[1]
|
Byrd, J.C. and Bresalier, R.S. (2004) Mucins and Mucin Binding Proteins in Colorectal Cancer. Cancer and Metastasis Reviews, 23, 77-99. https://doi.org/10.1023/a:1025815113599
|
[2]
|
Corfield, A.P. and Shukla, A.K. (2003) Mucins: Vital Components of the Mucosal Defensive Barrier. Genomic/Proteomic Technology, 3, 20-22.
|
[3]
|
Hollingsworth, M.A. and Swanson, B.J. (2004) Mucins in Cancer: Protection and Control of the Cell Surface. Nature Reviews Cancer, 4, 45-60. https://doi.org/10.1038/nrc1251
|
[4]
|
Bansil, R., Stanley, E. and Lamont, J.T. (1995) Mucin Biophysics. Annual Review of Physiology, 57, 635-657. https://doi.org/10.1146/annurev.ph.57.030195.003223
|
[5]
|
Govindarajan, B. and Gipson, I.K. (2010) Membrane-Tethered Mucins Have Multiple Functions on the Ocular Surface. Experimental Eye Research, 90, 655-663. https://doi.org/10.1016/j.exer.2010.02.014
|
[6]
|
Kim, Y.S. and Gum, J.R. (1995) Diversity of Mucin Genes, Structure, Function, and Expression. Gastroenterology, 109, 999-1001. https://doi.org/10.1016/0016-5085(95)90412-3
|
[7]
|
Smagghe, B.J., Stewart, A.K., Carter, M.G., Shelton, L.M., Bernier, K.J., Hartman, E.J., et al. (2013) MUC1* Ligand, NM23-H1, Is a Novel Growth Factor That Maintains Human Stem Cells in a More Naïve State. PLOS ONE, 8, e58601. https://doi.org/10.1371/journal.pone.0058601
|
[8]
|
Cox, K.E., Liu, S., Lwin, T.M., Hoffman, R.M., Batra, S.K. and Bouvet, M. (2023) The Mucin Family of Proteins: Candidates as Potential Biomarkers for Colon Cancer. Cancers, 15, Article 1491. https://doi.org/10.3390/cancers15051491
|
[9]
|
Demouveaux, B., Gouyer, V., Gottrand, F., Narita, T. and Desseyn, J. (2018) Gel-forming Mucin Interactome Drives Mucus Viscoelasticity. Advances in Colloid and Interface Science, 252, 69-82. https://doi.org/10.1016/j.cis.2017.12.005
|
[10]
|
Verma, M. and Davidson, E.A. (1994) Mucin Genes: Structure, Expression and Regulation. Glycoconjugate Journal, 11, 172-179. https://doi.org/10.1007/bf00731215
|
[11]
|
Higuchi, T., Orita, T., Nakanishi, S., Katsuya, K., Watanabe, H., Yamasaki, Y., et al. (2004) Molecular Cloning, Genomic Structure, and Expression Analysis of MUC20, a Novel Mucin Protein, Up-Regulated in Injured Kidney. Journal of Biological Chemistry, 279, 1968-1979. https://doi.org/10.1074/jbc.m304558200
|
[12]
|
Waga, I., Yamamoto, J., Sasai, H., Munger, W.E., Hogan, S.L., Preston, G.A., et al. (2003) Altered mRNA Expression in Renal Biopsy Tissue from Patients with Iga Nephropathy. Kidney International, 64, 1253-1264. https://doi.org/10.1046/j.1523-1755.2003.00220.x
|
[13]
|
Higuchi, T., Orita, T., Katsuya, K., Yamasaki, Y., Akiyama, K., Li, H., et al. (2004) MUC20 Suppresses the Hepatocyte Growth Factor-Induced Grb2-Ras Pathway by Binding to a Multifunctional Docking Site of Met. Molecular and Cellular Biology, 24, 7456-7468. https://doi.org/10.1128/mcb.24.17.7456-7468.2004
