M6A甲基化在心衰中的研究进展
Research Progress of M6A Methylation in Heart Failure
DOI: 10.12677/acm.2024.14123042, PDF, HTML, XML,   
作者: 王春艳, 付青青:西安医学院研究生处,陕西 西安;陕西省人民医院心血管内科,陕西 西安;杨 光*:陕西省人民医院心血管内科,陕西 西安
关键词: 心力衰竭M6A甲基化钙稳态自噬及炎症反应氧化应激铁死亡Heart Failure M6A Methylation Calcium Homeostasis Autophagy and Inflammatory Response Oxidative Stress Ferroptosis
摘要: 随着经济的发展,心力衰竭(HF)患者的死亡率仍持续增长。导致HF的病因众多,其中表观遗传和基因表达异常成为了HF的重要发病机制之一。N6-甲基腺苷(m6A)是真核细胞中最常见的内部RNA修饰,本篇综述将介绍m6A甲基转移酶(编码器writer),m6A去甲基化酶(消码器eraser),m6A识别蛋白(读码器 reader)通过一系列调节最终导致HF的发生。本篇综述还会介绍甲基化通过调节钙稳态、自噬及炎症反应、氧化应激以及铁死亡等介导HF的发生发展。
Abstract: With the development of the economy, the mortality rate of patients with heart failure (HF) remains high. There are many causes of HF, among which epigenetic and gene expression abnormalities have become one of the important pathogenesis of HF. N6-methyladenosine (m6A) is the most common internal RNA modification in eukaryotic cells, and this review will introduce m6A methyltransferase (encoder writer), m6A demethylase (decoder eraser), and m6A recognition protein (barcode reader) eventually lead to the development of HF by a series of modulations. This review will also cover that methylation may mediate the development of HF by modulating calcium homeostasis, autophagy and inflammatory responses, oxidative stress, and ferroptosis.
文章引用:王春艳, 杨光, 付青青. M6A甲基化在心衰中的研究进展[J]. 临床医学进展, 2024, 14(12): 16-21. https://doi.org/10.12677/acm.2024.14123042

1. 简要介绍

HF的发病率逐年上升,影响着全球超过6400万人。因此,减轻其社会和经济负担已成为全球公共卫生的首要任务[1]。HF是一种有临床症状和/或心脏结构和/或功能异常且伴有钠尿肽水平升高和/或肺部或全身充血的疾病[2] [3]。m6A修饰是真核细胞中最常见的内部RNA修饰,可通过剪接、降解、翻译和易位调节来完成RNA修饰[4]。其中m6A甲基化可能通过调控钙稳态、自噬及炎症反应、氧化应激以及铁死亡等介导HF的发生发展。为HF的诊治及靶向治疗提供新思路。

2. M6A的研究

N6-甲基腺苷(m6A)首次发现于20世纪70年代。m6A的存在与mRNA不稳定性密切相关[5]。m6A修饰是真核细胞中最常见的内部RNA修饰,可通过剪接、降解、翻译和易位调节来完成RNA修饰。m6A包括:m6A甲基转移酶(编码器writer),m6A去甲基化酶(消码器eraser),m6A识别蛋白(读码器reader)。M6A甲基转移酶(编码器,writer)包括(METTL3/5/14/16、WTAP、ZC3H13、KIAA1429、RBM15/15B、HAKAI、DNMT3B和83 ZCCHC4) [4]。甲基转移酶样3 (methyltransferaselike 3, METTL3)、甲基转移酶样14 (methyltransferase-like 14, METTL14)催化的RNA修饰的关键[6]。其中,METTL3为催化核心[7],而METTL14是稳定剂、激活剂[8]。M6A去甲基化酶(消除器,eraser)可介导m6A表观转录组[9]。m6A去甲基化酶的发现揭示了m6A修饰的可逆性,因此m6A修饰是一个动态调控的过程[10]。肥胖相关(FTO)基因是真核细胞中的一种RNA N6-甲基腺苷(m6A)去甲基酶[11]。FTO能使N6,2’-O-二甲基腺苷(m6Am)-二甲基修饰的mRNA去甲基化并降低其化学稳定性[12]。m6A是一种高度动态且可逆的修饰[13]。M6A识别蛋白(阅读器,reader)是YTH大家族的成员,该家族包括包含YTH结构域的家族蛋白1-3 (YTHDF1/2/3)和包含YTH结构域的蛋白1-2 (YTHDC1/2)亚科[14]。含有YTH结构域的蛋白质是第一个被发现的m6A结合蛋白[15]。M6A Reader结合位点与m6A定位重叠,均位于CDS终止密码子和mRNA上的3’UTR附近[16]

