氧空位密度和更多的Mn4+含量,这是其高活性的根本原因[29]表1概述了过去二十年中非掺杂型ABO3化合物催化氧化甲苯的性能评估。LaCoO3、LaMnO3和LaFeO3已被广泛研究,其他非掺杂ABO3物种的进一步开发似乎值得进一步开发。从表1可以看出,非掺杂型ABO3的转化温度和性能各不相同,主要受风速、苯和甲苯浓度以及其他反应条件的影响。

Table 1. Non-doped ABO3 evaluated in the catalytic oxidation of toluene

1. 非掺杂型ABO3催化氧化甲苯性能

Samples

Conc.(ppm)

WHSV/(mL/(g·h))

T50% (˚C)

T90% (˚C)

Ref.

SmMnO3

1000

48,000

223

258

[26]

LaFeO3

1000

20,000

243

[27]

LaFeO3

1000

20,000

308.1

333.3

[30]

LaCoO3

500

19,200

275

[31]

LaNiO3

4000

47,000

297

[32]

LaMnO3-SG

1000

15,000

204

224

[33]

LaMnO3-GC

1000

15,000

245

274

[33]

LaMnO3-CP

1000

15,000

214

257

[33]

LaMnO3

1000

60,000

229

298

[34]

SmMnO3

1000

24,000

<240

[35]

GdMnO3

1000

60,000

244

276

[36]

LaCrO3

1000

9600

352

445

[37]

Figure 3. Synthetic route of the MnO2/LaMnO3 sample

3. MnO2/LaMnO3样品的合成路线

2.2. 掺杂型钙钛矿氧化物

可以通过半径相似的离子替代A、B和O位点的阳离子来达到提高催化剂催化活性的目的[38]。催化活性主要归因于B位阳离子,A位阳离子起稳定催化剂结构的作用[39]。然而,用其他金属离子取代A位阳离子可能会导致B位阳离子的氧化态、氧空位和阳离子缺陷密度的改变,最终影响催化性能。因此,ABO3的催化活性可以通过部分或同时取代A和B位点阳离子来改变[40]表2总结了在VOCs催化氧化中评估的所有掺杂型ABO3

Table 2. Doped ABO3 evaluated in the catalytic oxidation of toluene

2. 掺杂型ABO3催化氧化甲苯性能

Samples

Conc.(ppm)

WHSV/(mL/(g·h))

T50% (˚C)

T90% (˚C)

Ref.

La0.8Sr0.2MnO3-δ

500

20,000

520

-

[80]

La0.8Ca0.2FeO3

4000

47,000

289

-

[32]

La0.8Ca0.2NiO3

4000

47,000

333

-

[32]

La0.67Ca0.33CrO3

1000

9600

302

381

[37]

La0.8Ca0.2CrO3

1000

9600

354

424

[37]

La0.5Ca0.5CrO3

1000

9600

295

374

[37]

La1-xCexMnO3

1000

60,000

-

450

[81]

LaNi0.75Co0.25O3

1000

18,000

-

225

[63]

La0.5Sr0.5Co0.8Fe0.2O3-δ

1000

30,000

251

270

[79]

La0.8Ce0.2Mn0.8Ni0.2O3

1000

18,000

-

295

[72]

La0.7Sr0.3Co0.8Fe0.2O3

500

5700

>243

-

[74]

La0.9Sr0.1Mn0.9Fe0.1O3

500

30,000

213

236

[77]

La0.8Ce0.2Mn0.3Fe0.7O3

1000

6000

179

202

[82]

La0.6Ce0.4Co0.6Fe0.4O3

1000

60,000

190

318

[59]

La0.95Ag0.05CoO3

1000

30,000

238

268

[47]

2.2.1. A位阳离子掺杂

ABO3的A位离子通过控制活性B位组分的分散状态和原子价,在稳定结构方面起着关键作用。尽管A位离子很少直接参与化学反应,但A位离子的取代间接影响B位离子的价态[41]。它们还可以引入晶格缺陷并修饰晶格氧的化学位点,从而影响B位的反应性[42]

不同Sr掺杂的La1-xSrxMnO3 (x = 0, 0.1, 0.2)钙钛矿氧化物有效地提高了甲烷氧化的催化性能,并通过在催化剂表面形成稳定的硫酸盐来增强硫耐受性,La0.8Sr0.2MnO3催化剂的催化性能最好[43]。同样,采用溶胶–凝胶法合成了Sr掺杂的LaMnO3钙钛矿催化剂,由于其在较高Mn4+浓度下具有更高的氧活化能力和更好的氧化还原性能,因而作为氯乙烯燃烧的有效催化剂。另外,碱性较强的Sr离子倾向于形成Sr-Cl键,保持活性Mn物种不含氯[44]。Ce掺杂的La1-xCexMnO3 (x = 0~0.5)钙钛矿有效地用于苯乙烯氧化,并且由于Mn离子的化合价和表面积的变化,催化活性增加[45]。另一种A位掺杂的La0.8A0.2MnO3 (A = Mg, Ce, Sr)用于氯乙烯催化氧化,La0.8Ce0.2MnO3由于在这种较大的催化剂表面上具有更多的吸附氧而显示出最高的活性[46]。钙钛矿催化剂通过在催化剂中引入贵金属,有效地增强了钙钛矿催化剂对VOCs催化氧化的活性,许多研究都在钙钛矿的A位掺杂贵金属。溶胶–凝胶法合成的Ag掺杂的La1xAgxCoO3 (x = 0~0.05)钙钛矿比浸渍法制备的催化剂对甲苯具有更好的氧化活性[47]。另一种Ag掺杂的La1xAgxFeO3 (x = 0~0.25)钙钛矿被用作甲烷和己烷氧化催化剂,掺杂x ≥ 0.05时,甲烷氧化活性更高,而掺杂x ≥ 0.1时,己烷氧化活性最高[48]。由于电子性质的改变,Ca2+取代的LaFeO3和LaNiO3对乙醇和乙酸乙酯燃烧的催化活性有了显著提高[49]。同样,由于晶体结构的改变,Ca2+掺杂的LaCoO3也显示出更好的丙烷氧化活性[50]。同样的结果也被发现用于甲苯氧化的La1-xCaxCoO3催化剂和1,2-二氯乙烷氧化的La0.8Al0.2MnO3催化剂[51] [52]。通过溶胶–凝胶法合成了SmMnO3、Sm0.8A0.2MnO3 (A = Ce、Sr和Ca)和Sm1-xCaxMnO3 (x = 0.0, 0.1, 0.2, 0.3),并在固定床反应器中评估甲苯的催化氧化。Ce4+和Ca2+的取代对甲苯氧化的催化性能有积极影响,而Sr2+的取代则有负面影响(图4(a)) [53]。Zhao等人制备了A位取代La0.6Sr0.4FeO3δ,在甲苯氧化中表现出优异的催化性能(T10% = 54℃, T50% = 225℃, T90% = 280℃) [54]。La0.6Sr0.4FeO3δ催化剂的高性能(图4(b))与其较大的比表面积有关。受这项工作的启发,Ji等人用Eu2+代替了Sr2+,得到了Eu1-xSrxFeO3 (x = 0和0.4),其显示出更高的表面氧浓度和更好的甲苯氧化活性(图4(c)) [55]。Heidinger等人探索了Sr2+和Ce4+取代LaCoO3对甲苯的氧化性能,Sr2+取代LaCoO3显著改变了Co3+的还原和氧解吸性能,催化剂的稳定性得到改善,而Ce4+取代的影响有限(图4(d)) [56]

