|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ackerman, R.S., Luddy, K.A., Icard, B.E., Piñeiro Fernández, J., Gatenby, R.A. and Muncey, A.R. (2021) The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesthesia & Analgesia, 133, 676-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tedore, T. (2015) Regional Anaesthesia and Analgesia: Relationship to Cancer Recurrence and Survival. British Journal of Anaesthesia, 115, ii34-ii45. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Market, M., Tennakoon, G. and Auer, R.C. (2021) Postoperative Natural Killer Cell Dysfunction: The Prime Suspect in the Case of Metastasis Following Curative Cancer Surgery. International Journal of Molecular Sciences, 22, Article 11378. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, S., Qu, Y., Xia, P., Chen, Y., Zhu, X., Zhang, J., et al. (2020) Transdifferentiation of Tumor Infiltrating Innate Lymphoid Cells during Progression of Colorectal Cancer. Cell Research, 30, 610-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pan, P., Kang, S., Wang, Y., Liu, K., Oshima, K., Huang, Y., et al. (2017) Black Raspberries Enhance Natural Killer Cell Infiltration into the Colon and Suppress the Progression of Colorectal Cancer. Frontiers in Immunology, 8, Article 997. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Seung, E., Xing, Z., Wu, L., Rao, E., Cortez-Retamozo, V., Ospina, B., et al. (2022) A Trispecific Antibody Targeting HER2 and T Cells Inhibits Breast Cancer Growth via CD4 Cells. Nature, 603, 328-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Golstein, P. and Griffiths, G.M. (2018) An Early History of T Cell-Mediated Cytotoxicity. Nature Reviews Immunology, 18, 527-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Accardo, G., Conzo, G., Esposito, D., Gambardella, C., Mazzella, M., Castaldo, F., et al. (2017) Genetics of Medullary Thyroid Cancer: An Overview. International Journal of Surgery, 41, S2-S6. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kihara, M., Miyauchi, A., Yoshioka, K., Oda, H., Nakayama, A., Sasai, H., et al. (2016) Germline RET Mutation Carriers in Japanese Patients with Apparently Sporadic Medullary Thyroid Carcinoma: A Single Institution Experience. Auris Nasus Larynx, 43, 551-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Y.J., Shi, X.S. and Bai, X.F. (2021) Expression and Significance of CD4+ T, CD8+ T Cells and PD-L1 in Colon Cancer. China Modern Physician, 59, 152-155, 166.
|
|
[12]
|
Ahrends, T., Spanjaard, A., Pilzecker, B., Bąbała, N., Bovens, A., Xiao, Y., et al. (2017) CD4+ T Cell Help Confers a Cytotoxic T Cell Effector Program Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. Immunity, 47, 848-861.E5. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cachot, A., Bilous, M., Liu, Y., Li, X., Saillard, M., Cenerenti, M., et al. (2021) Tumor-Specific Cytolytic CD4 T Cells Mediate Immunity against Human Cancer. Science Advances, 7, eabe3348. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Perez, L.G., Kempski, J., McGee, H.M., Pelzcar, P., Agalioti, T., Giannou, A., et al. (2020) TGF-β Signaling in Th17 Cells Promotes IL-22 Production and Colitis-Associated Colon Cancer. Nature Communications, 11, Article No. 2608. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Orecchioni, M., Ghosheh, Y., Pramod, A.B. and Ley, K. (2019) Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively Activated Macrophages. Frontiers in Immunology, 10, Article 1084. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Herrera, M., Herrera, A., Domínguez, G., Silva, J., García, V., García, J.M., et al. (2013) Cancer‐Associated Fibroblast and M2 Macrophage Markers Together Predict Outcome in Colorectal Cancer Patients. Cancer Science, 104, 437-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cui, Y., Li, H., Zhou, H., Zhang, T. and Li, Q. (2013) Correlations of Tumor-Associated Macrophage Subtypes with Liver Metastases of Colorectal Cancer. Asian Pacific Journal of Cancer Prevention, 14, 1003-1007. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Edin, S., Wikberg, M.L., Rutegård, J., Oldenborg, P. and Palmqvist, R. (2013) Phenotypic Skewing of Macrophages in Vitro by Secreted Factors from Colorectal Cancer Cells. PLOS ONE, 8, e74982. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wouters, M.C.A. and Nelson, B.H. (2018) Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clinical Cancer Research, 24, 6125-6135. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ji, L., Fu, G., Huang, M., Kao, X., Zhu, J., Dai, Z., et al. (2024) ScrNA-Seq of Colorectal Cancer Shows Regional Immune Atlas with the Function of CD20+ B Cells. Cancer Letters, 584, Article ID: 216664. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
de Visser, K.E., Korets, L.V. and Coussens, L.M. (2005) De Novo Carcinogenesis Promoted by Chronic Inflammation Is B Lymphocyte Dependent. Cancer Cell, 7, 411-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Schioppa, T., Moore, R., Thompson, R.G., Rosser, E.C., Kulbe, H., Nedospasov, S., et al. (2011) B Regulatory Cells and the Tumor-Promoting Actions of TNF-α during Squamous Carcinogenesis. Proceedings of the National Academy of Sciences, 108, 10662-10667. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Triner, D., Devenport, S.N., Ramakrishnan, S.K., Ma, X., Frieler, R.A., Greenson, J.K., et al. (2019) Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. Gastroenterology, 156, 1467-1482. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hurt, B., Schulick, R., Edil, B., El Kasmi, K.C. and Barnett, C. (2017) Cancer-promoting Mechanisms of Tumor-Associated Neutrophils. The American Journal of Surgery, 214, 938-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gordon‐Weeks, A.N., Lim, S.Y., Yuzhalin, A.E., Jones, K., Markelc, B., Kim, K.J., et al. (2017) Neutrophils Promote Hepatic Metastasis Growth through Fibroblast Growth Factor 2-Dependent Angiogenesis in Mice. Hepatology, 65, 1920-1935. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Governa, V., Trella, E., Mele, V., Tornillo, L., Amicarella, F., Cremonesi, E., et al. (2017) The Interplay between Neutrophils and CD8+ T Cells Improves Survival in Human Colorectal Cancer. Clinical Cancer Research, 23, 3847-3858. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Stollings, L.M., Jia, L., Tang, P., Dou, H., Lu, B. and Xu, Y. (2016) Immune Modulation by Volatile Anesthetics. Anesthesiology, 125, 399-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
任德华, 陈涛, 赵光忠. 七氟醚与丙泊酚对腹腔镜结直肠癌手术患者围术期免疫功能的影响[J]. 中国实验诊断学, 2018, 22(1): 86-88.
|
|
[29]
|
Hasselager, R.P., Hallas, J. and Gögenur, I. (2021) Inhalation or Total Intravenous Anaesthesia and Recurrence after Colorectal Cancer Surgery: A Propensity Score Matched Danish Registry-Based Study. British Journal of Anaesthesia, 126, 921-930. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sun, S.Q., Ren, L.J., Liu, J., Wang, P. and Shan, S.M. (2019) Sevoflurane Inhibits Migration and Invasion of Colorectal Cancer Cells by Regulating MicroRNA-34a/ADAM10 Axis. Neoplasma, 66, 887-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yang, X., Zheng, Y. and Rong, W. (2019) Sevoflurane Induces Apoptosis and Inhibits the Growth and Motility of Colon Cancer in Vitro and in Vivo via Inactivating Ras/Raf/MEK/ERK Signaling. Life Sciences, 239, Article ID: 116916. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yang, M., Yu, Y. and Liu, Q. (2019) Analgesic Effects of Sevoflurane and Isoflurane on Elderly Patients with Colon Cancer and Their Influences on Immunity and Postoperative Cognitive Function. Iranian Journal of Public Health, 48, 444-450. [Google Scholar] [CrossRef]
|
|
[33]
|
Cai, Z., Suo, L. and Huang, Z. (2021) Isoflurane Suppresses Proliferation, Migration, and Invasion and Facilitates Apoptosis in Colorectal Cancer Cells through Targeting MiR-216. Frontiers in Medicine, 8, Article 658926. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
何媛媛. 七氟醚、异氟醚对直肠癌患者围术期T淋巴细胞亚群、IL-6、sIL-2R、TNF-α及树突状细胞的影响[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2008.
