麻醉药物对结直肠癌患者免疫系统影响的研究进展
Research Progress of the Effects of Anesthetic Drugs on the Immune System of Patients with Colorectal Cancer
DOI: 10.12677/acm.2024.14123048, PDF, HTML, XML,   
作者: 黄先松*:内蒙古民族大学呼伦贝尔临床医学院,内蒙古 通辽;成子飞#:呼伦贝尔市人民医院麻醉科,内蒙古 呼伦贝尔
关键词: 麻醉药物结直肠癌免疫系统免疫抑制Anesthetic Drugs Colorectal Cancer Immune System Immunosuppression
摘要: 结直肠癌(CRC)是一种在临床上常见的消化系统恶性肿瘤,目前我国主要的治疗方式是进行外科手术。结直肠肿瘤可使患者的免疫系统受到抑制,而围术期使用的各种麻醉药物在产生镇痛、抗炎和控制应激反应作用的同时,对结直肠癌患者的免疫功能也会产生多种影响,直接或间接地影响肿瘤的进展和复发,以及结直肠癌患者的预后。本文综述了近年来各种麻醉药物对结直肠癌患者免疫系统影响的研究进展,包括对肿瘤预后的影响。未来的研究应着重于围术期的各种麻醉药物对患者免疫系统的复合影响,以及作用机制,为麻醉提供更加严格的标准。
Abstract: Colorectal cancer (CRC) is a malignant tumor of the digestive system that is very prevalent worldwide, and the main treatment modality in our country is to perform surgery. Colorectal tumors can suppress the immune system of patients, and the various anesthetic drugs used in the perioperative period will have a variety of effects on the immune function of colorectal cancer patients while producing analgesic, anti-inflammatory and stress control effects, directly or indirectly affecting the progression and recurrence of tumors, as well as the prognosis of colorectal cancer patients. This paper reviews the progress of research on the effects of various anaesthetic drugs on the immune system of colorectal cancer patients in recent years, including the impact on tumour prognosis. Future studies should focus on the compound effects of various anaesthetic drugs on the patient's immune system during the perioperative period, as well as the mechanism of action, to provide more rigorous standards for anaesthesia.
文章引用:黄先松, 成子飞. 麻醉药物对结直肠癌患者免疫系统影响的研究进展[J]. 临床医学进展, 2024, 14(12): 66-74. https://doi.org/10.12677/acm.2024.14123048

1. 引言

结直肠癌,作为世界上第三常见的恶性肿瘤,据统计数据显示,结直肠癌的死亡率排名全球第二[1]。虽然结直肠癌治疗方法很多,但是目前,手术切除被认为是最主要、最常用的结直肠癌治疗策略。而外科手术会造成应激、炎症等副作用,抑制患者的免疫系统。麻醉的各种相关药物,一方面通过减轻手术刺激、调控炎症反应改善围术期的免疫抑制[2]。另一方面,调控机体的抗肿瘤免疫,对围术期感染和手术结果及患者的预后都有较大的影响[3]。近年来随着微创手术和快速康复外科技术的兴起,手术对患者免疫系统的影响逐渐下降,而麻醉对免疫功能的作用就日益凸显。因此选择合理的麻醉药物,减少对患者免疫系统的抑制,降低肿瘤转移和扩散的可能,就显得更为重要。本文就不同类型的麻醉药物如何影响结直肠癌患者的免疫功能进行综合性论述。

2. 结直肠癌的免疫微环境

结直肠癌的免疫系统主要由多种免疫细胞,包括NK、T、B、巨噬细胞等,以及与之有关的信号分子组成。这些细胞的功能各异,对于结直肠癌的治疗和预后都有重要的影响。

2.1. 自然杀伤细胞(NK细胞)

NK细胞是免疫系统的重要组成成分,一方面,它可以通过分泌TNF-α和IFN-γ等多种细胞因子来抑制肿瘤的形成,减缓肿瘤细胞的生长和扩散[4]。另一方面,在NK细胞发生凋亡的过程中,它还会释放出一些有害物质,比如颗粒酶和穿孔素,这些有害物质对肿瘤细胞具有强烈的毒性作用,可以直接导致肿瘤细胞的死亡。在结直肠癌中,NK细胞尤其富集在错配修复缺陷的区域中,表明这些细胞可能具有潜在的抗肿瘤作用[5]。NK细胞对结直肠癌肿瘤免疫的保护作用早已得到认可,而在遗传性和散发性的小鼠模型中,体内给予靶向表达的NK细胞抗体会大大加剧肿瘤的形成[6],这表明NK细胞在限制结直肠癌的生长方面同样发挥作用。

2.2. T淋巴细胞

T细胞在肿瘤免疫微环境中起着重要作用,它们是含量最丰富和最具特征性的免疫细胞,主要参与细胞免疫。此外,还能介导抗肿瘤免疫反应,这种反应对于肿瘤监视和杀伤非常重要。T细胞可以分为两个主要类型,即CD8+ T细胞和CD4+ T细胞。

