炎症标志物与卒中后抑郁的相关性研究进展
Advances in the Study of the Relationship between Inflammation Markers and Post-Stroke Depression
DOI: 10.12677/acm.2024.14123041, PDF, HTML, XML,    科研立项经费支持
作者: 张 颖, 邬蔚琦, 周明瑞, 缪 薇*:昆明医科大学第二附属医院神经内科,云南 昆明;徐云瑀:云南省中医医院脑病科,云南 昆明;赵智艳:西双版纳傣族自治州人民医院神经内科,云南 西双版纳
关键词: 卒中后抑郁炎症因子发病机制生物标志物Post-Stroke Depression Inflammatory Factors Pathogenesis Biomarker
摘要: 卒中后抑郁(post-stroke depression, PSD)是脑卒中后常见的可治疗的并发症之一,影响卒中后患者神经功能的恢复和回归社会的能力。免疫反应和炎症反应在PSD的发病机制中起重要作用。本文通过归纳与总结炎性反应参与PSD的发病机制、炎症标志物与PSD的相关性,为PSD患者的诊断和治疗提供新思路。
Abstract: Post-stroke depression (PSD) is one of the common and treatable complications after stroke, affecting the recovery of neurological function and the ability to return to society. Immune response and inflammatory response play important roles in the pathogenesis of PSD. In this paper, we summarize the pathogenesis of inflammatory response involved in PSD and the correlation between inflammatory markers and PSD, so as to provide new ideas for the diagnosis and treatment of PSD patients.
文章引用:张颖, 徐云瑀, 赵智艳, 邬蔚琦, 周明瑞, 缪薇. 炎症标志物与卒中后抑郁的相关性研究进展[J]. 临床医学进展, 2024, 14(12): 7-15. https://doi.org/10.12677/acm.2024.14123041

1. 引言

卒中后抑郁(post-stroke depression, PSD)是一种卒中患者常见的情绪障碍,主要表现为持续的情绪低落和兴趣缺失,常常伴有躯体症状[1]。研究发现PSD发病率高达27% [2],PSD不仅影响卒中患者的神经功能、认知功能的恢复,还可导致脑卒中复发、增加自杀风险,严重影响患者的预后。

神经炎症反应参与PSD发生、发展的病理及生理过程。新近研究发现,全身免疫炎症指数(systematic immune-inflammation index, SII)、全身炎症反应指数(systemic inflammation response index, SIRI)、中性粒细胞与淋巴细胞的比值(NLR)、血小板与淋巴细胞的比率(PLR)、单核细胞/淋巴细胞比值(MLR)、C反应蛋白(CRP)、白细胞介素(IL)、肿瘤坏死因子α (TNF-α)、纤维蛋白原(FIB)等炎症标志物可反映卒中患者的炎症状态,可能对PSD的早期诊断、预后预测具有一定的价值[3] [4]。本文通过归纳与总结炎性反应参与卒中后抑郁的发病机制、炎症标志物与PSD的相关性,旨在为PSD的诊断和治疗提供新思路。

2. 炎症反应与卒中后抑郁

研究发现,PSD的影响因素主要有年龄、性别、文化程度、家庭年收入、睡眠障碍、既往抑郁史以及脑卒中解剖位置、神经功能缺损程度等,其发病机制尚不明确,目前发现的机制有神经递质系统间的相互调控、神经炎症、神经内分泌激活、神经元可塑性、血管因素[1]。其中,其中,卒中发生后,炎症反应被激活,释放的炎症因子可影响边缘系统下丘脑–垂体–肾上腺(HPA)轴,造成5-羟色胺(5-HT)和去甲肾上腺素(NE)等神经递质的异常分泌,最终导致PSD [5]

2.1. 卒中后小胶质细胞激活引起炎症反应

小胶质细胞(microglia, MG)是一种重要的免疫细胞。脑缺血后,MG是第一个启动抗原识别、吞噬及呈递的细胞[6]。在正常状态下,MG是通过感受外界环境的改变而接受神经突触信号,但在外界微环境改变时,其活化和表型改变,并分泌大量的炎性因子[7],同时也能分泌如多巴胺、5-HT等神经递质。MG活化后可分为M1型和M2型。MG向M1型极化,释放促炎因子,导致神经损伤,影响神经网络功能,加剧炎性反应。M2型MG在维持机体稳态中发挥重要作用[8]。在抑郁病人的尸体解剖中发现,大脑前额叶、前扣带回内的MG均有活化。PSD与MG释放的炎症因子密切相关。目前已知的多种抗抑郁药物可抑制MG向M1型极化。广泛应用于临床的氟西汀、西酞普兰等药物,可调控MG的炎性反应,从而影响抗抑郁药物的疗效[9]。进一步验证PSD与炎性反应之间的关系。