3. M6A甲基化与心力衰竭

m6A参与各种基本的生物功能,尤其在HF中发挥重要作用。研究表明m6A与HF存在密切关系。METTL3在心肌细胞凋亡中起重要作用,当沉默METTL3时可增强缺血缺氧处理后心肌细胞的自噬并抑制细胞凋亡,METTL3在m6A的两个残基3’-UTR处甲基化TFEB (溶酶体生物合成和自噬基因的主要调节因子),促进了RNA结合蛋白HNRNPD与TFEB前mRNA的结合,从而使METTL3促进了细胞凋亡。m6A甲基化酶METTL3在体内外均可促进心肌细胞肥大[17] [18] ALKBH5与METTL3起相反作用,ALKBH5可抑制缺血性缺氧诱导的心肌细胞的凋亡[19]。WTAP与METTL14类似,WTAP不表现出甲基转移酶活性;然而,它的敲低显着降低了RNA中m6A修饰的水平,其程度甚至比METTL14敲低还要严重。这表明WTAP对于m6A修饰至关重要[20]。我们发现Wilms’tumor 1相关蛋白(WTAP,m6A RNA甲基转移酶复合物的关键调节蛋白)是心脏功能和心脏病的关键调节蛋白。WTAP 通过维持心肌细胞特定基因的染色质可及性,在心脏发育和心脏功能中发挥关键作用[21]。FTO和ALKBH5对于心脏稳态至关重要。研究证实,FTO和ALKBH5在胚胎心脏和心血管疾病的发生发展中发挥着重要作用,如动脉粥样硬化、冠心病(CHD)和HF [19] [22]

4. M6A甲基化在心力衰竭发生机制中的作用

4.1. m6A甲基化和钙稳态

心肌细胞钙稳态失调是HF的主要原因之一。在心肌细胞的收缩、舒张功能及心电信号的传递中起重要作用。当HF发生时,SERCA2a (肌浆/内质网Ca2+ ATP酶2a,心肌细胞中表达的SERCA的主要亚型)功能降低[23]。SERCA2a是一种SR膜蛋白,通过将Ca2+从细胞质转运到SR来维持较低的细胞质Ca2+水平。SERCA2a泵分别负责人类和大鼠舒张期Ca2+心室CM周转的约70%和92% [24]。在HF发生的过程中,心肌细胞中m6A去甲基化酶FTO表达减少,METTL4/14等书写蛋白表达增加,衰竭心脏和缺氧心肌细胞中m6A含量增加[25] [26]。通过影响收缩蛋白SERCA2a的转录表达,导致钙稳态调节异常,从而降低心肌收缩功能。体内外研究表明,FTO可提高Ca2+振幅,加速Ca2+衰减,缩短肌小节,减少由Ca2+引起的m6A增加缺血,改善心肌细胞相应的收缩功能障碍。经过通路富集和筛选后,FTO可以选择性作用于心脏肌节组织、肌原纤维组装、钙治疗和收缩等相关通路,可引起多种心脏疾病,如肥厚型心肌病、室间隔缺损、房室缺损、心律失常和CHD等疾病[25] [27]