2.2.1. CD8+淋巴细胞

CD8+ T淋巴细胞,又被称为细胞毒性T淋巴细胞。一方面,它们能够溶解肿瘤细胞,产生直接杀伤作用[7]。另一方面,CD8+ T淋巴细胞还具有分泌多种物质的能力,其中包括IL-2、IFN-γ以及TNF-α等重要细胞因子,这些分泌物可以进一步增强对肿瘤细胞的杀伤效果[8]。此外,CD8+ T淋巴细胞与肿瘤的预后有紧密联系。有迹象表明,CD8+的密度水平与多种癌症的长期生存率相关[9] [10]。而对于结直肠癌患者,CD8+表达量越多,患者发生脉管癌栓和淋巴结转移的概率越低[11]

2.2.2. CD4+ T淋巴细胞

CD4+ T淋巴细胞通过分泌细胞因子来调节免疫反应,从而有效对抗感染及肿瘤。它们可以分化成调节性T细胞(Treg)、Th1型、Th2型、Th9型、Th17型、Th22型和滤泡辅助性T细胞(Tfh),从而发挥出它们的最大作用。辅助性T细胞1细胞(TH1)传统上被认为可增强CTL效应功能,有助于进一步增强机体的抗肿瘤免疫应答[12]。最近研究显示,CD4+ T淋巴细胞对肿瘤细胞具有直接毒性和颗粒酶依赖性细胞毒性活性[13]。但CD4+ T细胞在结直肠癌的发生过程中具有多重影响,在小鼠模型中,CD4+ T细胞中的TGF-β信号转导促进了产生IL-22的Th17细胞的出现,从而加速了小鼠结直肠癌的发生[14]

2.3. 巨噬细胞

巨噬细胞可以根据其功能和特点分为M1和M2两种不同的亚型。M1可以参与TH1型免疫反应,它们能够有效地杀死外来病原体和内源性肿瘤细胞,并且可以针对特定的细胞产生促炎分子(IL-6,IL-12,IL-23和TNF-α) [15],同时还可以增加组织相容性复合体(MHC)和共刺激分子的表达,从而促进机体的适应性免疫反应。M2具有免疫抑制特性,并且M2-TAMs标志物表达是CRC的不良预后因素[16]。有研究表明,M1与结直肠癌的淋巴转移和肝转移能力呈负相关,而M2则与术前CEA水平、淋巴转移、肿瘤分化程度和肝转移能力呈正相关[17]。虽然巨噬细胞浸润被证明是多种癌症的不良预后因素,可能会对肿瘤发展产生负面影响,但在结直肠癌中,它可能与更好的预后有关联[18]

2.4. B细胞

一直以来,分泌抗体的B细胞被认为是肠道稳态的核心因素,它既可以促进肿瘤的发生,也可以抑制肿瘤的进展和扩散。一项针对19种癌症的荟萃分析显示,B细胞浸润与大部分癌症的良好预后呈正相关[19]。CD20+ B细胞浸润能促进PD-1抗体的肿瘤杀伤作用,改善CRC患者的预后[20]。但是B细胞在肿瘤发展与抑制中的作用很复杂。B细胞被证明可通过促进炎症微环境的培育,推动癌变和肿瘤进展[21],此外,调节性B细胞也被证明可抑制T细胞介导的抗肿瘤反应[22]

2.5. 中性粒细胞

中性粒细胞可通过减少IL-17引起的癌症相关炎症,并限制细菌的数量和多样性来抑制结肠癌的生长和进展[23]。此外中性粒细胞也可与其他免疫细胞相互作用,增强机体的抗肿瘤作用。但是在肿瘤微环境的背景下,不断有研究发现,中性粒细胞在肿瘤发展过程中扮演着重要的角色。它们可能参与了肿瘤的侵袭、血管形成以及转移等关键过程。有证据表明,中性粒细胞通过精氨酸酶-8抑制CD1反应、上调肿瘤细胞增殖途径、促进VEGF和HGF血管生成等机制支持肿瘤的生长和进展[24]。Gordon-Weeks [25]等人也发现中性粒细胞促进由成纤维细胞生长因子2 (FGF2)介导的肝转移生长和血管生成。然而,有研究发现,中性粒细胞可增强CD8+ T细胞对T细胞受体触发的反应性,表明它们可能有效促进机体的抗肿瘤免疫[26]

现在,外科手术已经成为结直肠癌治疗的主流选择。而围手术期的特征是明显的免疫抑制,并且麻醉会加重这种免疫抑制。因此围术期间制定合适的麻醉用药方案对结直肠癌患者的预后有着重要意义。