2.2. 炎症因子影响边缘系统下丘脑–垂体–肾上腺(HPA)轴

已有的研究表明,脑干内有丰富的与情感调控密切相关的甲肾上腺素能和5-羟色胺能神经元,其轴突经过下丘脑、基底神经节和胼胝体,最终到达额叶皮质。5-HT和NE与焦虑–抑郁、自伤自杀行为和睡眠紊乱等有关。脑卒中后,脑内NE和5-HT水平降低,会导致抑郁发病风险增加[10]。已有文献报道,PSD患者脑脊液中5-HT的含量降低[11]。抗抑郁药物例如结合选择性血清素再摄取抑制剂(SSRIs)对于PSD的治疗效果也表明,NE和5-HT等多种神经递质含量降低,是PSD发病的重要原因[12]

研究表明,炎性反应可通过调控HPA轴的功能,减少单胺类神经递质的合成,导致抑郁[13]。脑卒中后,损伤神经元释放的促炎细胞因子可活化HPA轴,使皮质醇的分泌增多,进而对神经细胞造成损伤。前期研究发现PSD大鼠海马区TNF-α、白细胞介素-1β和皮质醇释放因子表达增高,且与TNF-α信号通路存在交互作用[14]。HPA轴及下丘脑–垂体–甲状腺轴(PHT)活性异常,可导致血浆皮质醇水平增高,导致肝内色氨酸吡咯酶及氨基转移酶增多,大量产生的酶会降解血液中的色氨酸(5-HT前体)和酪氨酸(NE前体),导致5-HT和NE的合成下降,加重PSD发病[15]-[17]。慢性皮质醇增加在脑卒中模型中的持续高水平表达可引起海马神经元再生障碍,进而影响PSD的发生。

3. 炎性标志物与PSD

3.1. 全身免疫炎症指数

全身免疫炎症指数(SII)由Hu等人于2014年首次提出[18],简单易获得,可综合反应机体免疫与炎性反应之间的关系,计算公式为血小板计数 × 中性粒细胞计数/淋巴细胞计数。Hou的研究显示,SII与急性缺血性卒中的严重程度有关,较NLR和PLR等指标更具科学性和有效性[19]。近年来,国内外学者对其与抑郁的关系进行了大量的研究,Mazza MG发现SII与新冠肺炎病人的抑郁症、焦虑症有密切关系[20]。Li等人的研究显示每增加100个单位的SII,抑郁症发生风险提高了2% [21],提示了SII可能是抑郁症中可监测的低级别炎症标志物。Hu等人对432例缺血性脑卒中后1个月内的患者进行了随访,其中129人在卒中后1个月内确诊PSD,研究发现SII水平增高是PSD发病的独立危险因素,特别是住院时的SII水平增高,与PSD显著相关,有可能成为PSD的预后指标[22]

3.2. 全身炎症反应指数

全身炎症反应指数(SIRI)由QI等人于2016年首次提出,是一种具有较高临床应用前景的炎症生物学标志物[23]。SIRI可以预测多种严重疾病的预后,如结直肠癌、胆囊癌、高血压和心力衰竭等[24]-[27],计算公式为中性粒细胞计数 × 单核细胞计数/淋巴细胞计数。Chu M等人的研究显示SIRI是卒中后认知功能损害的一个独立危险因子[28]。黄小妹等人[29]研究发现SIRI升高,发生PSD的风险增加,SIRI ≥ 1.5 × 109是PSD的独立危险因素。目前关于SIRI与PSD相关性的研究较少,未来还需要进一步探讨。

3.3. PLR、NLR、MLR

近年来,中性粒细胞与淋巴细胞的比值(NLR)和血小板与淋巴细胞的比值(PLR)已成为评估机体炎症状态的公认生物标志物。NLR和PLR是简单、经济的生物标志物,在常规检查中可以很容易地从血液中提取出来[30]。单核细胞/淋巴细胞比值(MLR)是近年来备受关注的新型炎症指标,其反映了外周血中单核细胞与淋巴细胞之间的动态平衡,也可直接反映机体炎症状态。卒中后外周血中立即诱导中性粒细胞和单核细胞的上调以及淋巴细胞的减少,它们被炎症介质吸引,并通过受损的血脑屏障募集并浸润到大脑,这极大地促进了PSD的发生和发展。

NLR及PLR均与多种精神类疾病有关,且与抑郁症为主[31]。NLR及PLR升高与重度抑郁症发生风险增加密切相关[32] [33]。近年来的研究表明,NLR、PLR与脑梗死患者的预后密切相关[34]。卒中后,包括中性粒细胞在内的免疫细胞穿过受损的血脑屏障向坏死区域迁移,并分泌大量的炎症介质和促炎因子[35],激活机体免疫系统,产生免疫级联放大反应,进而导致细胞功能障碍和氧化应激[36]。炎症状态可改变颅内神经内分泌功能,同时降低单胺类神经递质的合成和分泌,导致卒中后抑郁的发生[37]。另一方面,淋巴细胞的减少反映了机体处于病理应激状态,预示着较差的预后[38]。因此,NLR既能反映脑卒中后的炎性状态,又能反映卒中后抑郁状态的发生发展,对卒中后抑郁有一定的预测价值。