|
|
[35]
|
Boland, J.W. and Pockley, A.G. (2017) Influence of Opioids on Immune Function in Patients with Cancer Pain: From Bench to Bedside. British Journal of Pharmacology, 175, 2726-2736. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hou, M., Zhou, N., Li, H., Wang, B., Wang, X., Wang, X., et al. (2018) Morphine and Ketamine Treatment Suppress the Differentiation of T Helper Cells of Patients with Colorectal Cancer in Vitro. Experimental and Therapeutic Medicine, 17, 935-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lu, H., Zhang, H., Weng, M., Zhang, J., Jiang, N., Cata, J.P., et al. (2020) Morphine Promotes Tumorigenesis and Cetuximab Resistance via EGFR Signaling Activation in Human Colorectal Cancer. Journal of Cellular Physiology, 236, 4445-4454. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tai, Y., Wu, H., Chang, W., Tsou, M., Chen, H. and Chang, K. (2017) Intraoperative Fentanyl Consumption Does Not Impact Cancer Recurrence or Overall Survival after Curative Colorectal Cancer Resection. Scientific Reports, 7, Article No. 10816. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kim, S.Y., Kim, N.K., Baik, S.H., Min, B.S., Hur, H., Lee, J., et al. (2016) Effects of Postoperative Pain Management on Immune Function after Laparoscopic Resection of Colorectal Cancer. Medicine, 95, e3602. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Qi, Y., Yao, X., Zhang, B. and Du, X. (2016) Comparison of Recovery Effect for Sufentanil and Remifentanil Anesthesia with TCI in Laparoscopic Radical Resection during Colorectal Cancer. Oncology Letters, 11, 3361-3365. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Saeed, I., La Caze, A., Hollmann, M.W., Shaw, P.N. and Parat, M. (2021) New Insights on Tramadol and Immunomodulation. Current Oncology Reports, 23, Article No. 123. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Xia, M., Tong, J.H., Zhou, Z.Q., et al. (2016) Tramadol Inhibits Proliferation, Migration and Invasion via α2-Adrenoceptor Signaling in Breast Cancer Cells. European Review for Medical and Pharmacological Scieence, 20, 157-165.
|
|
[43]
|
Özgürbüz, U., Gencür, S., Kurt, F.Ö., Özkalkanlı, M. and Vatansever, H.S. (2019) The Effects of Tramadol on Cancer Stem Cells and Metabolic Changes in Colon Carcinoma Cells Lines. Gene, 718, Article ID: 144030. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Feng, C., Feng, M., Jiao, R., Liu, D., Jin, Y., Zhao, X., et al. (2017) Effect of Dezocine on IL-12 and IL-10 Secretion and Lymphocyte Activation by Culturing Dendritic Cells from Human Umbilical Cord Blood. European Journal of Pharmacology, 796, 110-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
冀玲, 何印斌, 刘凡凡, 等. 地佐辛对腹腔镜结直肠癌根治术患者免疫、应激及认知功能的影响[J]. 海南医学, 2022, 33(9): 1099-1102.
|
|
[46]
|
Song, Q., Liu, G., Liu, D. and Feng, C. (2020) Dezocine Promotes T Lymphocyte Activation and Inhibits Tumor Metastasis after Surgery in a Mouse Model. Investigational New Drugs, 38, 1342-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gao, X., Mi, Y., Guo, N., Luan, J., Xu, H., Hu, Z., et al. (2020) The Mechanism of Propofol in Cancer Development: An Updated Review. Asia-Pacific Journal of Clinical Oncology, 16, e3-e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
郝琨, 熊良志, 乔婷, 等. 丙泊酚对结直肠癌手术患者免疫功能、应激反应及血流动力学的影响[J]. 海南医学院学报, 2018, 24(23): 2098-2102
|
|
[49]
|
Huang, H., Benzonana, L.L., Zhao, H., Watts, H.R., Perry, N.J.S., Bevan, C., et al. (2014) Prostate Cancer Cell Malignancy via Modulation of HIF-1α Pathway with Isoflurane and Propofol Alone and in Combination. British Journal of Cancer, 111, 1338-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
张铁军, 彭伟, 尹芳, 等. 丙泊酚与七氟醚对舌癌根治术患者NK细胞和 B淋巴细胞的影响[J]. 临床麻醉学杂志, 2016, 32(2): 114-117.