3. 麻醉药物对结直肠癌患者免疫系统的影响

3.1. 吸入性麻醉药

目前大多数研究表明,挥发性麻醉剂对围术期机体免疫具有免疫抑制作用,包括抑制中性粒细胞、巨噬细胞、T细胞、B细胞和NK细胞等的功能[27]。在结直肠癌患者的麻醉对照试验中发现,七氟烷患者术后即刻、术后1 d外周血中CD3+、CD4+、CD4+/CD8+ T淋巴细胞水平与麻醉前相比明显降低,而且比丙泊酚麻醉降低程度更大[28]。而且与静脉麻醉相比,接受吸入麻醉的结直肠癌患者术后肿瘤复发风险增加[29]。这表明,相比于静脉麻醉药,吸入麻醉药物对患者可能存在更大的免疫抑制作用。但是,对于结直肠癌患者,吸入麻醉药对肿瘤的发生及进展也存在一定的抑制作用。Sun [30]等人发现七氟醚可通过调节MicroRNA-34A/ADAM10轴来抑制结直肠癌细胞的迁移和侵袭。另一项研究发现,七氟醚还可以通过抑制ERK信号传导途径来抑制大肠癌细胞的增殖和侵袭,诱导肿瘤细胞的凋亡和自噬[31]。在另外一项包含130例结直肠癌手术的对照试验中发现,接受七氟醚麻醉的患者在多个时间点的免疫指标水平均高于接受异氟醚麻醉的患者,表明七氟醚可以增强T细胞的免疫反应[32]。异氟醚对结直肠癌的免疫系统也同样存在着多重影响。有研究表明,异氟醚通过靶向miR-216抑制结直肠癌细胞的增殖、迁移和侵袭并促进细胞凋亡[33]。但是也有学者发现,在直肠癌围术期,异氟烷对CD3+ T淋巴细胞、TNF-α及树突状细胞的抗原呈递作用存在抑制作用,并不利于机体免疫[34]目前,关于吸入性麻醉药对结直肠癌患者的抗肿瘤免疫功能的影响和作用机制,尚没有达成一致共识。虽然有相关研究,但仍缺乏高质量的临床性实验来证实这些影响。

3.2. 阿片类药物

手术过程中,疼痛引起的应激反应,可导致交感–肾上腺髓质轴和下丘脑–垂体–肾上腺皮质轴的失衡。围术期的镇痛药以阿片类为主,包括吗啡、芬太尼及其衍生物、可待因和哌替啶等。目前研究表明,阿片类药物会抑制免疫系统的功能,并加速肿瘤的发展[35]。对于结直肠癌,一方面,吗啡可降低围术期Th1细胞计数和Th1/Th2比值[36]。另一方面吗啡通过MOR诱导EGFR的反式活化,从而激活下游的AKT-MTOR和RAS-MAPK信号通路,促进结直肠癌细胞的增殖、迁移和侵袭[37]

芬太尼是一种强效的类阿片止痛剂,对μ-受体可产生强力激动作用。在对结直肠癌切除术后的回顾性研究中,Tai [38]等人发现,术中使用芬太尼对结直肠癌切除术后的癌症复发和患者生存期并没有影响。将芬太尼用作结直肠癌切除术的术后镇痛时,发现使用芬太尼后的NK细胞活性和血清IL-2水平与对照组的数据并无统计学意义[39]。另外,不同的芬太尼衍生物对免疫系统的影响也有一定不同。有研究表明,在腹腔镜结直肠癌根治术中,相比于瑞芬太尼,靶控输注舒芬太尼的患者T淋巴细胞亚群减少程度明显低于瑞芬太尼组,且细胞免疫功能恢复更快[40]

曲马多是一种弱阿片受体激动剂,广泛用于治疗癌性疼痛。与其他阿片类药物不同的是,曲马多还具有阻止去甲肾上腺素和5-羟色胺再吸收的作用,这使得曲马多在抗肿瘤免疫方面表现出了特殊的效果,并被证明对肿瘤免疫具有保护作用[41]。在乳腺癌患者中,曲马多通过抑制α2-肾上腺素能受体的表达,可以有效地抑制乳腺癌细胞的生长和扩散[42]。此外,曲马多和合成可待因类似物,在结直肠癌干细胞中同样具有凋亡诱导作用[43]。目前的研究表明,曲马多可能对结直肠癌患者围术期的抗肿瘤免疫功能具有积极的影响。然而,目前关于曲马多在这方面的研究主要集中在体外实验中,仍然需要更多的前瞻性研究和体内实验来证实其效果。

地佐辛是一种阿片受体拮抗剂,其镇痛效果、起效和持续时间都与吗啡相似,但副作用和不良反应更少,广泛用于麻醉和镇痛。Feng [44]等人发现,地佐辛通过促进人脐带血树突状细胞成熟过程中的淋巴细胞活性来上调IL-12水平并下调IL-10水平,从而介导机体的免疫反应。最近的研究表明,在腹腔镜结直肠癌根治术切皮前5 min和术毕静注40 μg/kg地佐辛,可减缓免疫指标CD4+的下调幅度和CD8+的上升幅度,从而减轻结直肠癌本身及手术造成的免疫抑制[45]。在小鼠肿瘤模型中,地佐辛可通过促进树突状细胞成熟,诱导T淋巴细胞的活化,抑制结直肠癌转移[46]。上述研究结果表明,地佐辛可通过潜在的抗肿瘤作用保护癌症患者的免疫功能。