Figure 4. (a) Performance of SmxA1-xMnO3 (A = Ce, Sr, and Ca) perovskite for efficient catalytic oxidation of toluene; (b) Toluene conversion of the La0.6Sr0.4FeO3-𝛿 catalysts; (c) Toluene conversion and the corresponding reaction rate versus reaction temperature catalyzed by Eu1-xSrxFeO3-bulk, 3D ordered macroporous materials (3DOMs)Eu1-xSrxFeO3, and 3DOM Eu1-xSrxFeO3 catalysts; (d) La (Sr and Ce) CoO3 and their properties in toluene catalytic total oxidation

4. (a) SmxA1xMnO3 (A = Ce, Sr, Ca)钙钛矿对甲苯的高效催化氧化性能;(b) La0.6Sr0.4FeO3𝛿催化甲苯转化率;(c) Eu1xSrxFeO3块体、3D有序大孔材料(3DOM) Eu1xSrxFeO3和3DOM Eu1xSrxFeO3催化剂催化甲苯转化率及其反应速率与反应温度的关系;(d) La (Sr和Ce) CoO3及其在甲苯催化全氧化中的性能

2.2.2. B位阳离子掺杂

钙钛矿的物理性质和稳定性主要取决于B位金属离子,B位金属离子对VOCs去除的催化效率也有很大影响。因此,一些研究人员试图通过在B位掺杂具有不同氧化态的过渡金属(Fe、Mn、Cu、Ni和Co)来提高钙钛矿催化剂去除VOCs的催化效率。此外,与A位点离子相比,ABO3中的B位点取代更加复杂,其催化活性由B位点过量金属阳离子的性质决定[57]。B位过渡金属离子表现出广泛的氧化态,增加了其取代效应的复杂性,超过了A位离子[58]

使用热液合成的SrTi0.86Mn0.14O3和SrTi0.89Cu0.11O3进行甲苯氧化,结果表明,由于表面吸附氧和晶格氧(Oads/Olatt)的比例增加,在Mn掺杂的情况下,催化活性增加[59]。Alvarez-Galvan等报道,LaBO3 (B = Ni, Co, Cr, Mn)钙钛矿可有效用于甲基乙基酮(MEK)氧化,Mn和Co是作为替换离子首选[60]。Hosseini等人合成了纳米结构的LaFeO3和LaZnxFe1-xO3 (x = 0.01, 0.05, 0.1, 0.2, 0.3)钙钛矿,并评估了它们在甲苯的催化氧化中的作用(图5(a))。表征数据显示,当x ≤ 0.1时,Zn完全插入到LaFeO3中。但在x > 0.1时,ZnO发生了一定程度的偏析。催化活性随着Zn含量的增加而增加,部分原因是ZnO的存在,ZnO的比例影响催化剂的氧活化能力和反应活性[61]。Lv等人研究了LaCo1xMxO3 (M = Fe、Cr和Cu)在相同条件下的催化性能,并观察到在ABO3的B位点引入适当比例的特定金属阳离子可以提高催化活性,主要是通过改变B位点阳离子的价态和氧空位含量(图5(b)图5(c)) [62]。Qi发现在LaNiO3的B位点掺杂少量Co3+显著增强了甲苯的催化氧化性能,而用Cu2+取代Ni3+并没有提高活性(图5(d)图5(e))。在所有测试的催化剂中,LaNi0.75Co0.25O3表现出最高的活性,能够在相对较低的温度(T90% = 225℃)下进行甲苯氧化[63]

Figure 5. (a) Performance of LaMnO3 perovskites in the catalytic oxidation of toluene; (b), (c) Catalytic performance of LaCo1xMxO3 (M = Fe, Cr, and Cu), LaNixB1xO3 (B = Co and Cu); (d) (e) LaMnO3 (B = Co and Cu); (f) Catalytic oxidation of toluene using SrTi1xBxO3 (B = Cu and Mn)

5. (a) LaMnO3钙钛矿在甲苯催化氧化中的性能;(b) (c) LaCo1xMxO3 (M = Fe, Cr和Cu),LaNixB1xO3 (b = Co和Cu)的催化性能;(d) (e) LaMnO3 (B = Co和Cu);(f) SrTi1xBxO3 (B = Cu和Mn)催化氧化甲苯

除催化活性外,B位阳离子还与钙钛矿的耐久性和对杂质(潜在催化剂毒物)的耐受性密切相关。Vazquez等人探讨了SrTiO3中B位阳离子对甲苯催化氧化性能的影响(图5(f)) [64]。金属掺杂剂的添加确保了在三个催化循环和寿命测试中具有良好的稳定性。然而,在掺杂Cu的催化剂表面观察到CuO沉积。将Mn4+掺入SrTiO3的Ti4+位点可提高Oads/Olatt的比值和催化性能。值得注意的是,在350℃以下的温度下,掺杂Mn4+和Cu2+的SrTi1xBxO3对甲苯完全转化为CO2的催化活性最高。Zhang等研究了B位点掺杂的LaB0.2Mn0.8O3 (B = Fe, Ni, Co)钙钛矿对氯乙烯氧化的作用,结果表明,Ni掺杂催化剂具有最高的氧迁移率、还原性和催化活性[65]。一些非金属元素也被用作钙钛矿结构稳定性和导电性提高的掺杂剂[66]。定量(x = 0.03)的磷掺杂LaCo1xPxO3 (x = 0~0.05)催化剂通过增加表面活性氧有效地提高了丙烷催化氧化的效率[67]。Zheng等报道,B掺杂的LaCo0.93B0.07O3钙钛矿由于存在更多的活性位点和更好的还原性,对氧化丙烷表现出最佳的催化性能[68]。有趣的是,这种非金属掺杂钙钛矿催化剂具有出色的热稳定性,可用于工业上VOCs燃烧。