|
|
[51]
|
Zhang, Y., Li, R., Zhu, J., Wang, Z., Lv, S. and Xiong, J. (2015) Etomidate Increases Mortality in Septic Rats through Inhibition of Nuclear Factor κ-B Rather than by Causing Adrenal Insufficiency. Journal of Surgical Research, 193, 399-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Deng, F., Ouyang, M., Wang, X., Yao, X., Chen, Y., Tao, T., et al. (2016) Differential Role of Intravenous Anesthetics in Colorectal Cancer Progression: Implications for Clinical Application. Oncotarget, 7, 77087-77095. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, K., Wu, M., Xu, J., Wu, C., Zhang, B., Wang, G., et al. (2019) Effects of Dexmedetomidine on Perioperative Stress, Inflammation, and Immune Function: Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 123, 777-794. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Tang, Y., Liu, J., Huang, X., Ding, H., Tan, S. and Zhu, Y. (2022) Effect of Dexmedetomidine-Assisted Intravenous Inhalation Combined Anesthesia on Cerebral Oxygen Metabolism and Serum Th1/Th2 Level in Elderly Colorectal Cancer Patients. Frontiers in Surgery, 8, Article 832646. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
吴春霞, 袁茹. 右美托咪定复合麻醉对腹腔镜结肠癌切除术患者术后免疫功能和胃肠功能及应激反应的影响[J]. 临床合理用药, 2023, 16(24): 68-71.
|
|
[56]
|
Lu, H.B., Jia, Y.P., Liang, Z.H., Zhou, R. and Zheng, J.Q. (2015) Effect of Continuous Infusion of Midazolam on Immune Function in Pediatric Patients after Surgery. Genetics and Molecular Research, 14, 10007-10014. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
窦云凌, 刘卫峰, 王凌雁, 等. 咪达唑仑下调USP22抑制结肠癌SW480细胞增殖[J]. 消化肿瘤杂志(电子版), 2012, 4(4): 260-264.
|
|
[58]
|
Cha, Y.I. and DuBois, R.N. (2007) NSAIDs and Cancer Prevention: Targets Downstream of COX-2. Annual Review of Medicine, 58, 239-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
马斌. 阿司匹林干预肠道菌群预防结直肠癌的免疫相关机制研究[D]: [博士学位论文]. 银川: 宁夏医科大学, 2017.
|
|
[60]
|
Zhao, R., Coker, O.O., Wu, J., Zhou, Y., Zhao, L., Nakatsu, G., et al. (2020) Aspirin Reduces Colorectal Tumor Development in Mice and Gut Microbes Reduce Its Bioavailability and Chemopreventive Effects. Gastroenterology, 159, 969-983.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Rao, C.V. (2022) Anti-Inflammatory Drugs Decrease the PD-L1 Expression and Increase the CD8+ T-Cell Infiltration. Cancer Prevention Research, 15, 209-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Crusz, S.M. and Balkwill, F.R. (2015) Inflammation and Cancer: Advances and New Agents. Nature Reviews Clinical Oncology, 12, 584-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Kim, R. (2018) Effects of Surgery and Anesthetic Choice on Immunosuppression and Cancer Recurrence. Journal of Translational Medicine, 16, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
严蕾. 利多卡因对腹腔镜结直肠癌根治术患者围术期细胞免疫功能的影响[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2017.
|
|
[65]
|
Li, M. and Xiong, Z.G. (2021) Ion Channels as Targets for Cancer Therapy. International Journal of Physiology, Pathophysiology and Pharmacology, 3, 156-166.
|
|
[66]
|
Bundscherer, A., Malsy, M., Gebhardt, K., Metterlein, T., Plank, C., Wiese, C.H., et al. (2015) Effects of Ropivacaine, Bupivacaine and Sufentanil in Colon and Pancreatic Cancer Cells in Vitro. Pharmacological Research, 95, 126-131. [Google Scholar] [CrossRef] [PubMed]
|