3.3. 静脉麻醉药

丙泊酚是最常用的静脉麻醉药物,常用于麻醉诱导和维持,可减轻癌症引起的免疫抑制和癌症复发[47]。结合最新的临床试验结果,丙泊酚静脉麻醉在结直肠癌根治术中的使用,能够显著缓解病人的氧化应激及炎性反应[48]。而且丙泊酚在术后免疫保护方面优于吸入麻醉剂。Huang [49]等人发现丙泊酚可以降低部分恶性癌细胞的活性,并且不会NK细胞介导细胞毒性作用。然而,丙泊酚对T淋巴细胞水平可能存在一定影响。在一项麻醉药物对结直肠癌免疫影响的对照试验中,发现丙泊酚可降低CD3+、CD4+、CD4+/CD8+ T淋巴细胞水平,但降低程度较七氟烷弱[27]。相比于七氟醚,丙泊酚也可维持较高的NK细胞水平,有利于维持肿瘤患者围术期的免疫功能[50]

依托咪酯具有抗炎特性和免疫抑制特性。依托咪酯可以抑制NF-κB信号通路的激活,从而减少一系列炎症因子的释放[51]。除此之外,依托咪酯可以通过诱导上皮–间充质的转化而促进结直肠癌的进展和肿瘤迁移[52]。结直肠癌患者通常表现出Th2优势,而氯胺酮则能将Th1/Th2的平衡转向Th1,减轻结直肠癌的免疫抑制,并且呈剂量依赖性,随着浓度增高,影响逐渐增强[36],这也表现出氯胺酮对结直肠癌免疫系统的多重影响。

右美托咪定是α2肾上腺素受体激动剂,有镇静、镇痛和抑制交感神经张力的作用,能够减少皮质醇、儿茶酚胺等应激激素的分泌,从而增强抗炎作用、稳定血流动力。Wang [53]等人的荟萃分析指出,术中输注右美托咪定可增加NK细胞,B细胞和CD8+ T细胞的数量,保护患者免疫功能。而有研究发现,结直肠癌围术期,右美托咪定辅助麻醉下,一方面,可使Th1/Th2反应模式逐渐漂移到Th1细胞,降低老年结直肠癌患者围手术期脑氧代谢,改善术后免疫抑制状态[54]。另一方面,也能提高结直肠癌切除术后患者的CD3、CD4、NK细胞分数,有利于提高患者的抗肿瘤免疫[55]

咪达唑仑是一种苯二氮卓类镇静催眠药,同时具有显著的抗炎作用,能够有效地降低IL-8的活性,从而阻止中性粒细胞与细胞膜的结合[56]。在结直肠癌模型中,咪达唑仑可通过下调肿瘤发生关键蛋白泛素水解酶USP22而抑制结肠癌SW480细胞的增殖[57]

3.4. 非甾体类抗炎药

非甾体抗炎药(NSAIDs)目前用作围手术期的镇痛药,其主要的共同作用机制是通过抑制体内的环氧化酶(COX)的活性,减少前列腺素(PG)的生物合成[58]。证据表明,在小鼠模型中,阿司匹林通过调控细胞免疫(包括CD4+和Th17显著下降、CD4+和CD25+ T细胞显著提高等)来预防结直肠癌的发生、发展,且不同剂量阿司匹林干预外周免疫器官免疫细胞的变化有不同的规律[59]。Zhao [60]等人通过给小鼠喂养阿司匹林,发现小鼠胃肠道中的有害细菌减少,有益细菌增多,并且减少了结直肠癌的发生率。不仅如此,在一项癌症预防研究中,Cecil [61]等人发现,塞来昔布可显著降低结肠肿瘤中的程序性死亡配体1 (PD-L1)表达,并增加CD8+ T淋巴细胞的浸润以控制肿瘤生长。流行病学和临床前数据也为在NSAIDs结直肠腺癌治疗中的有益作用提供了支持[62]

3.5. 局部麻醉药

局部麻醉药可以有效地阻断外部疼痛刺激的传入,显著降低神经内分泌因子的释放和其血药浓度,减轻应激造成的免疫抑制。传统研究显示,利多卡因可以通过调节HPA轴和SNS抑制手术诱导的神经内分泌反应,减少肿瘤的扩散[63]。此外,利多卡因可能对某些类型的肿瘤患者具有免疫保护作用,一项包含40例结直肠癌根治术的研究发现,利多卡因可改善围术期对T淋巴细胞介导的免疫应答的抑制效应并抑制CD127-Treg细胞的增殖[64]。在结直肠癌中,电压门控钠通道(VGSC)表达水平较高且活跃,而Li [65]等人发现,利多卡因等局部麻醉剂可以阻断VGSC通道,从而有效抑制肿瘤生长和扩散。在另一项研究局部麻醉药对体外肿瘤细胞影响的试验中,通过测定特制的局部麻醉药溶液对培养皿上肿瘤细胞生长的作用,发现利多卡因、罗哌卡因均可以延缓或停滞肿瘤细胞的增殖周期,特别是罗哌卡因,实验证明它们可以引起结肠癌细胞发生凋亡,并改变其细胞周期分布。不过需要注意的是,这种抗肿瘤生长活性只在高浓度下才会发生[66]