2.2.3. A/B位阳离子掺杂

A位点和B位点同时掺杂或共掺杂方法也被广泛用于制备有效的钙钛矿作为去除VOCs的催化剂。ABO3的A位阳离子间接影响B位离子的价态和催化剂内的氧空位,导致B位离子的电子态和B-O键长的变化,其中B位点阳离子在氧化反应中起活性催化中心的作用[69] [70]。此外,共掺杂可以同时实现ABO3的结构和电子性能的调控。因此,可以采用A位点和B位点离子的部分取代来改善ABO3的催化性能[71]。Yuan等人研究了La1xCexMn1-yNiyO3钙钛矿中掺杂Ce4+和Ni3+对催化甲苯氧化的影响,其中La0.8Ce0.2Mn0.8Ni0.2O3对甲苯氧化的转化率最高(图6(a)图6(b)) [72]。XPS分析表明,La0.8Ce0.2Mn0.8Ni0.2O3具有较高的晶格氧含量以及较低的氧化还原起始温度,都有助于甲苯的催化氧化(图6(c)~(e))。A位Ce和B位Ni共掺杂La0.8Ce0.2Mn0.8Ni0.2O3催化剂由于比表面积、Mn4+/Mn3+比和活性氧含量的增大,对三氯乙烯(TCE)表现出最高的催化活性[73]。同样,La0.7Sr0.3Co0.8Fe0.2O3钙钛矿由于形态变化和粒径减小而显示出显著增加的甲苯氧化活性[74]。Deng等报道了Ce、Fe共掺杂La1-yCeyCo1-xFexO3 (x = 0~1.0; y = 0~0.1)催化剂,用于CH3OH和CH4氧化[75]。对水热法制备的La0.6Sr0.4Co1-yFeyO3和La0.6Sr0.4Mn1-yFeyO3(y = 0, 0.1, 1.0)进行甲苯氧化测试,发现La0.6Sr0.4Co0.9Fe0.1O3通过形成Fe3+-O-Fe4+表现出最高的活性[76]。Fe3+和Sr2+共掺杂La0.9Sr0.1Mn0.9Fe0.1O3催化剂的LaMnO3表现出与某些贵金属基催化剂相似的甲苯氧化活性[77]

Figure 6. (a) Catalytic activity of La1-xCexMnO3 perovskites (x = 0, 0.2, 0.4, and 0.6) and (b) LaNiO3, La0.8Ce0.2Mn1yNiyO3 (y = 0, 0.2, 0.4, and 0.6). (c) H2-TPR of LMO and La0.8Ce0.2MnO3, and (d) LaNiO3 and La0.8Ce0.2Mn0.8Ni0.2O3. (e) O 1s analysis of LMO and La0.8Ce0.2Mn0.8Ni0.2O3

6. (a) La1-xCexMnO3钙钛矿的催化活性(x = 0, 0.2, 0.4和0.6)和(b) LaNiO3,La0.8Ce0.2Mn1yNiyO3 (y = 0, 0.2, 0.4和0.6);(c) LMO和La0.8Ce0.2MnO3的H2-TPR;(d) LaNiO3和La0.8Ce0.2Mn0.8Ni0.2O3;(e) LMO和La0.8Ce0.2Mn0.8Ni0.2O3的O1s分析

Oskoui等人利用人工神经网络模拟了甲苯氧化催化性能与催化参数(La的摩尔分数、Fe的摩尔分数、煅烧温度和前驱体溶液中柠檬酸与总硝酸盐的摩尔比)之间的关系,并建立了LaxSr1-xFeyCo1yO3催化剂。双掺杂La0.9Sr0.1Fe0.5Co0.5O3在总转化温度(Tc) = 700℃和800℃,La0.9Sr0.1Fe0.82Co0.18O3在Tc = 700℃,La0.8Sr0.2Fe0.66Co0.34O3在Tc = 650℃时实现了甲苯100%转化。A/B取代对LaxSr1xFeyCo1yO3催化剂催化性能有很大影响[78]。Li等人采用固相研磨法制备了La1xSrxCo1yFeyO3钙钛矿,并对其甲苯氧化催化性能进行了评价。La0.5Sr0.5Co0.8Fe0.2O3𝛿(LSCF)在270℃时表现出显著的催化活性,这是由于A/B位点掺杂、氧空位富集和晶格氧激活提高了氧化还原能力[79]

2.3. 负载型钙钛矿氧化物

将贵金属纳米颗粒掺负载到ABO3是提高其催化性能的有效方法[83]。Giraudon等人使用氢还原煅烧法将Pd纳米颗粒负载到ABO3表面,并研究了Pd/LaBO3 (B = Co, Fe, Mn和Ni)在甲苯氧化中的催化活性,观察到以下趋势:Pd/LaFeO3 > Pd/LaMnO3-δ > Pd/LaCoO3 > Pd/LaNiO3 [84]。Pd/LaFeO3具有较高的甲苯氧化活性,这是由于其煅烧量较低,且无论气流性质如何,钙钛矿晶格都具有显著的高稳定性,这使得Pt在不同的氧化过程阶段保持相同的分散性,并且在氧化条件下保持稳定。相反,其他钙钛矿晶格的相变导致Pt颗粒尺寸增加,被认为是较低活性的原因。Dai等人制备了具有链状有序大孔结构的LaMnO3和xAu/LaMnO3 (x = 1.4, 3.1和4.9 wt%),后者表面散布着Au纳米颗粒[85]。在复合材料中,4.9 Au/LaMnO3表现出最高的催化活性,对甲苯氧化的T50%和T90%分别达到201℃和226℃。高催化活性是由于Au和LaMnO3载体之间的强相互作用导致的高表面积和高负载浓度,增强了低温还原性。同样,Dai等人制备了3DOM La0.6Sr0.4MnO3(LSMO)及其xAu/LSMO(x = 3.4~7.9 wt%)催化剂[86]。6.4 Au/LSMO表现出最佳的催化活性,在空间速度(SV) = 20,000 mL∙g1∙h1时,甲苯氧化的T50%和T90%值分别达到150和170℃。催化剂的高活性与较高浓度的表面吸附氧、良好的低温还原性以及Au与LSMO之间的强相互作用有关。Chen等人制备了Pd/La0.8Ce0.2MnO3催化剂,由于ZSM-5载体的酸度较高,因此使用Pd/La0.8Ce0.2MnO3/ZSM-5测试了氧化甲苯的最佳活性。Pt在La0.8Ce0.2MnO3表面高度分散,样品氧化甲苯的T50%为112℃,T90%为227℃ [87]。Pd-LaFeO3显著的催化活性在一定程度上归因于Pd分别在氧化和还原条件下进出钙钛矿晶格的可逆运动,有效地抑制了Pd的烧结和胶连。

3. 反应机理

ABO3氧化物催化剂作为一种优质的热催化材料,其催化降解VOCs的机理得到了广泛的研究。由于VOCs和催化剂的种类繁多,VOCs的降解机理非常复杂。目前,VOCs氧化存在三种主要机理:Langmuir-Hinshelwood (L-H)机理、Eley-Rideal (E-R)机理和Mars-van Krevelen (MvK)机理[88]。MvK机理适用于解释大多数催化剂降解反应。

3.1. Langmuir-Hinshelwood (L-H)机理

Langmuir-Hinshelwood (L-H)机理是一种多相催化过程,通过控制两个吸附分子来执行表面反应。反应分三个阶段进行:首先,将两种反应物吸附在固体催化剂上;其次,它们在表面上发生反应;最后,对产品进行解吸。吸附和解吸比表面反应快,表面反应是控制步骤。

反应速率与两种反应物在催化剂表面的覆盖率成正比。根据L-H模型,反应发生在吸附的VOCs和吸附的氧气之间。因此,VOCs和氧气能够吸附在表面尤为重要。该模型的主要优点是它不仅考虑了反应速率,还考虑了挥发性有机化合物和氧气的吸附。L-H机理能够解释大多数表面反应。根据L-H机制,吸附的VOCs被化学吸附的氧气(O2, O2或O)氧化成CO2和H2O。化学吸附的氧气是由O2 ↔ O2 ↔O22 ↔ O在氧空位周围的表面缺陷处的反应产生的[89]