血小板是一种反映炎症状态的特异性生物标记物,其激活与抑郁症等精神疾病有关,是一种明确的危险因素[39]。脑卒中后,坏死区释放大量炎症介质,促进巨噬细胞的活化,进而激活血小板,活化的血小板可通过分泌炎性因子调节内皮细胞通透性,募集单核细胞[40],促进炎性反应。同时,活化的血小板释放5-HT,而5-HT在抑郁症的形成过程中起重要作用。另一方面,促炎因子也由激活的血小板产生,并参与了炎性反应的启动、维持及调控,在抑郁的发生发展中发挥了关键作用。此外还有学者发现,促炎因子、活化血小板可能通过抑制脑源性神经营养因子(BDNF)和BDNF受体(TrkB)磷酸化表达,导致抑郁发生[41]。因此,我们推测卒中后血小板激活与炎性反应及PSD的发生之间存在交互作用,PLR或许可以作为预测PSD的可靠指标。

Hu等人通过使用逻辑回归分析发现,NLR (≥4.02)和PLR (≥203.74)与PSD独立相关,且较高的NLR和PLR与卒中后6个月的抑郁症有关,在PSD的早期临床检测中,综合指数比单独使用更有意义[42]。Cheng等人通过元回归分析发现在中国亚组和匹配的年龄和性别中,患有PSD的个体具有更高的NLR和MLR值[43]。Huang等人研究发现入院时PLR增加是预测PSD发展的独立生物标志物,分层PLR可以提高对PSD患者的预测能力[44]。综上所述,PLR、NLR、MLR或许可作为预测PSD患病及严重程度的血液学参考指标[45]

3.4. 白细胞介素

白细胞介素(IL)是一类具有多种生物学特性的细胞因子,包括IL-1β、IL-6、IL-8、IL-10、IL-18等,主要参与信息传递、免疫调节、炎症调控,当中枢神经系统受到损伤或感染后,IL水平明显升高。炎症因子(促炎细胞因子、抗炎细胞因子等)在PSD发生发展中起重要作用[46]。Wang的研究表明患者血液中 IL-6水平显著升高与PSD发生密切相关。生物标志物的检测可以有效预测PSD的发生,具有较高的临床价值[47]。Korostynski等人在研究中发现卒中后3个月出现抑郁症状的患者血浆IL-6水平高于TNF-α、sIL-6R和IL-1α。血浆IL-6可预测卒中后3个月时抑郁症状的严重程度,还可能与卒中后3个月出现的抑郁症状有关[48]。Yi等人的研究表明IL-1β与中风后6个月的PSD密切相关,高IL-1β是PSD发展的独立危险因素[49]。杨等人的研究发现,IL-18、IL-1、IL-6在PSD发生、发展和转归密切相关[50]。Kim等人研究了PSD患者的促炎细胞因子基因如IL-1β、IL-6、IL-8、TNF-α的多态性以及抗炎细胞因子如IL-4和IL-10的多态性,并检测其与抑郁发生发展的关系,发现IL-10-1082A/A基因型与PSD关系密切,而IL-4+33C/C基因型只与重度PSD有明显的相关性[51]。通过对PSD患者一年的追踪研究,Su等人发现抑郁症组的IL-10含量明显降低,且与抑郁程度呈负相关。提示IL-10可能具有潜在的抗抑郁效应[52]。这些研究将为阐明PSD的发病机制提供新的理论依据。

3.5. C反应蛋白

C-反应蛋白(CRP)作为一种高度敏感的急性期蛋白,不仅可以反映脑卒中神经损伤的程度,还可以反映大脑的微炎症,被认为可以预测急性脑卒中患者的疲劳、认知障碍[53]、死亡风险和长期康复。PSD不但与脑损伤后的神经功能缺损症状有关,还与患者的心理反应机制有关[54]。一些研究表明,即使在轻度卒中的患者中,PSD也经常发生[55]。因此,可以根据CRP水平和脑卒中的严重程度来预测PSD的发生。研究发现NIHSS评分、CRP、NLR是PSD发生的独立危险因素,NLR联合CRP预测PSD的敏感性及特异性较高,具有更高的预测价值[56]。此外,脑卒中急性期的同型半胱氨酸联合CRP也可以预测PSD的发生[57]。同时一项荟萃分析的结果再次证实了这一结论,PSD对卒中患者的生存率有负面影响[58]。因此,脑卒中急性期CRP升高也表明患者预后不良的可能性[59]。目前的研究只是揭示了CRP与PSD发作的临床相关性,但PSD患者伴有血管性病变(如大脑动脉粥样硬化等),PSD患者发生抑郁的介导环路与普通抑郁患者可能存在区别。PSD的发生与脑内奖赏环路的关系以及CRP在PSD中的作用机制尚不清楚。