|
[14]
|
Cao, R., Wang, T.T., DeMaria, G., Sheehan, J.K. and Kesimer, M. (2012) Mapping the Protein Domain Structures of the Respiratory Mucins: A Mucin Proteome Coverage Study. Journal of Proteome Research, 11, 4013-4023. https://doi.org/10.1021/pr300058z
|
[15]
|
Skead, G. and Govender, D. (2015) Gene of the Month: MET. Journal of Clinical Pathology, 68, 405-409. https://doi.org/10.1136/jclinpath-2015-203050
|
[16]
|
Liu, Y. (1998) The Human Hepatocyte Growth Factor Receptor Gene: Complete Structural Organization and Promoter Characterization. Gene, 215, 159-169. https://doi.org/10.1016/s0378-1119(98)00264-9
|
[17]
|
Organ, S.L. and Tsao, M. (2011) An Overview of the C-MET Signaling Pathway. Therapeutic Advances in Medical Oncology, 3, S7-S19. https://doi.org/10.1177/1758834011422556
|
[18]
|
Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., et al. (2014) Analysis of the Human Tissue-Specific Expression by Genome-Wide Integration of Transcriptomics and Antibody-Based Proteomics. Molecular & Cellular Proteomics, 13, 397-406. https://doi.org/10.1074/mcp.m113.035600
|
[19]
|
King, R.J., Yu, F. and Singh, P.K. (2017) Genomic Alterations in Mucins across Cancers. Oncotarget, 8, 67152-67168. https://doi.org/10.18632/oncotarget.17934
|
[20]
|
Fu, L., Yonemura, A., Yasuda-Yoshihara, N., Umemoto, T., Zhang, J., Yasuda, T., et al. (2022) Intracellular MUC20 Variant 2 Maintains Mitochondrial Calcium Homeostasis and Enhances Drug Resistance in Gastric Cancer. Gastric Cancer, 25, 542-557. https://doi.org/10.1007/s10120-022-01283-z
|
[21]
|
Jonckheere, N. and Van Seuningen, I. (2018) Integrative Analysis of the Cancer Genome Atlas and Cancer Cell Lines Encyclopedia Large-Scale Genomic Databases: MUC4/MUC16/MUC20 Signature Is Associated with Poor Survival in Human Carcinomas. Journal of Translational Medicine, 16, Article No. 259. https://doi.org/10.1186/s12967-018-1632-2
|
[22]
|
Xiao, X., Wang, L., Wei, P., Chi, Y., Li, D., Wang, Q., et al. (2013) Role of MUC20 Overexpression as a Predictor of Recurrence and Poor Outcome in Colorectal Cancer. Journal of Translational Medicine, 11, Article No. 151. https://doi.org/10.1186/1479-5876-11-151
|
[23]
|
Vymetalkova, V., Pardini, B., Rosa, F., Jiraskova, K., Di Gaetano, C., Bendova, P., et al. (2016) Polymorphisms in Microrna Binding Sites of Mucin Genes as Predictors of Clinical Outcome in Colorectal Cancer Patients. Carcinogenesis, 38, 28-39. https://doi.org/10.1093/carcin/bgw114
|
[24]
|
Aziz, M.A., AlOtaibi, M., AlAbdulrahman, A., et al. (2014) Mucin Family Genes Are Downregulated in Colorectal Cancer Patients. Journal of Carcinogenesis & Mutagenesis, 2014, 1-7.