3.2. Eley-Rideal (E-R)机理

E-R机理和L-H机理是使用Langmuir模型确定的。在E-R模型中,假设气态物质A与气态物质B反应,固体物质S作为催化剂。在反应过程中,A物质首先吸附在S物质上,形成类似络合物的结构,然后B物质与该中间体反应得到产物。在催化剂表面,吸附的O2与气相中存在的VOCs发生反应。挥发性有机化合物与吸附的O2之间的反应被确定为该过程的控制步骤。

3.3. Mars-Van Krevelen (MvK)机理

目前,在催化氧化领域,MvK机理是描述VOCs氧化过程的最常用手段。MvK机理被解释为氧化还原机制。主要假设是VOCs与催化剂中的晶格氧反应而不是与气相中的氧气反应。MvK的机理分为两个步骤。在初始阶段,挥发性有机化合物扩散并吸附在催化剂表面。随后,表面的晶格氧与VOCs发生反应,形成CO2和H2O。同时,催化剂内的金属氧化物也被还原。在第二阶段,随着反应的进行,由于气相中氧气的存在,催化剂中先前还原的金属再次氧化成金属氧化物。MvK反应机理的前提是反应物分子在与催化剂富氧部分反应时可以交替还原和氧化,其中催化剂中的氧是化学吸附氧或晶格氧。Liu等合成了SmMnO3(SMO)并探究了催化剂催化氧化甲苯的机理,机理研究结果表明催化过程符合MvK机理,甲苯的氧化依赖于吸附氧、晶格氧和氧空位的协同作用[35]。如图7所示,活性氧(O/ O 2 2 / O 2 )从氧空位溢出,与VOCs分子反应生成H2O和CO2。氧空位导致晶格氧的迁移,形成吸附氧,同时Mnn+通过电子转移转化为Mn(n1)+。气相氧被连续吸附到氧空位中,将Mn(n1)+氧化为Mnn+,并接受来自反应物的电子形成分子吸附氧( O 2 ),进一步转化为活性吸附氧和晶格氧,促进VOCs氧化的持续发生。

Figure 7. Possible migration and transformation mechanism of surface reactive oxygen

7. SMO催化剂表面活性氧可能的迁移机理

无论是L-H、E-R还是MvK模型,基本反应过程均可得出以下结论:气相中的VOCs通过内外扩散进入催化剂表面,最后被氧化成CO2和H2O,然后通过扩散返回气相。气相中O2的连续流入补充了催化剂中被VOCs不断消耗的吸附氧。最后,实现了完整的氧化还原反应过程,包括吸附、降解、解吸和再生。相比之下,MvK机理更适合解释过渡金属氧化物催化剂催化氧化VOCs,L-H和E-R模型更适合解释贵金属降解VOCs。目前,对中间体在降解过程中的选择性以及如何促进快速反应缺乏详细的研究,这为未来提供了潜在的研究方向。

4. 结论

催化氧化是消除VOCs等有机污染物的重要工艺,特别是在这些污染物浓度较低的情况下。一般来说,最活跃的催化剂是贵金属氧化物。然而,近年来,ABO3作为氧化VOCs的催化剂被广泛研究,并且由于可变的成分,丰富的氧空位缺陷,高度暴露的活性表面和可调节的氧化还原性质而具有特别多用途。此外,ABO3在VOCs的催化氧化中表现出较高的活性和稳定性。

ABO3的A位离子(La3+、Ce4+、Sr2+、Ca2+等)的主要作用是稳定晶体结构。然而,通过用半径相似的离子替换A位阳离子可以引入晶格缺陷,改变晶格氧的化学位置,影响B位离子的分散性和价态,从而间接改变ABO3的活性。通常,ABO3的催化活性是由B位离子(Co2+、Fe3+、Mn3+、Ni3+、Cu2+等)决定的,这些离子表现出多种氧化态,具有较好的结构和氧化还原能力。

ABO3催化氧化VOCs的机理有L-H、E-R和MvK三种。ABO3对甲苯的氧化机理主要遵循MvK机理,而二甲苯和VOCs混合物的氧化机理尚未得到充分探索,缺乏对真正烟气中含有VOCs的机理研究。除了A位点、B位点掺杂和A/B位点共掺杂外,O位点的阴离子掺杂最近已成为调整ABO3电子结构以提高催化性能的替代方法,需要在这个新兴领域进行进一步研究。尽管挑战依然存在,但ABO3有望成为实际工业中氧化VOCs的候选物。随着ABO3的不断改进,它们很可能有助于控制污染,保护健康和环境。

基金项目

江苏省研究生科研与实践创新计划项目(KYCX24_3550; SJCX24_1999),江苏省重点研发计划项目(BE2022767),国家重点研发计划项目(2022YFB3504200),国家自然科学基金项目(22302102),江苏省高等学校自然科学研究面上项目(22KJB610022)。