3.6. 肿瘤坏死因子α

中枢神经细胞、星形胶质细胞及小胶质细胞等受外界因素的影响,可分泌TNF-α,从而影响细胞的信号传导、转录、促炎和凋亡等。通过Logistic回归分析,发现TNF-α为PSD的独立危险因素,TNF-α表达水平对于PSD的治疗和预防极为重要[60]。一项关于探讨慢性不可预测轻度应激源(CUMS)下大脑中动脉闭塞后抑郁大鼠的下丘脑–垂体–肾上腺轴(HPAA)活性及细胞因子变化的研究,发现TNF-α及其信号通路STAT3/SOCS3在mRNA和蛋白质中水平上调,提供了支持缺血性卒中和CUMS后促肾上腺皮质激素释放因子系统和TNF-α信号通路之间信号串扰假说的证据[14]。Reichenberg等人的研究显示,TNF-α可引起抑郁症和认知功能障碍[61]。以上研究提示升高的TNF-α可能从神经突触受体、可塑性及递质降解等途径介导慢性应激诱导抑郁样行为,在PSD病理生理学机制中发挥着协同作用,是PSD干预的重要潜在靶点。

3.7. 纤维蛋白原

纤维蛋白原(FIB)是一种重要的凝血因子和炎症因子。相关研究表明FIB水平与卒中发生风险密切相关[62]。较高的血栓负荷与更严重的卒中症状和不良预后有关[63]。此外,高水平的FIB可能导致心理困扰。Marie等人对73,367名普通人群进行了一项研究,发现FIB与抑郁症呈正相关[64]。在早期高PSD风险患者中,血浆FIB升高增加了发生持续性PSD的风险[65]。Zhu等人的研究表明女性、基线卒中严重程度和较高水平的FIB与出院时PSD独立相关[66]。FIB还与汉密尔顿抑郁量表17项(HAMD-17)评分呈正相关[67]。FIB可能是缺血性卒中患者发生PSD的独立预测因子。此外,FIB和中性粒细胞计数的链介导作用可能在PSD的发生中起重要作用[68]。现阶段研究中,关于FIB与PSD相关的基础研究几乎处于空白。FIB如何在PSD病理生理学机制中发挥作用,需要进一步研究。

4. 小结

PSD的发病机制多种多样,炎症在其发生和发展中起着至关重要的作用。炎症反应与其他机制并非相互独立,而是错综复杂的相互关联。近年来国内外较多学者发现炎症相关标志物能够评估PSD状态下机体的炎症情况,是早期诊断PSD和预测PSD预后的重要生物学指标。目前关于PSD和炎症标志物的相关性研究有限,亟需更多大样本、多中心的研究,以验证两者之间的关系,并进一步比较不同炎症标志物对PSD的预测价值,以期为PSD患者提供科学、实用、高效的评估方法,也为临床医护人员做出正确临床决策提供参考,早期诊断PSD,给予有效干预,改善患者预后。

基金项目

云南省教育厅科学研究基金项目(编号:2024J0238);

昆医联合专项–面上项目(编号:202401AY070001-340);

