[1]
|
Savarese, G., Becher, P.M., Lund, L.H., Seferovic, P., Rosano, G.M.C. and Coats, A.J.S. (2022) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287. https://doi.org/10.1093/cvr/cvac013
|
[2]
|
Bozkurt, B., Coats, A.J.S., Tsutsui, H., Abdelhamid, C.M., Adamopoulos, S., Albert, N., et al. (2021) Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. European Journal of Heart Failure, 23, 352-380. https://doi.org/10.1002/ejhf.2115
|
[3]
|
McDonagh, T.A., Metra, M., Adamo, M., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 42, 3599-3726.
|
[4]
|
Pan, X., Huang, C. and Li, J. (2021) The Emerging Roles of m6A Modification in Liver Carcinogenesis. International Journal of Biological Sciences, 17, 271-284. https://doi.org/10.7150/ijbs.50003
|
[5]
|
Sommer, S., Lavi, U. and Darnell, J.E. (1978) The Absolute Frequency of Labeled N-6-Methyladenosine in Hela Cell Messenger RNA Decreases with Label Time. Journal of Molecular Biology, 124, 487-499. https://doi.org/10.1016/0022-2836(78)90183-3
|
[6]
|
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2013) A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nature Chemical Biology, 10, 93-95. https://doi.org/10.1038/nchembio.1432
|
[7]
|
Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon-Divon, M., et al. (2015) m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency toward Differentiation. Science, 347, 1002-1006. https://doi.org/10.1126/science.1261417
|
[8]
|
Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., et al. (2016) Structural Basis of N6-Adenosine Methylation by the METTL3-METTL14 Complex. Nature, 534, 575-578. https://doi.org/10.1038/nature18298
|
[9]
|
Zaccara, S., Ries, R.J. and Jaffrey, S.R. (2019) Reading, Writing and Erasing mRNA Methylation. Nature Reviews Molecular Cell Biology, 20, 608-624. https://doi.org/10.1038/s41580-019-0168-5
|
[10]
|
Wu, Y., Zhan, S., Xu, Y. and Gao, X. (2021) RNA Modifications in Cardiovascular Diseases, the Potential Therapeutic Targets. Life Sciences, 278, Article ID: 119565. https://doi.org/10.1016/j.lfs.2021.119565
|
[11]
|
Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887. https://doi.org/10.1038/nchembio.687
|
[12]
|
Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A.V., Patil, D.P., et al. (2016) Reversible Methylation of m6Am in the 5’ Cap Controls mRNA Stability. Nature, 541, 371-375. https://doi.org/10.1038/nature21022
|
[13]
|
Anreiter, I., Mir, Q., Simpson, J.T., Janga, S.C. and Soller, M. (2021) New Twists in Detecting mRNA Modification Dynamics. Trends in Biotechnology, 39, 72-89. https://doi.org/10.1016/j.tibtech.2020.06.002
|
[14]
|
Li, L., Xu, N., Liu, J., Chen, Z., Liu, X. and Wang, J. (2022) m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, 13, Article ID: 908976. https://doi.org/10.3389/fgene.2022.908976
|
[15]
|
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., et al. (2012) Topology of the Human and Mouse m6A RNA Methylomes Revealed by m6A-seq. Nature, 485, 201-206. https://doi.org/10.1038/nature11112
|
[16]
|
Zhen, D., Wu, Y., Zhang, Y., Chen, K., Song, B., Xu, H., Tang, Y., Wei, Z. and Meng, J. (2020) m6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N6-Methyladenosine (m6A) Readers. Frontiers in Cell and Developmental Biology, 8, 741. https://doi.org/10.3389/fcell.2020.00741
|
[17]
|
Zhao, J., Ding, H., Ding, J., Shi, X., He, Y., Zhu, H., et al. (2022) The m6A Methyltransferase METTL3 Promotes Trophoblast Cell Invasion by Regulating MYLK Expression. Placenta, 129, 1-6. https://doi.org/10.1016/j.placenta.2022.09.002