NOTES

*通讯作者。

参考文献

[1] Li, W.B., Wang, J.X. and Gong, H. (2009) Catalytic Combustion of Vocs on Non-Noble Metal Catalysts. Catalysis Today, 148, 81-87.
https://doi.org/10.1016/j.cattod.2009.03.007
[2] Yang, H., Gupta, S.K., Dhital, N.B., Wang, L. and Elumalai, S.P. (2020) Comparative Investigation of Coal-and Oil-Fired Boilers Based on Emission Factors, Ozone and Secondary Organic Aerosol Formation Potentials of Vocs. Journal of Environmental Sciences, 92, 245-255.
https://doi.org/10.1016/j.jes.2020.02.024
[3] Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T. and Bayram, A. (2014) Spatial and Seasonal Variation and Source Apportionment of Volatile Organic Compounds (Vocs) in a Heavily Industrialized Region. Atmospheric Environment, 98, 168-178.
https://doi.org/10.1016/j.atmosenv.2014.08.048
[4] Zhang, S., You, J., Kennes, C., Cheng, Z., Ye, J., Chen, D., et al. (2018) Current Advances of Vocs Degradation by Bioelectrochemical Systems: A Review. Chemical Engineering Journal, 334, 2625-2637.
https://doi.org/10.1016/j.cej.2017.11.014
[5] Son, Y. (2017) Decomposition of Vocs and Odorous Compounds by Radiolysis: A Critical Review. Chemical Engineering Journal, 316, 609-622.
https://doi.org/10.1016/j.cej.2017.01.063
[6] Zhang, X., Gao, B., Creamer, A.E., Cao, C. and Li, Y. (2017) Adsorption of Vocs onto Engineered Carbon Materials: A Review. Journal of Hazardous Materials, 338, 102-123.
https://doi.org/10.1016/j.jhazmat.2017.05.013
[7] Gales, L., Mendes, A. and Costa, C. (2002) Removal of Acetone, Ethyl Acetate and Ethanol Vapors from Air Using a Hollow Fiber PDMS Membrane Module. Journal of Membrane Science, 197, 211-222.
https://doi.org/10.1016/s0376-7388(01)00628-7
[8] Xu, H., Xu, X., Chen, L., Guo, J. and Wang, J. (2022) A Novel Cryogenic Condensation System Combined with Gas Turbine with Low Carbon Emission for Volatile Compounds Recovery. Energy, 248, Article ID: 123604.
https://doi.org/10.1016/j.energy.2022.123604
[9] Le Cloirec, P. (2012) Treatments of Polluted Emissions from Incinerator Gases: A Succinct Review. Reviews in Environmental Science and Bio/Technology, 11, 381-392.
https://doi.org/10.1007/s11157-012-9265-z
[10] Zhang, H., Gao, X., Gong, B., Shao, S., Tu, C., Pan, J., et al. (2022) Catalytic Combustion of Cvocs over MOOX/CeO2 Catalysts. Applied Catalysis B: Environmental, 310, Article ID: 121240.
https://doi.org/10.1016/j.apcatb.2022.121240
[11] Delhoménie, M. and Heitz, M. (2005) Biofiltration of Air: A Review. Critical Reviews in Biotechnology, 25, 53-72.
https://doi.org/10.1080/07388550590935814
[12] Zhang, P. (2022) The Adsorption of Vocs by Honeycomb Ceramics Loaded with Molecular Sieves. Journal of Chemistry, 2022, Article ID: 7207403.
https://doi.org/10.1155/2022/7207403
[13] Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., et al. (2019) Abatement of Various Types of Vocs by Adsorption/Catalytic Oxidation: A Review. Chemical Engineering Journal, 370, 1128-1153.
https://doi.org/10.1016/j.cej.2019.03.232
[14] Dwivedi, P., Gaur, V., Sharma, A. and Verma, N. (2004) Comparative Study of Removal of Volatile Organic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber. Separation and Purification Technology, 39, 23-37.
https://doi.org/10.1016/j.seppur.2003.12.016
[15] Kamal, M.S., Razzak, S.A. and Hossain, M.M. (2016) Catalytic Oxidation of Volatile Organic Compounds (Vocs)—A Review. Atmospheric Environment, 140, 117-134.
https://doi.org/10.1016/j.atmosenv.2016.05.031
[16] Dai, C., Zhou, Y., Peng, H., Huang, S., Qin, P., Zhang, J., et al. (2018) Current Progress in Remediation of Chlorinated Volatile Organic Compounds: A Review. Journal of Industrial and Engineering Chemistry, 62, 106-119.
https://doi.org/10.1016/j.jiec.2017.12.049
[17] Guo, Y., Sun, Y., Yang, D., Dai, J., Liu, Z., Chen, Y., et al. (2019) Biogenic Pt/CaCO3 Nanocomposite as a Robust Catalyst toward Benzene Oxidation. ACS Applied Materials & Interfaces, 12, 2469-2480.
https://doi.org/10.1021/acsami.9b18490
[18] Bai, B., Qiao, Q., Li, J. and Hao, J. (2016) Progress in Research on Catalysts for Catalytic Oxidation of Formaldehyde. Chinese Journal of Catalysis, 37, 102-122.
https://doi.org/10.1016/s1872-2067(15)61007-5
[19] Gelles, T., Krishnamurthy, A., Adebayo, B., Rownaghi, A. and Rezaei, F. (2020) Abatement of Gaseous Volatile Organic Compounds: A Material Perspective. Catalysis Today, 350, 3-18.
https://doi.org/10.1016/j.cattod.2019.06.017
[20] He, J., Xu, X., Li, M., Zhou, S. and Zhou, W. (2023) Recent Advances in Perovskite Oxides for Non-Enzymatic Electrochemical Sensors: A Review. Analytica Chimica Acta, 1251, Article ID: 341007.
https://doi.org/10.1016/j.aca.2023.341007
[21] Xu, X., Wang, W., Zhou, W. and Shao, Z. (2018) Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications. Small Methods, 2, Article ID: 1800071.
https://doi.org/10.1002/smtd.201800071
[22] He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S. and Hao, Z. (2019) Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119, 4471-4568.
https://doi.org/10.1021/acs.chemrev.8b00408
[23] Kustov, A.L., Tkachenko, O.P., Kustov, L.M. and Romanovsky, B.V. (2011) Lanthanum Cobaltite Perovskite Supported onto Mesoporous Zirconium Dioxide: Nature of Active Sites of VOC Oxidation. Environment International, 37, 1053-1056.
https://doi.org/10.1016/j.envint.2011.05.002
[24] Guelli Ulson de Souza, S.M.d.A., da Luz, A.D., da Silva, A. and Ulson de Souza, A.A. (2012) Removal of Mono-and Multicomponent BTX Compounds from Effluents Using Activated Carbon from Coconut Shell as the Adsorbent. Industrial & Engineering Chemistry Research, 51, 6461-6469.
https://doi.org/10.1021/ie2026772
[25] Spinicci, R., Faticanti, M., Marini, P., De Rossi, S. and Porta, P. (2003) Catalytic Activity of Lamno3 and Lacoo3 Perovskites Towards Vocs Combustion. Journal of Molecular Catalysis A: Chemical, 197, 147-155.
https://doi.org/10.1016/s1381-1169(02)00621-0