2024年昆明医科大学研究生教育创新基金资助项目(编号:2024S296)。

NOTES

*通讯作者。

参考文献

[1] 王少石, 周新雨, 朱春燕. 卒中后抑郁临床实践的中国专家共识[J]. 中国卒中杂志, 2016, 11(8): 685-693.
[2] Liu, L., Xu, M., Marshall, I.J., Wolfe, C.D., Wang, Y. and O’Connell, M.D. (2023) Prevalence and Natural History of Depression after Stroke: A Systematic Review and Meta-Analysis of Observational Studies. PLOS Medicine, 20, e1004200.
https://doi.org/10.1371/journal.pmed.1004200
[3] Ding, K.Q., Lai, Z.H., Zhang, Y., Yang, G.Y., He, J.R. and Zeng, L.L. (2021) Monocyte-to-Lymphocyte Ratio Is Associated with Depression 3 Months after Stroke. Neuropsychiatric Disease and Treatment, 17, 835-845.
[4] Wang, M., Peng, C., Jiang, T., Wu, Q., Li, D. and Lu, M. (2024) Association between Systemic Immune-Inflammation Index and Post-Stroke Depression: A Cross-Sectional Study of the National Health and Nutrition Examination Survey 2005-2020. Frontiers in Neurology, 15, Article 1330338.
[5] Joyce, P.R., Hawes, C.R., Mulder, R.T., Sellman, J.D., Wilson, D.A. and Boswell, D.R. (1992) Elevated Levels of Acute Phase Plasma Proteins in Major Depression. Biological Psychiatry, 32, 1035-1041.
https://doi.org/10.1016/0006-3223(92)90065-8
[6] Liu, Y., Li, M., Zhang, Z., Ye, Y. and Zhou, J. (2018) Role of Microglia-Neuron Interactions in Diabetic Encephalopathy. Ageing Research Reviews, 42, 28-39.
https://doi.org/10.1016/j.arr.2017.12.005
[7] Dwyer, J.B. and Ross, D.A. (2016) Modern Microglia: Novel Targets in Psychiatric Neuroscience. Biological Psychiatry, 80, e47-e49.
https://doi.org/10.1016/j.biopsych.2016.08.006
[8] Plastira, I., Bernhart, E., Goeritzer, M., de Vaney, T., Reicher, H., Hammer, A., et al. (2017) Lysophosphatidic Acid via LPA-Receptor 5/Protein Kinase D-Dependent Pathways Induces a Motile and Pro-Inflammatory Microglial Phenotype. Journal of Neuroinflammation, 14, Article No. 253.
https://doi.org/10.1186/s12974-017-1024-1
[9] Chakraborty, S., Kaushik, D.K., Gupta, M. and Basu, A. (2010) Inflammasome Signaling at the Heart of Central Nervous System Pathology. Journal of Neuroscience Research, 88, 1615-1631.
https://doi.org/10.1002/jnr.22343
[10] Whyte, E.M. and Mulsant, B.H. (2002) Post Stroke Depression: Epidemiology, Pathophysiology, and Biological Treatment. Biological Psychiatry, 52, 253-264.
https://doi.org/10.1016/s0006-3223(02)01424-5
[11] Bryer, J.B., Starkstein, S.E., Votypka, V., Parikh, R.M., Price, T.R. and Robinson, R.G. (1992) Reduction of CSF Monoamine Metabolites in Poststroke Depression: A Preliminary Report. The Journal of Neuropsychiatry and Clinical Neurosciences, 4, 440-442.
[12] Karaiskos, D., Tzavellas, E., Spengos, K., Vassilopoulou, S. and Paparrigopoulos, T. (2012) Duloxetine versus Citalopram and Sertraline in the Treatment of Poststroke Depression, Anxiety, and Fatigue. The Journal of Neuropsychiatry and Clinical Neurosciences, 24, 349-353.
https://doi.org/10.1176/appi.neuropsych.11110325
[13] Spalletta, G., Bossù, P., Ciaramella, A., Bria, P., Caltagirone, C. and Robinson, R.G. (2006) The Etiology of Poststroke Depression: A Review of the Literature and a New Hypothesis Involving Inflammatory Cytokines. Molecular Psychiatry, 11, 984-991.
https://doi.org/10.1038/sj.mp.4001879
[14] Wang, S.S., Chen, H.Y., Sun, H., Wang, T. and Guan, J.Q. (2014) Activation of TNF-α and Signaling Pathway in the Hypothalamus of the Rats Subjected to Chronic Unpredictable Mild Stressors after Middle Cerebral Artery Occlusion. Acta Physiologica Sinica, 66, 463-468.
[15] Paolucci, S., Antonucci, G., Grasso, M.G., Morelli, D., Troisi, E., Coiro, P., et al. (2001) Post-Stroke Depression, Antidepressant Treatment and Rehabilitation Results. Cerebrovascular Diseases, 12, 264-271.
https://doi.org/10.1159/000047714
[16] Tateno, A., Kimura, M. and Robinson, R.G. (2002) Phenomenological Characteristics of Poststroke Depression: Early-versus Late-Onset. The American Journal of Geriatric Psychiatry, 10, 575-582.
https://doi.org/10.1097/00019442-200209000-00011
[17] Plotsky, P.M., Owens, M.J. and Nemeroff, C.B. (1998) Psycho Neuroendocrinology of Depression. Psychiatric Clinics of North America, 21, 293-307.
https://doi.org/10.1016/s0193-953x(05)70006-x
[18] Hu, B., Yang, X., Xu, Y., Sun, Y., Sun, C., Guo, W., et al. (2014) Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clinical Cancer Research, 20, 6212-6222.