|
[25]
|
Jiang, Z., Wang, H., Li, L., Hou, Z., Liu, W., Zhou, T., et al. (2019) Analysis of TGCA Data Reveals Genetic and Epigenetic Changes and Biological Function of MUC Family Genes in Colorectal Cancer. Future Oncology, 15, 4031-4043. https://doi.org/10.2217/fon-2019-0363
|
[26]
|
Chen, M., Zhang, X., Ming, Z., Feng, X., Han, Z., et al. (2024) Characterizing and Forecasting Neoantigens-Resulting from MUC Mutations in Coad. Journal of Translational Medicine, 22, Article No. 315. https://doi.org/10.1186/s12967-024-05103-z
|
[27]
|
Chen, K., Wang, H., Shen, L., Lin, Y., Shi, Q. and Yang, Y. (2015) The Expression and Prognostic Significance of Mucin 13 and Mucin 20 in Esophageal Squamous Cell Carcinoma. Journal of Cancer Research and Therapeutics, 11, C74-C79. https://doi.org/10.4103/0973-1482.163846
|
[28]
|
Shen, L., Wang, H., Dong, B., Yan, W., Lin, Y., Shi, Q., et al. (2015) Possible Prediction of the Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemotherapy Based on Gene Expression Profiling. Oncotarget, 7, 4531-4541. https://doi.org/10.18632/oncotarget.6554
|
[29]
|
Li, M., Feng, Z., Han, R., Hu, B., Zhang, R. and Wang, H. (2023) Paclitaxel Promotes mTOR Signaling‐Mediated Apoptosis in Esophageal Cancer Cells by Targeting muc20. Thoracic Cancer, 14, 3089-3096. https://doi.org/10.1111/1759-7714.15091
|
[30]
|
Zhang, X., Peng, L., Luo, Y., Zhang, S., Pu, Y., Chen, Y., et al. (2021) Dissecting Esophageal Squamous-Cell Carcinoma Ecosystem by Single-Cell Transcriptomic Analysis. Nature Communications, 12, Article No. 5291. https://doi.org/10.1038/s41467-021-25539-x
|
[31]
|
Yonezawa, S., Higashi, M., Yamada, N., Yokoyama, S. and Goto, M. (2009) Significance of Mucin Expression in Pancreatobiliary Neoplasms. Journal of Hepato-Biliary-Pancreatic Sciences, 17, 108-124. https://doi.org/10.1007/s00534-009-0174-7
|
[32]
|
Rachagani, S., Torres, M.P., Moniaux, N. and Batra, S.K. (2009) Current Status of Mucins in the Diagnosis and Therapy of Cancer. BioFactors, 35, 509-527. https://doi.org/10.1002/biof.64
|
[33]
|
Komatsu, H., Tanji, E., Sakata, N., Aoki, T., Motoi, F., Naitoh, T., et al. (2014) A GNAS Mutation Found in Pancreatic Intraductal Papillary Mucinous Neoplasms Induces Drastic Alterations of Gene Expression Profiles with Upregulation of Mucin Genes. PLOS ONE, 9, e87875. https://doi.org/10.1371/journal.pone.0087875
|
[34]
|
Xu, W., Zhang, M., Liu, L., Yin, M., Xu, C. and Weng, Z. (2022) Association of Mucin Family Members with Prognostic Significance in Pancreatic Cancer Patients: A Meta-Analysis. PLOS ONE, 17, e0269612. https://doi.org/10.1371/journal.pone.0269612
|
[35]
|
Chen, S., Kuo, T., Liao, Y., Lin, M., Tien, Y. and Huang, M. (2018) Silencing of MUC20 Suppresses the Malignant Character of Pancreatic Ductal Adenocarcinoma Cells through Inhibition of the HGF/MET Pathway. Oncogene, 37, 6041-6053. https://doi.org/10.1038/s41388-018-0403-0
|
[36]
|
Sasahira, T., Kurihara-Shimomura, M., Shimomura, H., Bosserhoff, A.K. and Kirita, T. (2021) Identification of Oral Squamous Cell Carcinoma Markers MUC2 and SPRR1B Downstream of Tango. Journal of Cancer Research and Clinical Oncology, 147, 1659-1672. https://doi.org/10.1007/s00432-021-03568-9