[26] Liu, L., Sun, J., Ding, J., Zhang, Y., Jia, J. and Sun, T. (2019) Catalytic Oxidation of Vocs over Smmno3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorganic Chemistry, 58, 14275-14283.
https://doi.org/10.1021/acs.inorgchem.9b02518
[27] Wu, M., Li, H., Ma, S., Chen, S. and Xiang, W. (2021) Boosting the Surface Oxygen Activity for High Performance Iron-Based Perovskite Oxide. Science of the Total Environment, 795, Article ID: 148904.
https://doi.org/10.1016/j.scitotenv.2021.148904
[28] Si, W., Wang, Y., Zhao, S., Hu, F. and Li, J. (2016) A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. Environmental Science & Technology, 50, 4572-4578.
https://doi.org/10.1021/acs.est.5b06255
[29] Li, B., Yang, Q., Peng, Y., Chen, J., Deng, L., Wang, D., et al. (2019) Enhanced Low-Temperature Activity of LaMnO3 for Toluene Oxidation: The Effect of Treatment with an Acidic KMnO4. Chemical Engineering Journal, 366, 92-99.
https://doi.org/10.1016/j.cej.2019.01.139
[30] Wu, M., Chen, S. and Xiang, W. (2020) Oxygen Vacancy Induced Performance Enhancement of Toluene Catalytic Oxidation Using LaFeO3 Perovskite Oxides. Chemical Engineering Journal, 387, Article ID: 124101.
https://doi.org/10.1016/j.cej.2020.124101
[31] Zhang, J., Tan, D., Meng, Q., Weng, X. and Wu, Z. (2015) Structural Modification of LaCoO3 Perovskite for Oxidation Reactions: The Synergistic Effect of Ca2+ and Mg2+ Co-Substitution on Phase Formation and Catalytic Performance. Applied Catalysis B: Environmental, 172, 18-26.
https://doi.org/10.1016/j.apcatb.2015.02.006
[32] Pecchi, G., Jiliberto, M.G., Delgado, E.J., Cadús, L.E. and Fierro, J.L.G. (2011) Effect of B‐Site Cation on the Catalytic Activity of La1−xCaxBO3 (B = Fe, Ni) Perovskite‐Type Oxides for Toluene Combustion. Journal of Chemical Technology & Biotechnology, 86, 1067-1073.
https://doi.org/10.1002/jctb.2611
[33] Zhang, C., Guo, Y., Guo, Y., Lu, G., Boreave, A., Retailleau, L., et al. (2014) LaMnO3 Perovskite Oxides Prepared by Different Methods for Catalytic Oxidation of Toluene. Applied Catalysis B: Environmental, 148, 490-498.
https://doi.org/10.1016/j.apcatb.2013.11.030
[34] Sihaib, Z., Puleo, F., Pantaleo, G., La Parola, V., Valverde, J.L., Gil, S., et al. (2019) The Effect of Citric Acid Concentration on the Properties of Lamno3 as a Catalyst for Hydrocarbon Oxidation. Catalysts, 9, Article No. 226.
https://doi.org/10.3390/catal9030226
[35] Liu, L., Jia, J., Sun, T. and Zhang, H. (2018) A Facile Method for Scalable Preparation of Mesoporous Structured Smmno3 Perovskites Sheets for Efficient Catalytic Oxidation of Toluene. Materials Letters, 212, 107-110.
https://doi.org/10.1016/j.matlet.2017.10.048
[36] Guo, M., Liu, L., Gu, J., Zhang, H., Min, X., Liang, J., et al. (2021) Catalytic Performance Improvement of Volatile Organic Compounds Oxidation over MnO and GdMnO3 Composite Oxides from Spent Lithium-Ion Batteries: Effect of Acid Treatment. Chinese Journal of Chemical Engineering, 34, 278-288.
https://doi.org/10.1016/j.cjche.2020.08.015
[37] Bai, H., Wang, Z., Zhang, J., Wu, J., Yue, Y., Liu, Q., et al. (2021) Synthesis of a Perovskite-Type Catalyst from Cr Electroplating Sludge for Effective Catalytic Oxidization of Voc. Journal of Environmental Management, 294, Article ID: 113025.
https://doi.org/10.1016/j.jenvman.2021.113025
[38] Wang, W., Xu, M., Xu, X., Zhou, W. and Shao, Z. (2019) Perovskite Oxide Based Electrodes for High‐Performance Photoelectrochemical Water Splitting. Angewandte Chemie International Edition, 59, 136-152.
https://doi.org/10.1002/anie.201900292
[39] Zhang, R., Shi, D., Liu, N., Cao, Y. and Chen, B. (2014) Mesoporous SBA-15 Promoted by 3d-Transition and Noble Metals for Catalytic Combustion of Acetonitrile. Applied Catalysis B: Environmental, 146, 79-93.
https://doi.org/10.1016/j.apcatb.2013.03.028
[40] Yadav, P.K., Kumari, S., Naveena, U., Deshpande, P.A. and Sharma, S. (2022) Insights into the Substitutional Chemistry of La1xSrxCo1yMyO3 (M = Pd, Ru, Rh, and Pt) Probed by in Situ DRIFTS and DFT Analysis of CO Oxidation. Applied Catalysis A: General, 643, Article ID: 118768.
https://doi.org/10.1016/j.apcata.2022.118768
[41] Onrubia-Calvo, J.A., Pereda-Ayo, B., De-La-Torre, U. and González-Velasco, J.R. (2017) Key Factors in Sr-Doped LaBO3 (B = Co or Mn) Perovskites for NO Oxidation in Efficient Diesel Exhaust Purification. Applied Catalysis B: Environmental, 213, 198-210.
https://doi.org/10.1016/j.apcatb.2017.04.068
[42] Guo, L., Bo, L., Li, Y., Jiang, Z., Tian, Y. and Li, X. (2021) Sr Doping Effect on the Structure Property and NO Oxidation Performance of Dual-Site Doped Perovskite La(Sr)Co(Fe)O3. Solid State Sciences, 113, Article ID: 106519.
https://doi.org/10.1016/j.solidstatesciences.2020.106519
[43] Rossetti, I., Buchneva, O., Biffi, C. and Rizza, R. (2009) Effect of Sulphur Poisoning on Perovskite Catalysts Prepared by Flame-Pyrolysis. Applied Catalysis B: Environmental, 89, 383-390.
https://doi.org/10.1016/j.apcatb.2008.12.017
[44] Wang, L., Wang, C., Xie, H., Zhan, W., Guo, Y. and Guo, Y. (2019) Catalytic Combustion of Vinyl Chloride over Sr Doped LaMnO3. Catalysis Today, 327, 190-195.
https://doi.org/10.1016/j.cattod.2018.05.005
[45] Xiao, G., Xin, S., Wang, H., Zhang, R., Wei, Q. and Lin, Y. (2019) Catalytic Oxidation of Styrene over Ce-Substituted La1–xCexMnO3 Catalysts. Industrial & Engineering Chemistry Research, 58, 5388-5396.
https://doi.org/10.1021/acs.iecr.8b05674
[46] Zhang, C., Hua, W., Wang, C., Guo, Y., Guo, Y., Lu, G., et al. (2013) The Effect of A-Site Substitution by Sr, Mg and Ce on the Catalytic Performance of LaMnO3 Catalysts for the Oxidation of Vinyl Chloride Emission. Applied Catalysis B: Environmental, 134, 310-315.
https://doi.org/10.1016/j.apcatb.2013.01.031
[47] Chen, H., Wei, G., Liang, X., Liu, P., He, H., Xi, Y., et al. (2019) The Distinct Effects of Substitution and Deposition of Ag in Perovskite LaCoO3 on the Thermally Catalytic Oxidation of Toluene. Applied Surface Science, 489, 905-912.