https://doi.org/10.1158/1078-0432.ccr-14-0442
[19] Hou, D., Wang, C., Luo, Y., Ye, X., Han, X., Feng, Y., et al. (2020) Systemic Immune-Inflammation Index (SII) but Not Platelet-Albumin-Bilirubin (PALBI) Grade Is Associated with Severity of Acute Ischemic Stroke (AIS). International Journal of Neuroscience, 131, 1203-1208.
https://doi.org/10.1080/00207454.2020.1784166
[20] Mazza, M.G., De Lorenzo, R., Conte, C., Poletti, S., Vai, B., Bollettini, I., et al. (2020) Anxiety and Depression in COVID-19 Survivors: Role of Inflammatory and Clinical Predictors. Brain, Behavior, and Immunity, 89, 594-600.
https://doi.org/10.1016/j.bbi.2020.07.037
[21] Li, X., Huan, J., Lin, L. and Hu, Y. (2023) Association of Systemic Inflammatory Biomarkers with Depression Risk: Results from National Health and Nutrition Examination Survey 2005-2018 Analyses. Frontiers in Psychiatry, 14, Article 1097196.
https://doi.org/10.3389/fpsyt.2023.1097196
[22] Hu, J., Wang, L., Fan, K., Ren, W., Wang, Q., Ruan, Y., et al. (2021) The Association between Systemic Inflammatory Markers and Post-Stroke Depression: A Prospective Stroke Cohort. Clinical Interventions in Aging, 16, 1231-1239.
https://doi.org/10.2147/cia.s314131
[23] Qi, Q., Zhuang, L., Shen, Y., Geng, Y., Yu, S., Chen, H., et al. (2016) A Novel Systemic Inflammation Response Index (SIRI) for Predicting the Survival of Patients with Pancreatic Cancer after Chemotherapy. Cancer, 122, 2158-2167.
https://doi.org/10.1002/cncr.30057
[24] Cao, Y., Zheng, X., Hu, Y., Li, J., Huang, B., Zhao, N., et al. (2023) Levels of Systemic Inflammation Response Index Are Correlated with Tumor-Associated Bacteria in Colorectal Cancer. Cell Death & Disease, 14, Article No. 69.
https://doi.org/10.1038/s41419-023-05602-9
[25] Sun, L., Hu, W., Liu, M., Chen, Y., Jin, B., Xu, H., et al. (2020) High Systemic Inflammation Response Index (SIRI) Indicates Poor Outcome in Gallbladder Cancer Patients with Surgical Resection: A Single Institution Experience in China. Cancer Research and Treatment, 52, 1199-1210.
https://doi.org/10.4143/crt.2020.303
[26] Zhao, S., Dong, S., Qin, Y., Wang, Y., Zhang, B. and Liu, A. (2023) Inflammation Index SIRI Is Associated with Increased All-Cause and Cardiovascular Mortality among Patients with Hypertension. Frontiers in Cardiovascular Medicine, 9, Article 1066219.
https://doi.org/10.3389/fcvm.2022.1066219
[27] Wang, X., Ni, Q., Wang, J., Wu, S., Chen, P. and Xing, D. (2022) Systemic Inflammation Response Index Is a Promising Prognostic Marker in Elderly Patients with Heart Failure: A Retrospective Cohort Study. Frontiers in Cardiovascular Medicine, 9, Article 871031.
https://doi.org/10.3389/fcvm.2022.871031
[28] Chu, M., Luo, Y., Wang, D., Liu, Z., Niu, H., Wu, X., et al. (2024) Prediction of Poststroke Cognitive Impairment Based on the Systemic Inflammatory Response Index. Brain and Behavior, 14, e3372.
https://doi.org/10.1002/brb3.3372
[29] 黄小妹, 胡填, 叶玉焊, 徐吟文, 古剑雄. 系统性炎症反应指数与卒中后抑郁的关系: 基于倾向评分匹配及逆概率处理加权法[J]. 实用心脑肺血管病杂志, 2023, 31(6): 38-44.
[30] Arbel, Y., Finkelstein, A., Halkin, A., Birati, E.Y., Revivo, M., Zuzut, M., et al. (2012) Neutrophil/Lymphocyte Ratio Is Related to the Severity of Coronary Artery Disease and Clinical Outcome in Patients Undergoing Angiography. Atherosclerosis, 225, 456-460.
https://doi.org/10.1016/j.atherosclerosis.2012.09.009
[31] Demircan, F., Gözel, N., Kılınç, F., Ulu, R. and Atmaca, M. (2015) The Impact of Red Blood Cell Distribution Width and Neutrophil/Lymphocyte Ratio on the Diagnosis of Major Depressive Disorder. Neurology and Therapy, 5, 27-33.
https://doi.org/10.1007/s40120-015-0039-8
[32] Cai, L., Xu, L., Wei, L. and Chen, W. (2017) Relationship of Mean Platelet Volume to MDD: A Retrospective Study. Shanghai Arch Psychiatry, 29, 21-29.
[33] Kayhan, F., Gündüz, Ş., Ersoy, S.A., Kandeğer, A. and Annagür, B.B. (2017) Relationships of Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios with the Severity of Major Depression. Psychiatry Research, 247, 332-335.
https://doi.org/10.1016/j.psychres.2016.11.016
[34] Qun, S., Tang, Y., Sun, J., Liu, Z., Wu, J., Zhang, J., et al. (2017) Neutrophil-to-Lymphocyte Ratio Predicts 3-Month Outcome of Acute Ischemic Stroke. Neurotoxicity Research, 31, 444-452.