|
[37]
|
Aplin, J.D., Seif, M.W., Graham, R.A., Hey, N.A., Behzad, F. and Campbell, S. (1994) The Endometrial Cell Surface and Implantation. Expression of the Polymorphic Mucin MUC-1 and Adhesion Molecules during the Endometrial Cycle. Annals of the New York Academy of Sciences, 734, 103-121. https://doi.org/10.1111/j.1749-6632.1994.tb21739.x
|
[38]
|
Horne, A.W., White, J.O., Margara, R.A., Williams, R., Winston, R.M. and Lalani, E. (2001) MUC 1: A Genetic Susceptibility to Infertility? The Lancet, 357, 1336-1337. https://doi.org/10.1016/s0140-6736(00)04502-5
|
[39]
|
Sivridis, E., Giatromanolaki, A., Koukourakis, M.I., Georgiou, L. and Anastasiadis, P. (2002) Patterns of Episialin/MUC1 Expression in Endometrial Carcinomas and Prognostic Relevance. Histopathology, 40, 92-100. https://doi.org/10.1046/j.1365-2559.2002.01316.x
|
[40]
|
Hebbar, V., Damera, G. and Sachdev, G.P. (2005) Differential Expression of MUC Genes in Endometrial and Cervical Tissues and Tumors. BMC Cancer, 5, Article No. 124. https://doi.org/10.1186/1471-2407-5-124
|
[41]
|
Morrison, C., Merati, K., Marsh, W.L., De Lott, L., Cohn, D.E., Young, G., et al. (2007) The Mucin Expression Profile of Endometrial Carcinoma and Correlation with Clinical-Pathologic Parameters. Applied Immunohistochemistry & Molecular Morphology, 15, 426-431. https://doi.org/10.1097/01.pai.0000213117.73720.89
|
[42]
|
Chen, C., Wang, S., Chen, C., Huang, M., Hung, J., Huang, H., et al. (2013) MUC20 Overexpression Predicts Poor Prognosis and Enhances EGF-Induced Malignant Phenotypes via Activation of the EGFR-STAT3 Pathway in Endometrial Cancer. Gynecologic Oncology, 128, 560-567. https://doi.org/10.1016/j.ygyno.2012.12.012
|
[43]
|
Dedes, K.J., Wetterskog, D., Ashworth, A., Kaye, S.B. and Reis-Filho, J.S. (2011) Emerging Therapeutic Targets in Endometrial Cancer. Nature Reviews Clinical Oncology, 8, 261-271. https://doi.org/10.1038/nrclinonc.2010.216
|
[44]
|
Zheng, F., Yu, H. and Lu, J. (2019) High Expression of MUC20 Drives Tumorigenesis and Predicts Poor Survival in Endometrial Cancer. Journal of Cellular Biochemistry, 120, 11859-11866. https://doi.org/10.1002/jcb.28466
|
[45]
|
Chen, C., Shyu, M., Wang, S., Chou, C., Huang, M., Lin, T., et al. (2016) MUC20 Promotes Aggressive Phenotypes of Epithelial Ovarian Cancer Cells via Activation of the Integrin Β1 Pathway. Gynecologic Oncology, 140, 131-137. https://doi.org/10.1016/j.ygyno.2015.11.025
|
[46]
|
Cannistra, S.A. (2004) Cancer of the Ovary. New England Journal of Medicine, 351, 2519-2529. https://doi.org/10.1056/nejmra041842
|
[47]
|
Marchocki, Z., Tone, A., Virtanen, C., de Borja, R., Clarke, B., Brown, T., et al. (2022) Impact of Neoadjuvant Chemotherapy on Somatic Mutation Status in High-Grade Serous Ovarian Carcinoma. Journal of Ovarian Research, 15, Article No. 50. https://doi.org/10.1186/s13048-022-00983-5
|
[48]
|
Kong, X., Ding, L.J. and Wang, Z.X. (2017) Mucin Expression Profile of Benign and Malignant Cervical Tissues and Correlation with Clinical-Pathologic Parameters. European Journal of Gynaecological Oncology, 38, 350-355.