4. 小结与展望

结直肠癌患者免疫系统本就受到不同程度的损害,麻醉药物可以缓解这种损害,减轻肿瘤和围术期造成的免疫抑制,改善患者预后。但部分药物也可加重免疫抑制,增加肿瘤转移和复发的可能。目前,大多数吸入麻醉剂、阿片类药物、局部麻醉剂和其他静脉麻醉药都会降低免疫力,并可能促进肿瘤的转移和复发。同时咪达唑仑、选择性非甾体抗炎镇痛药和丙泊酚等药物对机体免疫系统具有一定程度的保护作用,氯胺酮则可以有效地抑制肿瘤的进展。然而,目前临床上的许多麻醉药物对结直肠癌患者免疫系统的影响和其机制仍不十分明确,有待进一步的探究。而且很多临床研究样本量通常较小,大多数都是回顾性研究,存在一定的缺陷。因此,今后需要的是大规模、前瞻性、随机化的临床研究,进一步阐明麻醉药物对结直肠癌患者的特定免疫作用及其作用机制,不断优化肿瘤患者的麻醉方案。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Ackerman, R.S., Luddy, K.A., Icard, B.E., Piñeiro Fernández, J., Gatenby, R.A. and Muncey, A.R. (2021) The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesthesia & Analgesia, 133, 676-689.
https://doi.org/10.1213/ane.0000000000005607
[3] Tedore, T. (2015) Regional Anaesthesia and Analgesia: Relationship to Cancer Recurrence and Survival. British Journal of Anaesthesia, 115, ii34-ii45.
https://doi.org/10.1093/bja/aev375
[4] Market, M., Tennakoon, G. and Auer, R.C. (2021) Postoperative Natural Killer Cell Dysfunction: The Prime Suspect in the Case of Metastasis Following Curative Cancer Surgery. International Journal of Molecular Sciences, 22, Article 11378.
https://doi.org/10.3390/ijms222111378
[5] Wang, S., Qu, Y., Xia, P., Chen, Y., Zhu, X., Zhang, J., et al. (2020) Transdifferentiation of Tumor Infiltrating Innate Lymphoid Cells during Progression of Colorectal Cancer. Cell Research, 30, 610-622.
https://doi.org/10.1038/s41422-020-0312-y
[6] Pan, P., Kang, S., Wang, Y., Liu, K., Oshima, K., Huang, Y., et al. (2017) Black Raspberries Enhance Natural Killer Cell Infiltration into the Colon and Suppress the Progression of Colorectal Cancer. Frontiers in Immunology, 8, Article 997.
https://doi.org/10.3389/fimmu.2017.00997
[7] Seung, E., Xing, Z., Wu, L., Rao, E., Cortez-Retamozo, V., Ospina, B., et al. (2022) A Trispecific Antibody Targeting HER2 and T Cells Inhibits Breast Cancer Growth via CD4 Cells. Nature, 603, 328-334.
https://doi.org/10.1038/s41586-022-04439-0
[8] Golstein, P. and Griffiths, G.M. (2018) An Early History of T Cell-Mediated Cytotoxicity. Nature Reviews Immunology, 18, 527-535.
https://doi.org/10.1038/s41577-018-0009-3
[9] Accardo, G., Conzo, G., Esposito, D., Gambardella, C., Mazzella, M., Castaldo, F., et al. (2017) Genetics of Medullary Thyroid Cancer: An Overview. International Journal of Surgery, 41, S2-S6.
https://doi.org/10.1016/j.ijsu.2017.02.064
[10] Kihara, M., Miyauchi, A., Yoshioka, K., Oda, H., Nakayama, A., Sasai, H., et al. (2016) Germline RET Mutation Carriers in Japanese Patients with Apparently Sporadic Medullary Thyroid Carcinoma: A Single Institution Experience. Auris Nasus Larynx, 43, 551-555.
https://doi.org/10.1016/j.anl.2015.12.016
[11] Wang, Y.J., Shi, X.S. and Bai, X.F. (2021) Expression and Significance of CD4+ T, CD8+ T Cells and PD-L1 in Colon Cancer. China Modern Physician, 59, 152-155, 166.
[12] Ahrends, T., Spanjaard, A., Pilzecker, B., Bąbała, N., Bovens, A., Xiao, Y., et al. (2017) CD4+ T Cell Help Confers a Cytotoxic T Cell Effector Program Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. Immunity, 47, 848-861.E5.
https://doi.org/10.1016/j.immuni.2017.10.009
[13] Cachot, A., Bilous, M., Liu, Y., Li, X., Saillard, M., Cenerenti, M., et al. (2021) Tumor-Specific Cytolytic CD4 T Cells Mediate Immunity against Human Cancer. Science Advances, 7, eabe3348.
https://doi.org/10.1126/sciadv.abe3348
[14] Perez, L.G., Kempski, J., McGee, H.M., Pelzcar, P., Agalioti, T., Giannou, A., et al. (2020) TGF-β Signaling in Th17 Cells Promotes IL-22 Production and Colitis-Associated Colon Cancer. Nature Communications, 11, Article No. 2608.
https://doi.org/10.1038/s41467-020-16363-w
[15] Orecchioni, M., Ghosheh, Y., Pramod, A.B. and Ley, K. (2019) Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively Activated Macrophages. Frontiers in Immunology, 10, Article 1084.
https://doi.org/10.3389/fimmu.2019.01084