4.2. m6A甲基化和炎症反应及巨噬细胞自噬

近期有证据表明,在HF中,可以发现高水平的炎症生物标志物,如IL-1β、IL-6、IL-10、CRP、TNF-α等炎症因子[28]。其中,IL-6在无症状左心室功能障碍到有症状左心室功能障碍的演变中发挥作用,对于有发生临床心力衰竭(尤其是HFpEF)风险的患者来说,它是一个有前途的生物标志物[29]。IL-10是一种主要的抗炎细胞因子。炎症在心脏肥大的发展和HF的发展中起着重要作用。IL-10可以在心脏组织中表达,并且可能在心脏重塑中发挥重要作用[30]。各种慢性炎症性疾病刺激冠状动脉微血管功能障碍(CMD)的发生和发展[31]。干扰素调节因子-1 (IRF-1)在调节动脉粥样硬化的免疫、炎症和细胞凋亡中发挥重要作用[32]。郭等人表明IRF-1的过度表达通过上调circ_0029589上的m6A甲基化水平和METTL3的表达来促进动脉粥样硬化巨噬细胞的凋亡和炎症[33]。METTL3通过抑制NF-κB通路来降低脂多糖诱导的巨噬细胞的炎症反应[34]。简等人表明,敲除METTL14可通过减少内皮细胞的炎症反应来抑制动脉粥样硬化斑块的形成。STAT1是一个关键的转录因子,可启动信号级联反应,从而激活促炎巨噬细胞。METTL3已被证明可以直接甲基化STAT1 mRNA以提高mRNA稳定性,从而上调STAT1的表达并促进M1巨噬细胞的极化[35]。METTL3-STAT1介导的M1巨噬细胞的极化可能导致动脉粥样硬化、肥胖相关脂肪重塑、腹主动脉瘤等疾病的发生和进展,使其成为潜在的抗炎靶点[36]

4.3. m6A甲基化和氧化应激

氧化应激被定义为氧自由基产生和清除之间的不平衡,在心脏重塑和心力衰竭的病理生理学中发挥着重要作用[37]。氧化应激是由于活性氧产生和抗氧化防御之间的不平衡导致自由基积累而发生的。在心脏中,ROS激活参与心肌细胞肥大、间质纤维化、收缩功能障碍和炎症的信号通路,从而影响细胞结构和功能,并导致心脏损伤和重塑[38]

有研究表明,去甲基化酶ALKBH5的活性和总体m6A甲基化水平直接受ROS调节。ROS可以通过激活ERK/JNK信号通路诱导ALKBH5的翻译后修饰,从而抑制其活性,有助于增加mRNA m6A水平并维持细胞基因组完整性。同样,氧化应激对m6A阅读器产生不同的影响[39]。RNA甲基转移酶METTL3/METTL14介导的N6-甲基腺苷(缩写为m6AinRNA)和NSUN2介导的5-甲基胞苷(缩写为m5CinRNA)修饰的增强加剧氧化应激[40]

4.4. m6A甲基化和铁死亡

铁死亡已被确定在心肌梗死和心肌病等各种情况下的HF的发生和进展中发挥重要的病理生理作用[41]。目前认为铁死亡的基本机制是脂质过氧化氢积累,导致谷胱甘肽过氧化物酶(GPX)限度降低。然后,细胞中的游离铁离子通过芬顿反应与脂质过氧化物相互作用,产生脂质自由基,导致细胞死亡。因此,铁死亡的机制主要涉及以下三个过程:脂质过氧化、GSH合成和消耗以及铁代谢异常[42]

Yunfan Yang等人研究发现,FTO对P21/Nrf2的激活与P53、P21/Nrf2 mRNA的m6A去甲基化相关,表明FTO以P53依赖和独立的方式激活P21/Nrf2。HuR对于铁死亡和P53、P21/Nrf2中FTO的调节至关重要[43]。甲基化是由METTL4主导的YTHDF2识别并降解甲基化的Nrf2沉默METTL4可以通过抑制Nrf2的下调来抑制铁死亡,从而减轻败血症诱导的ALI [44]

5. 总结与讨论

m6A甲基化的调节与HF的发生发展紧密相关,越来越多的研究揭示了m6A甲基化以不同的作用方式对HF的发生发展产生重大影响。本文综述了m6A甲基化与HF之间的关系,及m6A甲基化在HF过程参与调节了钙稳态、自噬及炎症反应、氧化应激以及铁死亡等关键机制。目前仍有部分调控机制尚未阐明,需要通过更多的探索研究来增加对m6A甲基化参与HF调节作用的认识,及其作用的具体机制,最终将其应用到HF诊治的临床实践中,为HF的诊治提供理论支持。

