|
[1]
|
Savarese, G., Becher, P.M., Lund, L.H., Seferovic, P., Rosano, G.M.C. and Coats, A.J.S. (2022) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bozkurt, B., Coats, A.J.S., Tsutsui, H., Abdelhamid, C.M., Adamopoulos, S., Albert, N., et al. (2021) Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. European Journal of Heart Failure, 23, 352-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
McDonagh, T.A., Metra, M., Adamo, M., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 42, 3599-3726.
|
|
[4]
|
Pan, X., Huang, C. and Li, J. (2021) The Emerging Roles of m6A Modification in Liver Carcinogenesis. International Journal of Biological Sciences, 17, 271-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sommer, S., Lavi, U. and Darnell, J.E. (1978) The Absolute Frequency of Labeled N-6-Methyladenosine in Hela Cell Messenger RNA Decreases with Label Time. Journal of Molecular Biology, 124, 487-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2013) A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. Nature Chemical Biology, 10, 93-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon-Divon, M., et al. (2015) m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency toward Differentiation. Science, 347, 1002-1006. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., et al. (2016) Structural Basis of N6-Adenosine Methylation by the METTL3-METTL14 Complex. Nature, 534, 575-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zaccara, S., Ries, R.J. and Jaffrey, S.R. (2019) Reading, Writing and Erasing mRNA Methylation. Nature Reviews Molecular Cell Biology, 20, 608-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wu, Y., Zhan, S., Xu, Y. and Gao, X. (2021) RNA Modifications in Cardiovascular Diseases, the Potential Therapeutic Targets. Life Sciences, 278, Article ID: 119565. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A.V., Patil, D.P., et al. (2016) Reversible Methylation of m6Am in the 5’ Cap Controls mRNA Stability. Nature, 541, 371-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Anreiter, I., Mir, Q., Simpson, J.T., Janga, S.C. and Soller, M. (2021) New Twists in Detecting mRNA Modification Dynamics. Trends in Biotechnology, 39, 72-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, L., Xu, N., Liu, J., Chen, Z., Liu, X. and Wang, J. (2022) m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, 13, Article ID: 908976. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., et al. (2012) Topology of the Human and Mouse m6A RNA Methylomes Revealed by m6A-seq. Nature, 485, 201-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhen, D., Wu, Y., Zhang, Y., Chen, K., Song, B., Xu, H., Tang, Y., Wei, Z. and Meng, J. (2020) m6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N6-Methyladenosine (m6A) Readers. Frontiers in Cell and Developmental Biology, 8, 741. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhao, J., Ding, H., Ding, J., Shi, X., He, Y., Zhu, H., et al. (2022) The m6A Methyltransferase METTL3 Promotes Trophoblast Cell Invasion by Regulating MYLK Expression. Placenta, 129, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dorn, L.E., Lasman, L., Chen, J., Xu, X., Hund, T.J., Medvedovic, M., et al. (2019) The N6-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation, 139, 533-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019) METTL3 and ALKBH5 Oppositely Regulate m6A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy, 15, 1419-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Duan, H., Wang, Y. and Jia, G. (2018) Dynamic and Reversible RNA n6‐Methyladenosine Methylation. WIREs RNA, 10, e1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shi, L., Li, X., Zhang, M., Qin, C., Zhang, Z. and Chen, Z. (2024) Downregulation of WTAP Causes Dilated Cardiomyopathy and Heart Failure. Journal of Molecular and Cellular Cardiology, 188, 38-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Song, H., Feng, X., Zhang, H., Luo, Y., Huang, J., Lin, M., et al. (2019) METTL3 and ALKBH5 Oppositely Regulate m6A Modification of TFEB mRNA, Which Dictates the Fate of Hypoxia/Reoxygenation-Treated Cardiomyocytes. Autophagy, 15, 1419-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Fan, S. and Hu, Y. (2022) Role of m6A Methylation in the Occurrence and Development of Heart Failure. Frontiers in Cardiovascular Medicine, 9, Article ID: 892113. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kho, C. (2023) Targeting Calcium Regulators as Therapy for Heart Failure: Focus on the Sarcoplasmic Reticulum Ca-Atpase Pump. Frontiers in Cardiovascular Medicine, 10, Article ID: 1185261. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mathiyalagan, P., Adamiak, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., et al. (2019) FTO-Dependent N6-Methyladenosine Regulates Cardiac Function during Remodeling and Repair. Circulation, 139, 518-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Han, Y., Xie, H., Lu, B., Xiang, R., Zhang, H., Li, J., et al. (2021) Lipopolysaccharide Alters the m6A Epitranscriptomic Tagging of RNAs in Cardiac Tissue. Frontiers in Molecular Biosciences, 8, Article ID: 670160. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gustavsson, J., Mehlig, K., Leander, K., Lissner, L., Björck, L., Rosengren, A., et al. (2014) FTO Genotype, Physical Activity, and Coronary Heart Disease Risk in Swedish Men and Women. Circulation: Cardiovascular Genetics, 7, 171-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Arvunescu, A.M., Ionescu, R.F., Cretoiu, S.M., Dumitrescu, S.I., Zaharia, O. and Nanea, I.T. (2023) Inflammation in Heart Failure—Future Perspectives. Journal of Clinical Medicine, 12, Article No. 7738. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chia, Y.C., Kieneker, L.M., van Hassel, G., Binnenmars, S.H., Nolte, I.M., van Zanden, J.J., et al. (2021) Interleukin 6 and Development of Heart Failure with Preserved Ejection Fraction in the General Population. Journal of the American Heart Association, 10, e018549. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Stafford, N., Assrafally, F., Prehar, S., Zi, M., De Morais, A.M., Maqsood, A., et al. (2020) Signaling via the Interleukin-10 Receptor Attenuates Cardiac Hypertrophy in Mice during Pressure Overload, but Not Isoproterenol Infusion. Frontiers in Pharmacology, 11, Article ID: 559220. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liberale, L., Montecucco, F., Tardif, J., Libby, P. and Camici, G.G. (2020) Inflamm-Ageing: The Role of Inflammation in Age-Dependent Cardiovascular Disease. European Heart Journal, 41, 2974-2982. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shen, Y., Sun, Z., Mao, S., Zhang, Y., Jiang, W. and Wang, H. (2020) IRF-1 Contributes to the Pathological Phenotype of VSMCS during Atherogenesis by Increasing CCL19 Transcription. Aging, 13, 933-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Guo, M., Yan, R., Ji, Q., Yao, H., Sun, M., Duan, L., et al. (2020) IFN Regulatory Factor-1 Induced Macrophage Pyroptosis by Modulating m6A Modification of Circ_0029589 in Patients with Acute Coronary Syndrome. International Immunopharmacology, 86, Article ID: 106800. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, J., Yan, S., Lu, H., Wang, S. and Xu, D. (2019) METTL3 Attenuates Lps-Induced Inflammatory Response in Macrophages via NF-κB Signaling Pathway. Mediators of Inflammation, 2019, Article ID: 3120391. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jian, D., Wang, Y., Jian, L., Tang, H., Rao, L., Chen, K., et al. (2020) METTL14 Aggravates Endothelial Inflammation and Atherosclerosis by Increasing FOXO1 N6-Methyladeosine Modifications. Theranostics, 10, 8939-8956. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, Y., Liu, Z., Tang, H., Shen, Y., Gong, Z., Xie, N., et al. (2019) The N6-Methyladenosine (m6A)-Forming Enzyme METTL3 Facilitates M1 Macrophage Polarization through the Methylation of stat1 mRNA. American Journal of Physiology-Cell Physiology, 317, C762-C775. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Pagan, L.U., Gomes, M.J., Martinez, P.F. and Okoshi, M.P. (2022) Oxidative Stress and Heart Failure: Mechanisms, Signalling Pathways, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9829505. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pagan, L.U., Gomes, M.J., Gatto, M., Mota, G.A.F., Okoshi, K. and Okoshi, M.P. (2022) The Role of Oxidative Stress in the Aging Heart. Antioxidants, 11, Article No. 336. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yu, F., Wei, J., Cui, X., Yu, C., Ni, W., Bungert, J., et al. (2021) Post-Translational Modification of RNA m6A Demethylase ALKBH5 Regulates Ros-Induced DNA Damage Response. Nucleic Acids Research, 49, 5779-5797. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, Q., Li, X., Tang, H., Jiang, B., Dou, Y., Gorospe, M., et al. (2017) NSUN2-Mediated m5C Methylation and Mettl3/Mettl14-Mediated M6a Methylation Cooperatively Enhance P21 Translation. Journal of Cellular Biochemistry, 118, 2587-2598. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Del Re, D.P., Amgalan, D., Linkermann, A., Liu, Q. and Kitsis, R.N. (2019) Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 99, 1765-1817. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, G., Xie, X., Liao, W., Chen, S., Zhong, R., Qin, J., et al. (2024) Ferroptosis in Cardiovascular Disease. Biomedicine & Pharmacotherapy, 170, Article ID: 116057. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yang, Y., Ren, J., Zhang, J., Shi, H., Wang, J. and Yan, Y. (2024) FTO Ameliorates Doxorubicin-Induced Cardiotoxicity by Inhibiting Ferroptosis via p53-p21/nrf2 Activation in a Hur-Dependent m6A Manner. Redox Biology, 70, Article ID: 103067. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sang, A., Zhang, J., Zhang, M., Xu, D., Xuan, R., Wang, S., et al. (2024) METTL4 Mediated-N6-Methyladenosine Promotes Acute Lung Injury by Activating Ferroptosis in Alveolar Epithelial Cells. Free Radical Biology and Medicine, 213, 90-101. [Google Scholar] [CrossRef] [PubMed]
|