[16] Herrera, M., Herrera, A., Domínguez, G., Silva, J., García, V., García, J.M., et al. (2013) Cancer‐Associated Fibroblast and M2 Macrophage Markers Together Predict Outcome in Colorectal Cancer Patients. Cancer Science, 104, 437-444.
https://doi.org/10.1111/cas.12096
[17] Cui, Y., Li, H., Zhou, H., Zhang, T. and Li, Q. (2013) Correlations of Tumor-Associated Macrophage Subtypes with Liver Metastases of Colorectal Cancer. Asian Pacific Journal of Cancer Prevention, 14, 1003-1007.
https://doi.org/10.7314/apjcp.2013.14.2.1003
[18] Edin, S., Wikberg, M.L., Rutegård, J., Oldenborg, P. and Palmqvist, R. (2013) Phenotypic Skewing of Macrophages in Vitro by Secreted Factors from Colorectal Cancer Cells. PLOS ONE, 8, e74982.
https://doi.org/10.1371/journal.pone.0074982
[19] Wouters, M.C.A. and Nelson, B.H. (2018) Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clinical Cancer Research, 24, 6125-6135.
https://doi.org/10.1158/1078-0432.ccr-18-1481
[20] Ji, L., Fu, G., Huang, M., Kao, X., Zhu, J., Dai, Z., et al. (2024) ScrNA-Seq of Colorectal Cancer Shows Regional Immune Atlas with the Function of CD20+ B Cells. Cancer Letters, 584, Article ID: 216664.
https://doi.org/10.1016/j.canlet.2024.216664
[21] de Visser, K.E., Korets, L.V. and Coussens, L.M. (2005) De Novo Carcinogenesis Promoted by Chronic Inflammation Is B Lymphocyte Dependent. Cancer Cell, 7, 411-423.
https://doi.org/10.1016/j.ccr.2005.04.014
[22] Schioppa, T., Moore, R., Thompson, R.G., Rosser, E.C., Kulbe, H., Nedospasov, S., et al. (2011) B Regulatory Cells and the Tumor-Promoting Actions of TNF-α during Squamous Carcinogenesis. Proceedings of the National Academy of Sciences, 108, 10662-10667.
https://doi.org/10.1073/pnas.1100994108
[23] Triner, D., Devenport, S.N., Ramakrishnan, S.K., Ma, X., Frieler, R.A., Greenson, J.K., et al. (2019) Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. Gastroenterology, 156, 1467-1482.
https://doi.org/10.1053/j.gastro.2018.12.003
[24] Hurt, B., Schulick, R., Edil, B., El Kasmi, K.C. and Barnett, C. (2017) Cancer-promoting Mechanisms of Tumor-Associated Neutrophils. The American Journal of Surgery, 214, 938-944.
https://doi.org/10.1016/j.amjsurg.2017.08.003
[25] Gordon‐Weeks, A.N., Lim, S.Y., Yuzhalin, A.E., Jones, K., Markelc, B., Kim, K.J., et al. (2017) Neutrophils Promote Hepatic Metastasis Growth through Fibroblast Growth Factor 2-Dependent Angiogenesis in Mice. Hepatology, 65, 1920-1935.
https://doi.org/10.1002/hep.29088
[26] Governa, V., Trella, E., Mele, V., Tornillo, L., Amicarella, F., Cremonesi, E., et al. (2017) The Interplay between Neutrophils and CD8+ T Cells Improves Survival in Human Colorectal Cancer. Clinical Cancer Research, 23, 3847-3858.
https://doi.org/10.1158/1078-0432.ccr-16-2047
[27] Stollings, L.M., Jia, L., Tang, P., Dou, H., Lu, B. and Xu, Y. (2016) Immune Modulation by Volatile Anesthetics. Anesthesiology, 125, 399-411.
https://doi.org/10.1097/aln.0000000000001195
[28] 任德华, 陈涛, 赵光忠. 七氟醚与丙泊酚对腹腔镜结直肠癌手术患者围术期免疫功能的影响[J]. 中国实验诊断学, 2018, 22(1): 86-88.
[29] Hasselager, R.P., Hallas, J. and Gögenur, I. (2021) Inhalation or Total Intravenous Anaesthesia and Recurrence after Colorectal Cancer Surgery: A Propensity Score Matched Danish Registry-Based Study. British Journal of Anaesthesia, 126, 921-930.
https://doi.org/10.1016/j.bja.2020.11.019
[30] Sun, S.Q., Ren, L.J., Liu, J., Wang, P. and Shan, S.M. (2019) Sevoflurane Inhibits Migration and Invasion of Colorectal Cancer Cells by Regulating MicroRNA-34a/ADAM10 Axis. Neoplasma, 66, 887-895.
https://doi.org/10.4149/neo_2018_181213n962
[31] Yang, X., Zheng, Y. and Rong, W. (2019) Sevoflurane Induces Apoptosis and Inhibits the Growth and Motility of Colon Cancer in Vitro and in Vivo via Inactivating Ras/Raf/MEK/ERK Signaling. Life Sciences, 239, Article ID: 116916.