NOTES

*通讯作者。

参考文献

[1] Savarese, G., Becher, P.M., Lund, L.H., Seferovic, P., Rosano, G.M.C. and Coats, A.J.S. (2022) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287.
https://doi.org/10.1093/cvr/cvac013
[2] Bozkurt, B., Coats, A.J.S., Tsutsui, H., Abdelhamid, C.M., Adamopoulos, S., Albert, N., et al. (2021) Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. European Journal of Heart Failure, 23, 352-380.
https://doi.org/10.1002/ejhf.2115
[3] McDonagh, T.A., Metra, M., Adamo, M., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 42, 3599-3726.
[4] Pan, X., Huang, C. and Li, J. (2021) The Emerging Roles of m6A Modification in Liver Carcinogenesis. International Journal of Biological Sciences, 17, 271-284.
https://doi.org/10.7150/ijbs.50003
[5] Sommer, S., Lavi, U. and Darnell, J.E. (1978) The Absolute Frequency of Labeled N-6-Methyladenosine in Hela Cell Messenger RNA Decreases with Label Time. Journal of Molecular Biology, 124, 487-499.
https://doi.org/10.1016/0022-2836(78)90183-3
[6] Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2013) A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nature Chemical Biology, 10, 93-95.
https://doi.org/10.1038/nchembio.1432
[7] Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon-Divon, M., et al. (2015) m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency toward Differentiation. Science, 347, 1002-1006.
https://doi.org/10.1126/science.1261417
[8] Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., et al. (2016) Structural Basis of N6-Adenosine Methylation by the METTL3-METTL14 Complex. Nature, 534, 575-578.
https://doi.org/10.1038/nature18298
[9] Zaccara, S., Ries, R.J. and Jaffrey, S.R. (2019) Reading, Writing and Erasing mRNA Methylation. Nature Reviews Molecular Cell Biology, 20, 608-624.
https://doi.org/10.1038/s41580-019-0168-5
[10] Wu, Y., Zhan, S., Xu, Y. and Gao, X. (2021) RNA Modifications in Cardiovascular Diseases, the Potential Therapeutic Targets. Life Sciences, 278, Article ID: 119565.
https://doi.org/10.1016/j.lfs.2021.119565
[11] Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887.
https://doi.org/10.1038/nchembio.687
[12] Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A.V., Patil, D.P., et al. (2016) Reversible Methylation of m6Am in the 5’ Cap Controls mRNA Stability. Nature, 541, 371-375.
https://doi.org/10.1038/nature21022
[13] Anreiter, I., Mir, Q., Simpson, J.T., Janga, S.C. and Soller, M. (2021) New Twists in Detecting mRNA Modification Dynamics. Trends in Biotechnology, 39, 72-89.
https://doi.org/10.1016/j.tibtech.2020.06.002
[14] Li, L., Xu, N., Liu, J., Chen, Z., Liu, X. and Wang, J. (2022) m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, 13, Article ID: 908976.
https://doi.org/10.3389/fgene.2022.908976
[15] Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., et al. (2012) Topology of the Human and Mouse m6A RNA Methylomes Revealed by m6A-seq. Nature, 485, 201-206.
https://doi.org/10.1038/nature11112
[16] Zhen, D., Wu, Y., Zhang, Y., Chen, K., Song, B., Xu, H., Tang, Y., Wei, Z. and Meng, J. (2020) m6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N6-Methyladenosine (m6A) Readers. Frontiers in Cell and Developmental Biology, 8, 741.
https://doi.org/10.3389/fcell.2020.00741
[17] Zhao, J., Ding, H., Ding, J., Shi, X., He, Y., Zhu, H., et al. (2022) The m6A Methyltransferase METTL3 Promotes Trophoblast Cell Invasion by Regulating MYLK Expression. Placenta, 129, 1-6.