|
[18]
|
Dorn, L.E., Lasman, L., Chen, J., Xu, X., Hund, T.J., Medvedovic, M., et al. (2019) The N6-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation, 139, 533-545. https://doi.org/10.1161/circulationaha.118.036146
|
[19]
|
Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019) METTL3 and ALKBH5 Oppositely Regulate m6A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy, 15, 1419-1437. https://doi.org/10.1080/15548627.2019.1586246
|
[20]
|
Duan, H., Wang, Y. and Jia, G. (2018) Dynamic and Reversible RNA n6‐Methyladenosine Methylation. WIREs RNA, 10, e1507. https://doi.org/10.1002/wrna.1507
|
[21]
|
Shi, L., Li, X., Zhang, M., Qin, C., Zhang, Z. and Chen, Z. (2024) Downregulation of WTAP Causes Dilated Cardiomyopathy and Heart Failure. Journal of Molecular and Cellular Cardiology, 188, 38-51. https://doi.org/10.1016/j.yjmcc.2024.01.002
|
[22]
|
Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019) METTL3 and ALKBH5 Oppositely Regulate m6A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy, 15, 1419-1437. https://doi.org/10.1080/15548627.2019.1586246
|
[23]
|
Fan, S. and Hu, Y. (2022) Role of m6A Methylation in the Occurrence and Development of Heart Failure. Frontiers in Cardiovascular Medicine, 9, Article ID: 892113. https://doi.org/10.3389/fcvm.2022.892113
|
[24]
|
Kho, C. (2023) Targeting Calcium Regulators as Therapy for Heart Failure: Focus on the Sarcoplasmic Reticulum Ca-Atpase Pump. Frontiers in Cardiovascular Medicine, 10, Article ID: 1185261. https://doi.org/10.3389/fcvm.2023.1185261
|
[25]
|
Mathiyalagan, P., Adamiak, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., et al. (2019) FTO-Dependent N6-Methyladenosine Regulates Cardiac Function during Remodeling and Repair. Circulation, 139, 518-532. https://doi.org/10.1161/circulationaha.118.033794
|
[26]
|
Han, Y., Xie, H., Lu, B., Xiang, R., Zhang, H., Li, J., et al. (2021) Lipopolysaccharide Alters the m6A Epitranscriptomic Tagging of RNAs in Cardiac Tissue. Frontiers in Molecular Biosciences, 8, Article ID: 670160. https://doi.org/10.3389/fmolb.2021.670160
|
[27]
|
Gustavsson, J., Mehlig, K., Leander, K., Lissner, L., Björck, L., Rosengren, A., et al. (2014) FTO Genotype, Physical Activity, and Coronary Heart Disease Risk in Swedish Men and Women. Circulation: Cardiovascular Genetics, 7, 171-177. https://doi.org/10.1161/circgenetics.111.000007
|
[28]
|
Arvunescu, A.M., Ionescu, R.F., Cretoiu, S.M., Dumitrescu, S.I., Zaharia, O. and Nanea, I.T. (2023) Inflammation in Heart Failure—Future Perspectives. Journal of Clinical Medicine, 12, Article No. 7738. https://doi.org/10.3390/jcm12247738
|
[29]
|
Chia, Y.C., Kieneker, L.M., van Hassel, G., Binnenmars, S.H., Nolte, I.M., van Zanden, J.J., et al. (2021) Interleukin 6 and Development of Heart Failure with Preserved Ejection Fraction in the General Population. Journal of the American Heart Association, 10, e018549. https://doi.org/10.1161/jaha.120.018549
|
[30]
|
Stafford, N., Assrafally, F., Prehar, S., Zi, M., De Morais, A.M., Maqsood, A., et al. (2020) Signaling via the Interleukin-10 Receptor Attenuates Cardiac Hypertrophy in Mice during Pressure Overload, but Not Isoproterenol Infusion. Frontiers in Pharmacology, 11, Article ID: 559220. https://doi.org/10.3389/fphar.2020.559220
|
[31]
|
Liberale, L., Montecucco, F., Tardif, J., Libby, P. and Camici, G.G. (2020) Inflamm-Ageing: The Role of Inflammation in Age-Dependent Cardiovascular Disease. European Heart Journal, 41, 2974-2982. https://doi.org/10.1093/eurheartj/ehz961