https://doi.org/10.1016/j.apsusc.2019.06.009
[48] Kucharczyk, B., Adamska, K., Tylus, W., Miśta, W., Szczygieł, B. and Winiarski, J. (2019) Effect of Silver Addition to LaFeO3 Perovskite on the Activity of Monolithic La1−xAgxFeO3 Perovskite Catalysts in Methane Hexane Oxidation. Catalysis Letters, 149, 1919-1933.
https://doi.org/10.1007/s10562-019-02779-7
[49] Utsumi, S., Vallejos-Burgos, F.E., Campos, C.M., García, X., Gordon, A.L., Pecchi, G., et al. (2007) Preparation and Characterization of Inexpensive Heterogeneous Catalysts for Air Pollution Control: Two Case Studies. Catalysis Today, 123, 208-217.
https://doi.org/10.1016/j.cattod.2007.01.009
[50] Merino, N., Barbero, B., Grange, P. and Cadus, L. (2005) LaCaCoO Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane. Journal of Catalysis, 231, 232-244.
https://doi.org/10.1016/j.jcat.2005.01.003
[51] Cui, X., Yang, H., Zhang, J., Wu, T., Zhao, P. and Guo, Q. (2021) Characterization and Performance of Ca-Substituted La1−xCaxCoO3−δ Perovskite for Efficient Catalytic Oxidation of Toluene. Catalysis Letters, 151, 3323-3333.
https://doi.org/10.1007/s10562-021-03566-z
[52] Chen, S., Wang, Y., Jia, A., Liu, H., Luo, M. and Lu, J. (2014) Enhanced Activity for Catalytic Oxidation of 1,2-Dichloroethane over Al-Substituted LaMnO3 Perovskite Catalysts. Applied Surface Science, 307, 178-188.
https://doi.org/10.1016/j.apsusc.2014.04.012
[53] Hu, J., Zhou, J., Zhang, T., Liu, S. and Du, K. (2022) Characterization and Performance of SmxA1-XMnO3 (A = Ce, Sr, Ca) Perovskite for Efficient Catalytic Oxidation of Toluene. Korean Journal of Chemical Engineering, 39, 3032-3038.
https://doi.org/10.1007/s11814-022-1194-0
[54] Zhao, Z., Dai, H., Deng, J., Du, Y., Liu, Y. and Zhang, L. (2012) Three-Dimensionally Ordered Macroporous La0.6Sr0.4FeO3−δ: High-Efficiency Catalysts for the Oxidative Removal of Toluene. Microporous and Mesoporous Materials, 163, 131-139.
https://doi.org/10.1016/j.micromeso.2012.07.006
[55] Ji, K., Dai, H., Deng, J., Jiang, H., Zhang, L., Zhang, H., et al. (2013) Catalytic Removal of Toluene over Three-Dimensionally Ordered Macroporous Eu1xSrxFeO3. Chemical Engineering Journal, 214, 262-271.
https://doi.org/10.1016/j.cej.2012.10.083
[56] Heidinger, B., Royer, S., Giraudon, J., Gardoll, O., Alamdari, H. and Lamonier, J. (2020) Reactive Grinding Synthesis of La(Sr, Ce)CoO3 and Their Properties in Toluene Catalytic Total Oxidation. ChemCatChem, 12, 2271-2282.
https://doi.org/10.1002/cctc.201902112
[57] Kim, K., Koo, B., Jo, Y., Lee, S., Kim, J.K., Kim, B., et al. (2020) Control of Transition Metal-Oxygen Bond Strength Boosts the Redox Ex-Solution in a Perovskite Oxide Surface. Energy & Environmental Science, 13, 3404-3411.
https://doi.org/10.1039/d0ee01308k
[58] Hueso, J.L., Holgado, J.P., Pereñíguez, R., Gonzalez-DelaCruz, V.M. and Caballero, A. (2015) Structural and Chemical Reactivity Modifications of a Cobalt Perovskite Induced by Sr-Substitution. An in Situ XAS Study. Materials Chemistry and Physics, 151, 29-33.
https://doi.org/10.1016/j.matchemphys.2014.11.015
[59] Lv, C., Zhang, J., Yan, L., Chen, H. and Hu, M. (2022) Boosting Sulfur Tolerance and Catalytic Performance in Toluene Combustion via Enhanced-Mechanism of Ce-Fe Dopants Incorporation of LaCoO3 Perovskite. Journal of Environmental Chemical Engineering, 10, Article ID: 108372.
https://doi.org/10.1016/j.jece.2022.108372
[60] Liu, M., Yang, X., Tian, Z., Wang, H., Yin, L., Chen, J., et al. (2022) Insights into the Role of Strontium in Catalytic Combustion of Toluene over La1−xSrxCoO3 Perovskite Catalysts. Physical Chemistry Chemical Physics, 24, 3686-3694.
https://doi.org/10.1039/d1cp04224f
[61] Hosseini, S.A., Sadeghi, M.T., Alemi, A., Niaei, A., Salari, D. and Kafi-Ahmadi, L. (2010) Synthesis, Characterization, and Performance of LaZnxFe1−XO3 Perovskite Nanocatalysts for Toluene Combustion. Chinese Journal of Catalysis, 31, 747-750.
https://doi.org/10.1016/s1872-2067(09)60083-8
[62] Lv, C., Hu, M., Yuan, T., Yan, L. and Chen, H. (2022) Dopant-driven Tuning of Toluene Oxidation and Sulfur Resistance at the B-Site of LaCo1−xMxO3 (M = Fe, Cr, Cu) Perovskites. Catalysis Science & Technology, 12, 3670-3684.
https://doi.org/10.1039/d2cy00476c
[63] Qi, S., Zhang, W., Li, X., Wang, Q., Zhu, Z., Zhou, T., et al. (2022) Catalytic Oxidation of Toluene over B‐Site Doped La‐Based Perovskite LaNixB1−xO3 (B = Co, Cu) Catalysts. Environmental Progress & Sustainable Energy, 42, e13965.
https://doi.org/10.1002/ep.13965
[64] Suárez-Vázquez, S.I., Gil, S., García-Vargas, J.M., Cruz-López, A. and Giroir-Fendler, A. (2018) Catalytic Oxidation of Toluene by Srti1-XBxO3 (B = Cu and Mn) with Dendritic Morphology Synthesized by One Pot Hydrothermal Route. Applied Catalysis B: Environmental, 223, 201-208.
https://doi.org/10.1016/j.apcatb.2017.04.042
[65] Zhang, C., Wang, C., Zhan, W., Guo, Y., Guo, Y., Lu, G., et al. (2013) Catalytic Oxidation of Vinyl Chloride Emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) Catalysts. Applied Catalysis B: Environmental, 129, 509-516.
https://doi.org/10.1016/j.apcatb.2012.09.056
[66] Zhu, Y., Zhou, W., Sunarso, J., Zhong, Y. and Shao, Z. (2016) Phosphorus‐Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 26, 5862-5872.
https://doi.org/10.1002/adfm.201601902
[67] Luo, Y., Zheng, Y., Feng, X., Lin, D., Qian, Q., Wang, X., et al. (2020) Controllable P Doping of the LaCoO3 Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Applied Materials & Interfaces, 12, 23789-23799.
https://doi.org/10.1021/acsami.0c01599
[68] Zheng, Y., Chen, Y., Wu, E., Liu, X., Huang, B., Xue, H., et al. (2021) Amorphous Boron Dispersed in LaCoO3 with Large Oxygen Vacancies for Efficient Catalytic Propane Oxidation. ChemistryA European Journal, 27, 4738-4745.
https://doi.org/10.1002/chem.202004848
[69] Fang, F., Zhao, P., Feng, N., Chen, C., Li, X., Liu, G., et al. (2019) Construction of a Hollow Structure in La0.9K0.1CoO3−δ Nanofibers via Grain Size Control by Sr Substitution with an Enhanced Catalytic Performance for Soot Removal. Catalysis Science & Technology, 9, 4938-4951.