https://doi.org/10.1007/s12640-017-9707-z
[35] Mayadas, T.N., Cullere, X. and Lowell, C.A. (2014) The Multifaceted Functions of Neutrophils. Annual Review of Pathology: Mechanisms of Disease, 9, 181-218.
https://doi.org/10.1146/annurev-pathol-020712-164023
[36] Shichita, T., Sakaguchi, R., Suzuki, M. and Yoshimura, A. (2012) Post-Ischemic Inflammation in the Brain. Frontiers in Immunology, 3, Article 132.
https://doi.org/10.3389/fimmu.2012.00132
[37] Becker, K.J. (2016) Inflammation and the Silent Sequelae of Stroke. Neurotherapeutics, 13, 801-810.
https://doi.org/10.1007/s13311-016-0451-5
[38] Gibson, P.H., Cuthbertson, B.H., Croal, B.L., Rae, D., El-Shafei, H., Gibson, G., et al. (2010) Usefulness of Neutrophil/Lymphocyte Ratio as Predictor of New-Onset Atrial Fibrillation after Coronary Artery Bypass Grafting. The American Journal of Cardiology, 105, 186-191.
https://doi.org/10.1016/j.amjcard.2009.09.007
[39] Gokdemir, M.T., Karakilcik, A.Z. and Gokdemir, G.S. (2017) Prognostic Importance of Paraoxonase, Arylesterase and Mean Platelet Volume Efficiency in Acute Ischaemic Stroke. Journal of the Pakistan Medical Association, 67, 1679-1683.
[40] Dietrich-Muszalska, A. and Wachowicz, B. (2016) Platelet Haemostatic Function in Psychiatric Disorders: Effects of Antidepressants and Antipsychotic Drugs. The World Journal of Biological Psychiatry, 18, 564-574.
https://doi.org/10.3109/15622975.2016.1155748
[41] Cortese, G.P., Barrientos, R.M., Maier, S.F. and Patterson, S.L. (2011) Aging and a Peripheral Immune Challenge Interact to Reduce Mature Brain-Derived Neurotrophic Factor and Activation of Trkb, Plcγ1, and ERK in Hippocampal Synaptoneurosomes. The Journal of Neuroscience, 31, 4274-4279.
https://doi.org/10.1523/jneurosci.5818-10.2011
[42] Hu, J., Zhou, W., Zhou, Z., Han, J. and Dong, W. (2020) Elevated Neutrophil‑to‑Lymphocyte and Platelet‑to‑Lymphocyte Ratios Predict Post‑Stroke Depression with Acute Ischemic Stroke. Experimental and Therapeutic Medicine, 19, 2497-2504.
https://doi.org/10.3892/etm.2020.8514
[43] Cheng, Y., Wang, Y., Wang, X., Jiang, Z., Zhu, L. and Fang, S. (2022) Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Depression: An Updated Systematic Review and Meta-Analysis. Frontiers in Psychiatry, 13, Article 893097.
https://doi.org/10.3389/fpsyt.2022.893097
[44] Huang, G., Chen, H., Wang, Q., Hong, X., Hu, P., Xiao, M., et al. (2019) High Platelet-to-Lymphocyte Ratio Are Associated with Post-Stroke Depression. Journal of Affective Disorders, 246, 105-111.
https://doi.org/10.1016/j.jad.2018.12.012
[45] 马青素, 高岚, 郭宁. PLR、NLR、CRP表达水平与缺血性脑卒中后抑郁的关系[J]. 国际精神病学杂志, 2023, 50(6): 1502-1504.
[46] 唐文静, 伍思源, 杨晨, 陶希. 炎症反应与卒中后抑郁[J]. 中国组织工程研究, 2022, 26(8): 1278-1285.
[47] Wang, L., Chunyou, C., Zhu, J., Bao, X. and Tao, X. (2023) Prediction of Post-Stroke Depression with Combined Blood Biomarkers IL-6, Tnf-A, and Fatty Acid Binding Protein: A Prospective Study. Journal of Medical Biochemistry, 42, 638-644.
https://doi.org/10.5937/jomb0-43904
[48] Korostynski, M., Hoinkis, D., Piechota, M., Golda, S., Pera, J., Slowik, A., et al. (2021) Toll-Like Receptor 4-Mediated Cytokine Synthesis and Post-Stroke Depressive Symptoms. Translational Psychiatry, 11, Article No. 246.
https://doi.org/10.1038/s41398-021-01359-x
[49] Yi, X., Zhu, X., Zhou, Y., Zhang, D., Li, M., Zhu, Y., et al. (2021) The Combination of Insulin Resistance and Serum Interleukin-1β Correlates with Post-Stroke Depression in Patients with Acute Ischemic Stroke. Neuropsychiatric Disease and Treatment, 17, 735-746.
https://doi.org/10.2147/ndt.s291164
[50] Yang, L., Zhang, Z., Sun, D., Xu, Z., Zhang, X. and Li, L. (2010) The Serum Interleukin-18 Is a Potential Marker for Development of Post-Stroke Depression. Neurological Research, 32, 340-346.
https://doi.org/10.1179/016164110x12656393665080
[51] Kim, J., Stewart, R., Kim, S., Shin, I., Kim, J., Park, M., et al. (2011) Associations of Cytokine Gene Polymorphisms with Post-Stroke Depression. The World Journal of Biological Psychiatry, 13, 579-587.
https://doi.org/10.3109/15622975.2011.588247
[52] Su, J., Chou, S., Tsai, C. and Hung, T. (2012) Cytokine Changes in the Pathophysiology of Poststroke Depression. General Hospital Psychiatry, 34, 35-39.