|
[49]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763
|
[50]
|
Xue, B., Guo, W.M., Jia, J.D., et al. (2022) MUC20 as a Novel Prognostic Biomarker in ccRCC Correlating with Tumor Immune Microenvironment Modulation. American Journal of Cancer Research, 12, 695-712.
|
[51]
|
Dai, R., Zhou, Y., Chen, Z., Zou, Z., Pan, Z., Liu, P., et al. (2020) Lnc‐MUC20‐9 Binds to ROCK1 and Functions as a Tumor Suppressor in Bladder Cancer. Journal of Cellular Biochemistry, 121, 4214-4225. https://doi.org/10.1002/jcb.29626
|
[52]
|
Wang, X., Shirazi, F., Yan, W., Liu, X., Wang, H., Orlowski, R.Z., et al. (2021) Mucin 20 Modulates Proteasome Capacity through C‐Met Signalling to Increase Carfilzomib Sensitivity in Mantle Cell Lymphoma. Journal of Cellular and Molecular Medicine, 25, 10164-10174. https://doi.org/10.1111/jcmm.16953
|
[53]
|
Wang, X., Shi, Y., Shi, H., Liu, X., Liao, A., Liu, Z., et al. (2024) MUC20 Regulated by Extrachromosomal Circular DNA Attenuates Proteasome Inhibitor Resistance of Multiple Myeloma by Modulating Cuproptosis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 68. https://doi.org/10.1186/s13046-024-02972-6
|
[54]
|
Ma, J., Rubin, B.K. and Voynow, J.A. (2018) Mucins, Mucus, and Goblet Cells. Chest, 154, 169-176. https://doi.org/10.1016/j.chest.2017.11.008
|
[55]
|
Molina, J.R., Yang, P., Cassivi, S.D., Schild, S.E. and Adjei, A.A. (2008) Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clinic Proceedings, 83, 584-594. https://doi.org/10.4065/83.5.584
|
[56]
|
Ning, Y., Zheng, H., Zhan, Y., Liu, S., Yang, Y., Zang, H., et al. (2020) Comprehensive Analysis of the Mechanism and Treatment Significance of Mucins in Lung Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 162. https://doi.org/10.1186/s13046-020-01662-3
|
[57]
|
Tu, J., Tang, M., Li, G., Chen, L., Wang, Y. and Huang, Y. (2022) Expression of Mucin Family Proteins in Non-Small-Cell Lung Cancer and Its Role in Evaluation of Prognosis. Journal of Oncology, 2022, Article ID: 4181658. https://doi.org/10.1155/2022/4181658
|
[58]
|
Giatromanolaki, A., Koukourakis, M.I., Sivridis, E., et al. (2000) Coexpression of MUC1 Glycoprotein with Multiple Angiogenic Factors in Non-Small Cell Lung Cancer Suggests Coactivation of Angiogenic and Migration Pathways. Clinical Cancer Research, 6, 1917-1921.