https://doi.org/10.1016/j.lfs.2019.116916
[32] Yang, M., Yu, Y. and Liu, Q. (2019) Analgesic Effects of Sevoflurane and Isoflurane on Elderly Patients with Colon Cancer and Their Influences on Immunity and Postoperative Cognitive Function. Iranian Journal of Public Health, 48, 444-450.
https://doi.org/10.18502/ijph.v48i3.887
[33] Cai, Z., Suo, L. and Huang, Z. (2021) Isoflurane Suppresses Proliferation, Migration, and Invasion and Facilitates Apoptosis in Colorectal Cancer Cells through Targeting MiR-216. Frontiers in Medicine, 8, Article 658926.
https://doi.org/10.3389/fmed.2021.658926
[34] 何媛媛. 七氟醚、异氟醚对直肠癌患者围术期T淋巴细胞亚群、IL-6、sIL-2R、TNF-α及树突状细胞的影响[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2008.
[35] Boland, J.W. and Pockley, A.G. (2017) Influence of Opioids on Immune Function in Patients with Cancer Pain: From Bench to Bedside. British Journal of Pharmacology, 175, 2726-2736.
https://doi.org/10.1111/bph.13903
[36] Hou, M., Zhou, N., Li, H., Wang, B., Wang, X., Wang, X., et al. (2018) Morphine and Ketamine Treatment Suppress the Differentiation of T Helper Cells of Patients with Colorectal Cancer in Vitro. Experimental and Therapeutic Medicine, 17, 935-942.
https://doi.org/10.3892/etm.2018.7035
[37] Lu, H., Zhang, H., Weng, M., Zhang, J., Jiang, N., Cata, J.P., et al. (2020) Morphine Promotes Tumorigenesis and Cetuximab Resistance via EGFR Signaling Activation in Human Colorectal Cancer. Journal of Cellular Physiology, 236, 4445-4454.
https://doi.org/10.1002/jcp.30161
[38] Tai, Y., Wu, H., Chang, W., Tsou, M., Chen, H. and Chang, K. (2017) Intraoperative Fentanyl Consumption Does Not Impact Cancer Recurrence or Overall Survival after Curative Colorectal Cancer Resection. Scientific Reports, 7, Article No. 10816.
https://doi.org/10.1038/s41598-017-11460-1
[39] Kim, S.Y., Kim, N.K., Baik, S.H., Min, B.S., Hur, H., Lee, J., et al. (2016) Effects of Postoperative Pain Management on Immune Function after Laparoscopic Resection of Colorectal Cancer. Medicine, 95, e3602.
https://doi.org/10.1097/md.0000000000003602
[40] Qi, Y., Yao, X., Zhang, B. and Du, X. (2016) Comparison of Recovery Effect for Sufentanil and Remifentanil Anesthesia with TCI in Laparoscopic Radical Resection during Colorectal Cancer. Oncology Letters, 11, 3361-3365.
https://doi.org/10.3892/ol.2016.4394
[41] Saeed, I., La Caze, A., Hollmann, M.W., Shaw, P.N. and Parat, M. (2021) New Insights on Tramadol and Immunomodulation. Current Oncology Reports, 23, Article No. 123.
https://doi.org/10.1007/s11912-021-01121-y
[42] Xia, M., Tong, J.H., Zhou, Z.Q., et al. (2016) Tramadol Inhibits Proliferation, Migration and Invasion via α2-Adrenoceptor Signaling in Breast Cancer Cells. European Review for Medical and Pharmacological Scieence, 20, 157-165.
[43] Özgürbüz, U., Gencür, S., Kurt, F.Ö., Özkalkanlı, M. and Vatansever, H.S. (2019) The Effects of Tramadol on Cancer Stem Cells and Metabolic Changes in Colon Carcinoma Cells Lines. Gene, 718, Article ID: 144030.
https://doi.org/10.1016/j.gene.2019.144030
[44] Feng, C., Feng, M., Jiao, R., Liu, D., Jin, Y., Zhao, X., et al. (2017) Effect of Dezocine on IL-12 and IL-10 Secretion and Lymphocyte Activation by Culturing Dendritic Cells from Human Umbilical Cord Blood. European Journal of Pharmacology, 796, 110-114.
https://doi.org/10.1016/j.ejphar.2016.12.035
[45] 冀玲, 何印斌, 刘凡凡, 等. 地佐辛对腹腔镜结直肠癌根治术患者免疫、应激及认知功能的影响[J]. 海南医学, 2022, 33(9): 1099-1102.
[46] Song, Q., Liu, G., Liu, D. and Feng, C. (2020) Dezocine Promotes T Lymphocyte Activation and Inhibits Tumor Metastasis after Surgery in a Mouse Model. Investigational New Drugs, 38, 1342-1349.
https://doi.org/10.1007/s10637-020-00921-6
[47] Gao, X., Mi, Y., Guo, N., Luan, J., Xu, H., Hu, Z., et al. (2020) The Mechanism of Propofol in Cancer Development: An Updated Review. Asia-Pacific Journal of Clinical Oncology, 16, e3-e11.