|
[32]
|
Shen, Y., Sun, Z., Mao, S., Zhang, Y., Jiang, W. and Wang, H. (2020) IRF-1 Contributes to the Pathological Phenotype of VSMCS during Atherogenesis by Increasing CCL19 Transcription. Aging, 13, 933-943. https://doi.org/10.18632/aging.202204
|
[33]
|
Guo, M., Yan, R., Ji, Q., Yao, H., Sun, M., Duan, L., et al. (2020) IFN Regulatory Factor-1 Induced Macrophage Pyroptosis by Modulating m6A Modification of Circ_0029589 in Patients with Acute Coronary Syndrome. International Immunopharmacology, 86, Article ID: 106800. https://doi.org/10.1016/j.intimp.2020.106800
|
[34]
|
Wang, J., Yan, S., Lu, H., Wang, S. and Xu, D. (2019) METTL3 Attenuates Lps-Induced Inflammatory Response in Macrophages via NF-κB Signaling Pathway. Mediators of Inflammation, 2019, Article ID: 3120391. https://doi.org/10.1155/2019/3120391
|
[35]
|
Jian, D., Wang, Y., Jian, L., Tang, H., Rao, L., Chen, K., et al. (2020) METTL14 Aggravates Endothelial Inflammation and Atherosclerosis by Increasing FOXO1 N6-Methyladeosine Modifications. Theranostics, 10, 8939-8956. https://doi.org/10.7150/thno.45178
|
[36]
|
Liu, Y., Liu, Z., Tang, H., Shen, Y., Gong, Z., Xie, N., et al. (2019) The N6-Methyladenosine (m6A)-Forming Enzyme METTL3 Facilitates M1 Macrophage Polarization through the Methylation of stat1 mRNA. American Journal of Physiology-Cell Physiology, 317, C762-C775. https://doi.org/10.1152/ajpcell.00212.2019
|
[37]
|
Pagan, L.U., Gomes, M.J., Martinez, P.F. and Okoshi, M.P. (2022) Oxidative Stress and Heart Failure: Mechanisms, Signalling Pathways, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9829505. https://doi.org/10.1155/2022/9829505
|
[38]
|
Pagan, L.U., Gomes, M.J., Gatto, M., Mota, G.A.F., Okoshi, K. and Okoshi, M.P. (2022) The Role of Oxidative Stress in the Aging Heart. Antioxidants, 11, Article No. 336. https://doi.org/10.3390/antiox11020336
|
[39]
|
Yu, F., Wei, J., Cui, X., Yu, C., Ni, W., Bungert, J., et al. (2021) Post-Translational Modification of RNA m6A Demethylase ALKBH5 Regulates Ros-Induced DNA Damage Response. Nucleic Acids Research, 49, 5779-5797. https://doi.org/10.1093/nar/gkab415
|
[40]
|
Li, Q., Li, X., Tang, H., Jiang, B., Dou, Y., Gorospe, M., et al. (2017) NSUN2-Mediated m5C Methylation and Mettl3/Mettl14-Mediated M6a Methylation Cooperatively Enhance P21 Translation. Journal of Cellular Biochemistry, 118, 2587-2598. https://doi.org/10.1002/jcb.25957
|
[41]
|
Del Re, D.P., Amgalan, D., Linkermann, A., Liu, Q. and Kitsis, R.N. (2019) Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 99, 1765-1817. https://doi.org/10.1152/physrev.00022.2018
|
[42]
|
Liu, G., Xie, X., Liao, W., Chen, S., Zhong, R., Qin, J., et al. (2024) Ferroptosis in Cardiovascular Disease. Biomedicine & Pharmacotherapy, 170, Article ID: 116057. https://doi.org/10.1016/j.biopha.2023.116057
|
[43]
|
Yang, Y., Ren, J., Zhang, J., Shi, H., Wang, J. and Yan, Y. (2024) FTO Ameliorates Doxorubicin-Induced Cardiotoxicity by Inhibiting Ferroptosis via p53-p21/nrf2 Activation in a Hur-Dependent m6A Manner. Redox Biology, 70, Article ID: 103067. https://doi.org/10.1016/j.redox.2024.103067
|
[44]
|
Sang, A., Zhang, J., Zhang, M., Xu, D., Xuan, R., Wang, S., et al. (2024) METTL4 Mediated-N6-Methyladenosine Promotes Acute Lung Injury by Activating Ferroptosis in Alveolar Epithelial Cells. Free Radical Biology and Medicine, 213, 90-101. https://doi.org/10.1016/j.freeradbiomed.2024.01.013
|