|
[59]
|
Yao, M., Zhang, W., Zhang, Q., Xing, L., Xu, A., Liu, Q., et al. (2011) Overexpression of MUC1 Enhances Proangiogenic Activity of Non-Small-Cell Lung Cancer Cells through Activation of Akt and Extracellular Signal-Regulated Kinase Pathways. Lung, 189, 453-460. https://doi.org/10.1007/s00408-011-9327-y
|
[60]
|
Yu, C., Zhang, L., Luo, D., Yan, F., Liu, J., Shao, S., et al. (2018) microRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid, 28, 1627-1641. https://doi.org/10.1089/thy.2017.0626
|
[61]
|
Hou, S., Xie, X., Zhao, J., Wu, C., Li, N., Meng, Z., et al. (2021) Downregulation of Mir-146b-3p Inhibits Proliferation and Migration and Modulates the Expression and Location of Sodium/Iodide Symporter in Dedifferentiated Thyroid Cancer by Potentially Targeting MUC20. Frontiers in Oncology, 10, Article 566365. https://doi.org/10.3389/fonc.2020.566365
|
[62]
|
Lu, T.X. and Rothenberg, M.E. (2018) MicroRNA. Journal of Allergy and Clinical Immunology, 141, 1202-1207. https://doi.org/10.1016/j.jaci.2017.08.034
|
[63]
|
Riesco-Eizaguirre, G., Wert-Lamas, L., Perales-Patón, J., Sastre-Perona, A., Fernández, L.P. and Santisteban, P. (2015) The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis. Cancer Research, 75, 4119-4130. https://doi.org/10.1158/0008-5472.can-14-3547
|
[64]
|
McGuckin, M.A., Lindén, S.K., Sutton, P. and Florin, T.H. (2011) Mucin Dynamics and Enteric Pathogens. Nature Reviews Microbiology, 9, 265-278. https://doi.org/10.1038/nrmicro2538
|
[65]
|
Linden, S.K., Sutton, P., Karlsson, N.G., Korolik, V. and McGuckin, M.A. (2008) Mucins in the Mucosal Barrier to Infection. Mucosal Immunology, 1, 183-197. https://doi.org/10.1038/mi.2008.5
|
[66]
|
Pedram, K., Shon, D.J., Tender, G.S., Mantuano, N.R., Northey, J.J., Metcalf, K.J., et al. (2023) Design of a Mucin-Selective Protease for Targeted Degradation of Cancer-Associated Mucins. Nature Biotechnology, 42, 597-607. https://doi.org/10.1038/s41587-023-01840-6
|
[67]
|
Kufe, D.W. (2009) Functional Targeting of the MUC1 Oncogene in Human Cancers. Cancer Biology & Therapy, 8, 1197-1203. https://doi.org/10.4161/cbt.8.13.8844
|
[68]
|
Agata, N., Ahmad, R., Kawano, T., Raina, D., Kharbanda, S. and Kufe, D. (2008) MUC1 Oncoprotein Blocks Death Receptor-Mediated Apoptosis by Inhibiting Recruitment of Caspase-8. Cancer Research, 68, 6136-6144. https://doi.org/10.1158/0008-5472.can-08-0464
|
[69]
|
Chauhan, S.C., Vannatta, K., Ebeling, M.C., Vinayek, N., Watanabe, A., Pandey, K.K., et al. (2009) Expression and Functions of Transmembrane Mucin MUC13 in Ovarian Cancer. Cancer Research, 69, 765-774. https://doi.org/10.1158/0008-5472.can-08-0587
|
[70]
|
Krishn, S.R., Ganguly, K., Kaur, S. and Batra, S.K. (2018) Ramifications of Secreted Mucin MUC5AC in Malignant Journey: A Holistic View. Carcinogenesis, 39, 633-651. https://doi.org/10.1093/carcin/bgy019
|
[71]
|
Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S.R., Paknikar, S., Seshacharyulu, P., et al. (2016) MUC5AC Interactions with Integrin Β4 Enhances the Migration of Lung Cancer Cells through FAK Signaling. Oncogene, 35, 4112-4121. https://doi.org/10.1038/onc.2015.478
|
[72]
|
Pothuraju, R., Rachagani, S., Krishn, S.R., Chaudhary, S., Nimmakayala, R.K., Siddiqui, J.A., et al. (2020) Molecular Implications of MUC5AC-CD44 Axis in Colorectal Cancer Progression and Chemoresistance. Molecular Cancer, 19, Article No. 37. https://doi.org/10.1186/s12943-020-01156-y
|
[73]
|
Yamamoto-Furusho, J.K., Ascaño-Gutiérrez, I., Furuzawa-Carballeda, J. and Fonseca-Camarillo, G. (2015) Differential Expression of MUC12, MUC16, and MUC20 in Patients with Active and Remission Ulcerative Colitis. Mediators of Inflammation, 2015, Article ID: 659018. https://doi.org/10.1155/2015/659018
|