https://doi.org/10.1016/j.genhosppsych.2011.09.020
[53] Wu, S., Duncan, F., Anderson, N.H., Kuppuswamy, A., Macloed, M.R. and Mead, G.E. (2015) Exploratory Cohort Study of Associations between Serum C-Reactive Protein and Fatigue after Stroke. PLOS ONE, 10, e0143784.
https://doi.org/10.1371/journal.pone.0143784
[54] Guo, J., Su, W., Fang, J., Chen, N., Zhou, M., Zhang, Y., et al. (2018) Elevated CRP at Admission Predicts Post-Stroke Cognitive Impairment in Han Chinese Patients with Intracranial Arterial Stenosis. Neurological Research, 40, 292-296.
https://doi.org/10.1080/01616412.2018.1438224
[55] Vitturi, B.K., Mitre, L.P., Kim, A.I.H. and Gagliardi, R.J. (2021) Prevalence and Predictors of Fatigue and Neuropsychiatric Symptoms in Patients with Minor Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 30, Article 105964.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105964
[56] 包颖石, 刘建红, 杜华平, 贾娴珺. C反应蛋白联合中性粒细胞与淋巴细胞比值预测缺血性脑卒中患者卒中后抑郁的价值[J]. 实用临床医药杂志, 2021, 25(22): 59-62.
[57] Yin, J., Zhong, C., Zhu, Z., Bu, X., Xu, T., Guo, L., et al. (2018) Elevated Circulating Homocysteine and High-Sensitivity C-Reactive Protein Jointly Predicts Post-Stroke Depression among Chinese Patients with Acute Ischemic Stroke. Clinica Chimica Acta, 479, 132-137.
https://doi.org/10.1016/j.cca.2018.01.011
[58] Bartoli, F., Di Brita, C., Crocamo, C., Clerici, M. and Carrà, G. (2018) Early Post-Stroke Depression and Mortality: Meta-Analysis and Meta-Regression. Frontiers in Psychiatry, 9, Article 530.
https://doi.org/10.3389/fpsyt.2018.00530
[59] Banda, K.J., Chu, H., Kang, X.L., Liu, D., Pien, L., Jen, H., et al. (2022) Prevalence of Dysphagia and Risk of Pneumonia and Mortality in Acute Stroke Patients: A Meta-Analysis. BMC Geriatrics, 22, Article No. 420.
https://doi.org/10.1186/s12877-022-02960-5
[60] Mu, Y., Wang, Z., Zhou, J., Tan, C. and Wang, H. (2018) Correlations of Post-Stroke Depression with Inflammatory Response Factors. Iranian Journal of Public Health, 47, 988-993.
[61] Reichenberg, A., Yirmiya, R., Schuld, A., Kraus, T., Haack, M., Morag, A., et al. (2001) Cytokine-Associated Emotional and Cognitive Disturbances in Humans. Archives of General Psychiatry, 58, 445-452.
https://doi.org/10.1001/archpsyc.58.5.445
[62] del Zoppo, G.J., Levy, D.E., Wasiewski, W.W., Pancioli, A.M., Demchuk, A.M., Trammel, J., et al. (2009) Hyperfibrinogenemia and Functional Outcome from Acute Ischemic Stroke. Stroke, 40, 1687-1691.
https://doi.org/10.1161/strokeaha.108.527804
[63] Pikija, S., Trkulja, V., Mutzenbach, J.S., McCoy, M.R., Ganger, P. and Sellner, J. (2016) Fibrinogen Consumption Is Related to Intracranial Clot Burden in Acute Ischemic Stroke: A Retrospective Hyperdense Artery Study. Journal of Translational Medicine, 14, Article No. 250.
https://doi.org/10.1186/s12967-016-1006-6
[64] Wium-Andersen, M.K., Ørsted, D.D. and Nordestgaard, B.G. (2013) Elevated Plasma Fibrinogen, Psychological Distress, Antidepressant Use, and Hospitalization with Depression: Two Large Population-Based Studies. Psychoneuroendocrinology, 38, 638-647.
https://doi.org/10.1016/j.psyneuen.2012.08.006
[65] Sun, W., Yang, Z., Wang, Y., Miao, J., Pan, C., Li, G., et al. (2024) Peripheral Inflammation and Trajectories of Depressive Symptomology after Ischemic Stroke: A Prospective Cohort Study. Journal of Affective Disorders, 359, 14-21.
https://doi.org/10.1016/j.jad.2024.05.045
[66] Zhu, J., Wang, L., Shao, H., Tang, X., Zhang, L., Zhou, Y., et al. (2022) Higher Plasma Fibrinogen Level at Admission Is Associated with Post-Stroke Depression at Discharge. Brain Sciences, 12, Article 1032.
https://doi.org/10.3390/brainsci12081032
[67] Qiu, X., Wang, H., Lan, Y., Miao, J., Pan, C., Sun, W., et al. (2022) Blood Biomarkers of Post-Stroke Depression after Minor Stroke at Three Months in Males and Females. BMC Psychiatry, 22, Article No. 162.
https://doi.org/10.1186/s12888-022-03805-6
[68] Sun, W., Miao, J., Song, Y., Wang, Y., Pan, C., Li, G., et al. (2022) Systemic Low-Grade Inflammation and Depressive Symptomology at Chronic Phase of Ischemic Stroke: The Chain Mediating Role of Fibrinogen and Neutrophil Counts. Brain, Behavior, and Immunity, 100, 332-341.
https://doi.org/10.1016/j.bbi.2021.10.011