https://doi.org/10.1016/j.placenta.2022.09.002
[18] Dorn, L.E., Lasman, L., Chen, J., Xu, X., Hund, T.J., Medvedovic, M., et al. (2019) The N6-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation, 139, 533-545.
https://doi.org/10.1161/circulationaha.118.036146
[19] Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019) METTL3 and ALKBH5 Oppositely Regulate m6A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy, 15, 1419-1437.
https://doi.org/10.1080/15548627.2019.1586246
[20] Duan, H., Wang, Y. and Jia, G. (2018) Dynamic and Reversible RNA n6‐Methyladenosine Methylation. WIREs RNA, 10, e1507.
https://doi.org/10.1002/wrna.1507
[21] Shi, L., Li, X., Zhang, M., Qin, C., Zhang, Z. and Chen, Z. (2024) Downregulation of WTAP Causes Dilated Cardiomyopathy and Heart Failure. Journal of Molecular and Cellular Cardiology, 188, 38-51.
https://doi.org/10.1016/j.yjmcc.2024.01.002
[22] Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019) METTL3 and ALKBH5 Oppositely Regulate m6A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy, 15, 1419-1437.
https://doi.org/10.1080/15548627.2019.1586246
[23] Fan, S. and Hu, Y. (2022) Role of m6A Methylation in the Occurrence and Development of Heart Failure. Frontiers in Cardiovascular Medicine, 9, Article ID: 892113.
https://doi.org/10.3389/fcvm.2022.892113
[24] Kho, C. (2023) Targeting Calcium Regulators as Therapy for Heart Failure: Focus on the Sarcoplasmic Reticulum Ca-Atpase Pump. Frontiers in Cardiovascular Medicine, 10, Article ID: 1185261.
https://doi.org/10.3389/fcvm.2023.1185261
[25] Mathiyalagan, P., Adamiak, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., et al. (2019) FTO-Dependent N6-Methyladenosine Regulates Cardiac Function during Remodeling and Repair. Circulation, 139, 518-532.
https://doi.org/10.1161/circulationaha.118.033794
[26] Han, Y., Xie, H., Lu, B., Xiang, R., Zhang, H., Li, J., et al. (2021) Lipopolysaccharide Alters the m6A Epitranscriptomic Tagging of RNAs in Cardiac Tissue. Frontiers in Molecular Biosciences, 8, Article ID: 670160.
https://doi.org/10.3389/fmolb.2021.670160
[27] Gustavsson, J., Mehlig, K., Leander, K., Lissner, L., Björck, L., Rosengren, A., et al. (2014) FTO Genotype, Physical Activity, and Coronary Heart Disease Risk in Swedish Men and Women. Circulation: Cardiovascular Genetics, 7, 171-177.
https://doi.org/10.1161/circgenetics.111.000007
[28] Arvunescu, A.M., Ionescu, R.F., Cretoiu, S.M., Dumitrescu, S.I., Zaharia, O. and Nanea, I.T. (2023) Inflammation in Heart Failure—Future Perspectives. Journal of Clinical Medicine, 12, Article No. 7738.
https://doi.org/10.3390/jcm12247738
[29] Chia, Y.C., Kieneker, L.M., van Hassel, G., Binnenmars, S.H., Nolte, I.M., van Zanden, J.J., et al. (2021) Interleukin 6 and Development of Heart Failure with Preserved Ejection Fraction in the General Population. Journal of the American Heart Association, 10, e018549.
https://doi.org/10.1161/jaha.120.018549
[30] Stafford, N., Assrafally, F., Prehar, S., Zi, M., De Morais, A.M., Maqsood, A., et al. (2020) Signaling via the Interleukin-10 Receptor Attenuates Cardiac Hypertrophy in Mice during Pressure Overload, but Not Isoproterenol Infusion. Frontiers in Pharmacology, 11, Article ID: 559220.
https://doi.org/10.3389/fphar.2020.559220
[31] Liberale, L., Montecucco, F., Tardif, J., Libby, P. and Camici, G.G. (2020) Inflamm-Ageing: The Role of Inflammation in Age-Dependent Cardiovascular Disease. European Heart Journal, 41, 2974-2982.