https://doi.org/10.1111/ajco.13301
[48] 郝琨, 熊良志, 乔婷, 等. 丙泊酚对结直肠癌手术患者免疫功能、应激反应及血流动力学的影响[J]. 海南医学院学报, 2018, 24(23): 2098-2102
[49] Huang, H., Benzonana, L.L., Zhao, H., Watts, H.R., Perry, N.J.S., Bevan, C., et al. (2014) Prostate Cancer Cell Malignancy via Modulation of HIF-1α Pathway with Isoflurane and Propofol Alone and in Combination. British Journal of Cancer, 111, 1338-1349.
https://doi.org/10.1038/bjc.2014.426
[50] 张铁军, 彭伟, 尹芳, 等. 丙泊酚与七氟醚对舌癌根治术患者NK细胞和 B淋巴细胞的影响[J]. 临床麻醉学杂志, 2016, 32(2): 114-117.
[51] Zhang, Y., Li, R., Zhu, J., Wang, Z., Lv, S. and Xiong, J. (2015) Etomidate Increases Mortality in Septic Rats through Inhibition of Nuclear Factor κ-B Rather than by Causing Adrenal Insufficiency. Journal of Surgical Research, 193, 399-406.
https://doi.org/10.1016/j.jss.2014.07.001
[52] Deng, F., Ouyang, M., Wang, X., Yao, X., Chen, Y., Tao, T., et al. (2016) Differential Role of Intravenous Anesthetics in Colorectal Cancer Progression: Implications for Clinical Application. Oncotarget, 7, 77087-77095.
https://doi.org/10.18632/oncotarget.12800
[53] Wang, K., Wu, M., Xu, J., Wu, C., Zhang, B., Wang, G., et al. (2019) Effects of Dexmedetomidine on Perioperative Stress, Inflammation, and Immune Function: Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 123, 777-794.
https://doi.org/10.1016/j.bja.2019.07.027
[54] Tang, Y., Liu, J., Huang, X., Ding, H., Tan, S. and Zhu, Y. (2022) Effect of Dexmedetomidine-Assisted Intravenous Inhalation Combined Anesthesia on Cerebral Oxygen Metabolism and Serum Th1/Th2 Level in Elderly Colorectal Cancer Patients. Frontiers in Surgery, 8, Article 832646.
https://doi.org/10.3389/fsurg.2021.832646
[55] 吴春霞, 袁茹. 右美托咪定复合麻醉对腹腔镜结肠癌切除术患者术后免疫功能和胃肠功能及应激反应的影响[J]. 临床合理用药, 2023, 16(24): 68-71.
[56] Lu, H.B., Jia, Y.P., Liang, Z.H., Zhou, R. and Zheng, J.Q. (2015) Effect of Continuous Infusion of Midazolam on Immune Function in Pediatric Patients after Surgery. Genetics and Molecular Research, 14, 10007-10014.
https://doi.org/10.4238/2015.august.21.7
[57] 窦云凌, 刘卫峰, 王凌雁, 等. 咪达唑仑下调USP22抑制结肠癌SW480细胞增殖[J]. 消化肿瘤杂志(电子版), 2012, 4(4): 260-264.
[58] Cha, Y.I. and DuBois, R.N. (2007) NSAIDs and Cancer Prevention: Targets Downstream of COX-2. Annual Review of Medicine, 58, 239-252.
https://doi.org/10.1146/annurev.med.57.121304.131253
[59] 马斌. 阿司匹林干预肠道菌群预防结直肠癌的免疫相关机制研究[D]: [博士学位论文]. 银川: 宁夏医科大学, 2017.
[60] Zhao, R., Coker, O.O., Wu, J., Zhou, Y., Zhao, L., Nakatsu, G., et al. (2020) Aspirin Reduces Colorectal Tumor Development in Mice and Gut Microbes Reduce Its Bioavailability and Chemopreventive Effects. Gastroenterology, 159, 969-983.e4.
https://doi.org/10.1053/j.gastro.2020.05.004
[61] Rao, C.V. (2022) Anti-Inflammatory Drugs Decrease the PD-L1 Expression and Increase the CD8+ T-Cell Infiltration. Cancer Prevention Research, 15, 209-211.
https://doi.org/10.1158/1940-6207.capr-22-0052
[62] Crusz, S.M. and Balkwill, F.R. (2015) Inflammation and Cancer: Advances and New Agents. Nature Reviews Clinical Oncology, 12, 584-596.
https://doi.org/10.1038/nrclinonc.2015.105
[63] Kim, R. (2018) Effects of Surgery and Anesthetic Choice on Immunosuppression and Cancer Recurrence. Journal of Translational Medicine, 16, Article No. 8.
https://doi.org/10.1186/s12967-018-1389-7
[64] 严蕾. 利多卡因对腹腔镜结直肠癌根治术患者围术期细胞免疫功能的影响[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2017.
[65] Li, M. and Xiong, Z.G. (2021) Ion Channels as Targets for Cancer Therapy. International Journal of Physiology, Pathophysiology and Pharmacology, 3, 156-166.
[66] Bundscherer, A., Malsy, M., Gebhardt, K., Metterlein, T., Plank, C., Wiese, C.H., et al. (2015) Effects of Ropivacaine, Bupivacaine and Sufentanil in Colon and Pancreatic Cancer Cells in Vitro. Pharmacological Research, 95, 126-131.
https://doi.org/10.1016/j.phrs.2015.03.017