https://doi.org/10.1039/c9cy01332f
[70] Iqbal, R.M., Nurherdiana, S.D., Sahasrikirana, M.S., Harmelia, L., Utomo, W.P., Setyaningsih, E.P. and Fansuri, H. (2018) The Compatibility of NiO, CeO2 and NiO-CeO2 as a Coating on La0.6Sr0.4Co0.2Fe0.8O3−δ, La0.7Sr0.3Co0.2Fe0.8O3−δ and La0.7Sr0.3Mn0.3O3−δ Ceramic Membranes and Their Mechanical Properties. IOP Conference Series: Materials Science and Engineering, 367, Article ID: 012032.
[71] Dhongde, V., Singh, A., Kala, J., Anjum, U., Haider, M.A. and Basu, S. (2022) Radio-Frequency Magnetron Sputtered Thin-Film La0.5Sr0.5Co0.95Nb0.05O3-Δ Perovskite Electrodes for Intermediate Temperature Symmetric Solid Oxide Fuel Cell (IT-SSOFC). Materials Reports: Energy, 2, Article ID: 100095.
https://doi.org/10.1016/j.matre.2022.100095
[72] Yuan, B., Tao, Y., Qi, S., Xie, A. and Luo, S. (2022) Effect of A, B-Site Cation on the Catalytic Activity of La1−xAxMn1-YByO3 (A = Ce, B = Ni) Perovskite-Type Oxides for Toluene Oxidation. Environmental Science and Pollution Research, 30, 36993-37003.
https://doi.org/10.1007/s11356-022-24916-3
[73] He, C.B., Pan, K.L. and Chang, M.B. (2018) Catalytic Oxidation of Trichloroethylene from Gas Streams by Perovskite-Type Catalysts. Environmental Science and Pollution Research, 25, 11584-11594.
https://doi.org/10.1007/s11356-018-1440-5
[74] Rousseau, S., Loridant, S., Delichere, P., Boreave, A., Deloume, J.P. and Vernoux, P. (2009) La1−xSrxCO1−xFeO3 Perovskites Prepared by Sol-Gel Method: Characterization and Relationships with Catalytic Properties for Total Oxidation of Toluene. Applied Catalysis B: Environmental, 88, 438-447.
https://doi.org/10.1016/j.apcatb.2008.10.022
[75] Levasseur, B. and Kaliaguine, S. (2009) Effects of Iron and Cerium in La1−xCexCO1−xFeO3 Perovskites as Catalysts for VOC Oxidation. Applied Catalysis B: Environmental, 88, 305-314.
https://doi.org/10.1016/j.apcatb.2008.11.007
[76] Deng, J., Dai, H., Jiang, H., Zhang, L., Wang, G., He, H., et al. (2010) Hydrothermal Fabrication and Catalytic Properties of La1−x SrxM1−yFeyO3 (M = Mn, Co) That Are Highly Active for the Removal of Toluene. Environmental Science & Technology, 44, 2618-2623.
https://doi.org/10.1021/es9031997
[77] Weng, X., Wang, W.L., Meng, Q. and Wu, Z. (2018) An Ultrafast Approach for the Syntheses of Defective Nanosized Lanthanide Perovskites for Catalytic Toluene Oxidation. Catalysis Science & Technology, 8, 4364-4372.
https://doi.org/10.1039/c8cy01000e
[78] Oskoui, S.A., Niaei, A., Tseng, H., Salari, D., Izadkhah, B. and Hosseini, S.A. (2013) Modeling Preparation Condition and Composition-Activity Relationship of Perovskite-Type LaxSr1–xFeyCo1–yO3 Nano Catalyst. ACS Combinatorial Science, 15, 609-621.
https://doi.org/10.1021/co400017r
[79] Li, Y., Liu, S., Yin, K., Jia, D., Sun, Y., Zhang, X., et al. (2023) Understanding the Mechanisms of Catalytic Enhancement of La-Sr-Co-Fe-O Perovskite-Type Oxides for Efficient Toluene Combustion. Journal of Environmental Chemical Engineering, 11, Article ID: 109050.
https://doi.org/10.1016/j.jece.2022.109050
[80] Einaga, H., Hyodo, S. and Teraoka, Y. (2010) Complete Oxidation of Benzene over Perovskite-Type Oxide Catalysts. Topics in Catalysis, 53, 629-634.
https://doi.org/10.1007/s11244-010-9497-5
[81] Liu, G., Li, J., Yang, K., Tang, W., Liu, H., Yang, J., et al. (2015) Effects of Cerium Incorporation on the Catalytic Oxidation of Benzene over Flame-Made Perovskite La1−xCexMnO3 Catalysts. Particuology, 19, 60-68.
https://doi.org/10.1016/j.partic.2014.07.001
[82] Tarjomannejad, A., Farzi, A., Niaei, A. and Salari, D. (2016) An Experimental and Kinetic Study of Toluene Oxidation over LaMn1−xBXO3 and La0.8A0.2Mn0.3B0.7O3 (A = Sr, Ce and B = Cu, Fe) Nano-Perovskite Catalysts. Korean Journal of Chemical Engineering, 33, 2628-2637.
https://doi.org/10.1007/s11814-016-0108-4
[83] Chen, J., Chen, X., Li, N., Liang, Y., Yu, C., Yao, L., et al. (2021) Enhanced Photocatalytic Activity of La1-XSrxCoO3/Ag3PO4 Induced by the Synergistic Effect of Doping and Heterojunction. Ceramics International, 47, 19923-19933.
https://doi.org/10.1016/j.ceramint.2021.04.006
[84] Giraudon, J., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukaïs, A., Lamonier, J., et al. (2007) Studies of the Activation Process over Pd Perovskite-Type Oxides Used for Catalytic Oxidation of Toluene. Applied Catalysis B: Environmental, 75, 157-166.
https://doi.org/10.1016/j.apcatb.2007.04.005
[85] Liu, Y., Dai, H., Deng, J., Zhang, L., Gao, B., Wang, Y., et al. (2013) PMMA-Templating Generation and High Catalytic Performance of Chain-Like Ordered Macroporous LaMnO3 Supported Gold Nanocatalysts for the Oxidation of Carbon Monoxide and Toluene. Applied Catalysis B: Environmental, 140, 317-326.
https://doi.org/10.1016/j.apcatb.2013.04.025
[86] Liu, Y., Dai, H., Deng, J., Li, X., Wang, Y., Arandiyan, H., et al. (2013) Au/3DOM La0.6Sr0.4MnO3: Highly Active Nanocatalysts for the Oxidation of Carbon Monoxide and Toluene. Journal of Catalysis, 305, 146-153.
https://doi.org/10.1016/j.jcat.2013.04.025
[87] Li, X., Chen, D., Li, N., Xu, Q., Li, H., He, J., et al. (2021) Highly Efficient Pd Catalysts Loaded on La1−xSrxMnO3 Perovskite Nanotube Support for Low-Temperature Toluene Oxidation. Journal of Alloys and Compounds, 871, Article ID: 159575.
https://doi.org/10.1016/j.jallcom.2021.159575
[88] Liotta, L.F. (2010) Catalytic Oxidation of Volatile Organic Compounds on Supported Noble Metals. Applied Catalysis B: Environmental, 100, 403-412.
https://doi.org/10.1016/j.apcatb.2010.08.023
[89] Liu, P., Liao, Y., Li, J., Chen, L., Fu, M., Wu, P., et al. (2021) Insight into the Effect of Manganese Substitution on Mesoporous Hollow Spinel Cobalt Oxides for Catalytic Oxidation of Toluene. Journal of Colloid and Interface Science, 594, 713-726.
https://doi.org/10.1016/j.jcis.2021.03.093