https://doi.org/10.1093/eurheartj/ehz961
[32] Shen, Y., Sun, Z., Mao, S., Zhang, Y., Jiang, W. and Wang, H. (2020) IRF-1 Contributes to the Pathological Phenotype of VSMCS during Atherogenesis by Increasing CCL19 Transcription. Aging, 13, 933-943.
https://doi.org/10.18632/aging.202204
[33] Guo, M., Yan, R., Ji, Q., Yao, H., Sun, M., Duan, L., et al. (2020) IFN Regulatory Factor-1 Induced Macrophage Pyroptosis by Modulating m6A Modification of Circ_0029589 in Patients with Acute Coronary Syndrome. International Immunopharmacology, 86, Article ID: 106800.
https://doi.org/10.1016/j.intimp.2020.106800
[34] Wang, J., Yan, S., Lu, H., Wang, S. and Xu, D. (2019) METTL3 Attenuates Lps-Induced Inflammatory Response in Macrophages via NF-κB Signaling Pathway. Mediators of Inflammation, 2019, Article ID: 3120391.
https://doi.org/10.1155/2019/3120391
[35] Jian, D., Wang, Y., Jian, L., Tang, H., Rao, L., Chen, K., et al. (2020) METTL14 Aggravates Endothelial Inflammation and Atherosclerosis by Increasing FOXO1 N6-Methyladeosine Modifications. Theranostics, 10, 8939-8956.
https://doi.org/10.7150/thno.45178
[36] Liu, Y., Liu, Z., Tang, H., Shen, Y., Gong, Z., Xie, N., et al. (2019) The N6-Methyladenosine (m6A)-Forming Enzyme METTL3 Facilitates M1 Macrophage Polarization through the Methylation of stat1 mRNA. American Journal of Physiology-Cell Physiology, 317, C762-C775.
https://doi.org/10.1152/ajpcell.00212.2019
[37] Pagan, L.U., Gomes, M.J., Martinez, P.F. and Okoshi, M.P. (2022) Oxidative Stress and Heart Failure: Mechanisms, Signalling Pathways, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9829505.
https://doi.org/10.1155/2022/9829505
[38] Pagan, L.U., Gomes, M.J., Gatto, M., Mota, G.A.F., Okoshi, K. and Okoshi, M.P. (2022) The Role of Oxidative Stress in the Aging Heart. Antioxidants, 11, Article No. 336.
https://doi.org/10.3390/antiox11020336
[39] Yu, F., Wei, J., Cui, X., Yu, C., Ni, W., Bungert, J., et al. (2021) Post-Translational Modification of RNA m6A Demethylase ALKBH5 Regulates Ros-Induced DNA Damage Response. Nucleic Acids Research, 49, 5779-5797.
https://doi.org/10.1093/nar/gkab415
[40] Li, Q., Li, X., Tang, H., Jiang, B., Dou, Y., Gorospe, M., et al. (2017) NSUN2-Mediated m5C Methylation and Mettl3/Mettl14-Mediated M6a Methylation Cooperatively Enhance P21 Translation. Journal of Cellular Biochemistry, 118, 2587-2598.
https://doi.org/10.1002/jcb.25957
[41] Del Re, D.P., Amgalan, D., Linkermann, A., Liu, Q. and Kitsis, R.N. (2019) Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 99, 1765-1817.
https://doi.org/10.1152/physrev.00022.2018
[42] Liu, G., Xie, X., Liao, W., Chen, S., Zhong, R., Qin, J., et al. (2024) Ferroptosis in Cardiovascular Disease. Biomedicine & Pharmacotherapy, 170, Article ID: 116057.
https://doi.org/10.1016/j.biopha.2023.116057
[43] Yang, Y., Ren, J., Zhang, J., Shi, H., Wang, J. and Yan, Y. (2024) FTO Ameliorates Doxorubicin-Induced Cardiotoxicity by Inhibiting Ferroptosis via p53-p21/nrf2 Activation in a Hur-Dependent m6A Manner. Redox Biology, 70, Article ID: 103067.
https://doi.org/10.1016/j.redox.2024.103067
[44] Sang, A., Zhang, J., Zhang, M., Xu, D., Xuan, R., Wang, S., et al. (2024) METTL4 Mediated-N6-Methyladenosine Promotes Acute Lung Injury by Activating Ferroptosis in Alveolar Epithelial Cells. Free Radical Biology and Medicine, 213, 90-101.
https://doi.org/10.1016/j.freeradbiomed.2024.01.013