[1]
|
Shi, Z.-W., et al. (2023) Roles of Hippo—Yap/Taz Signalling in Intervertebral Disc Degeneration. Biomedicine & Pharmacotherapy, 159, Article ID: 114099. https://doi.org/10.1016/j.biopha.2022.114099
|
[2]
|
Ge, Y., Chen, Y., Guo, C., Luo, H., Fu, F., Ji, W., et al. (2022) Pyroptosis and Intervertebral Disc Degeneration: Mechanistic Insights and Therapeutic Implications. Journal of Inflammation Research, 15, 5857-5871. https://doi.org/10.2147/jir.s382069
|
[3]
|
Romaniyanto, F., Mahyudin, F., Prakoeswa, C.R.S., Notobroto, H.B., Tinduh, D., Ausrin, R., et al. (2022) Adipose-derived Stem Cells (ASCS) for Regeneration of Intervertebral Disc Degeneration: Review Article. Stem Cells and Cloning: Advances and Applications, 15, 67-76. https://doi.org/10.2147/sccaa.s379714
|
[4]
|
Zhang, J., Zhang, W., Sun, T., Wang, J., Li, Y., Liu, J., et al. (2022) The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells. Stem Cells International, 2022, Article ID: 8671482. https://doi.org/10.1155/2022/8671482
|
[5]
|
Peng, B. and Yan, X. (2022) Barriers to Mesenchymal Stromal Cells for Low Back Pain. World Journal of Stem Cells, 14, 815-821. https://doi.org/10.4252/wjsc.v14.i12.815
|
[6]
|
Li, W., Xu, Y. and Chen, W. (2022) Bone Mesenchymal Stem Cells Deliver Exogenous lncRNA CAHM via Exosomes to Regulate Macrophage Polarization and Ameliorate Intervertebral Disc Degeneration. Experimental Cell Research, 421, Article ID: 113408. https://doi.org/10.1016/j.yexcr.2022.113408
|
[7]
|
Chen, D., Jiang, X. and Zou, H. (2023) hASCs-Derived Exosomal miR-155-5p Targeting TGFβR2 Promotes Autophagy and Reduces Pyroptosis to Alleviate Intervertebral Disc Degeneration. Journal of Orthopaedic Translation, 39, 163-176. https://doi.org/10.1016/j.jot.2023.02.004
|
[8]
|
Hu, Y., Zhang, X., Lin, M., Zhou, H., Cong, M., Chen, X., et al. (2023) Nanoscale Treatment of Intervertebral Disc Degeneration: Mesenchymal Stem Cell Exosome Transplantation. Current Stem Cell Research & Therapy, 18, 163-173. https://doi.org/10.2174/1574888x17666220422093103
|
[9]
|
Liu, Z., Bian, Y., Wu, G. and Fu, C. (2022) Application of Stem Cells Combined with Biomaterial in the Treatment of Intervertebral Disc Degeneration. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 1077028. https://doi.org/10.3389/fbioe.2022.1077028
|
[10]
|
Di Martino, A., Barile, F., Fiore, M., Ruffilli, A. and Faldini, C. (2022) Are Injectable Regenerative Therapies Effective in the Treatment of Degenerative Disc Disease? a Systematic Review. Journal of Neurosurgical Sciences, 66, 399-405. https://doi.org/10.23736/s0390-5616.21.05389-3
|
[11]
|
Dong, X., Hu, F., Yi, J., Zhang, Y., Liu, C., Geng, P., et al. (2022) DPSCs Protect Architectural Integrity and Alleviate Intervertebral Disc Degeneration by Regulating Nucleus Pulposus Immune Status. Stem Cells International, 2022, Article ID: 7590337. https://doi.org/10.1155/2022/7590337
|
[12]
|
Chen, Q., Yang, Q., Pan, C., Ding, R., Wu, T., Cao, J., et al. (2023) Quiescence Preconditioned Nucleus Pulposus Stem Cells Alleviate Intervertebral Disc Degeneration by Enhancing Cell Survival via Adaptive Metabolism Pattern in Rats. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1073238. https://doi.org/10.3389/fbioe.2023.1073238
|
[13]
|
Hu, J., Li, C., Jin, S., Ye, Y., Fang, Y., Xu, P., et al. (2022) Salvianolic Acid B Combined with Bone Marrow Mesenchymal Stem Cells Piggybacked on HAMA Hydrogel Re-Transplantation Improves Intervertebral Disc Degeneration. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 950625. https://doi.org/10.3389/fbioe.2022.950625
|
[14]
|
Peng, Y., Chen, X., Liu, S., Wu, W., Shu, H., Tian, S., et al. (2023) Extracellular Vesicle‐Conjugated Functional Matrix Hydrogels Prevent Senescence by Exosomal miR-3594-5p-Targeted HIPK2/p53 Pathway for Disc Regeneration. Small, 19, e2206888. https://doi.org/10.1002/smll.202206888
|
[15]
|
Chen, J., Qi, F., Li, G., Deng, Q., Zhang, C., Li, X., et al. (2023) Identification of the Hub Genes Involved in Stem Cell Treatment for Intervertebral Disc Degeneration: A Conjoint Analysis of Single-Cell and Machine Learning. Stem Cells International, 2023, Article ID: 7055264. https://doi.org/10.1155/2023/7055264
|
[16]
|
Chen, X., Li, Q. and Wang, H. (2023) Sequencing and Bioinformatics Analysis of miRNA from Rat Endplate Chondrogenic Exosomes. Experimental and Therapeutic Medicine, 25, Article No. 267. https://doi.org/10.3892/etm.2023.11966
|
[17]
|
Tilotta, V., Vadalà, G., Ambrosio, L., Cicione, C., Di Giacomo, G., Russo, F., et al. (2023) Mesenchymal Stem Cell-Derived Secretome Enhances Nucleus Pulposus Cell Metabolism and Modulates Extracellular Matrix Gene Expression in Vitro. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1152207. https://doi.org/10.3389/fbioe.2023.1152207
|
[18]
|
Yu, Y., Li, W., Xian, T., Tu, M., Wu, H. and Zhang, J. (2023) Human Embryonic Stem-Cell-Derived Exosomes Repress NLRP3 Inflammasome to Alleviate Pyroptosis in Nucleus Pulposus Cells by Transmitting Mir-302c. International Journal of Molecular Sciences, 24, Article No. 7664. https://doi.org/10.3390/ijms24087664
|
[19]
|
Hou, Y., Shi, J., Guo, Y. and Shi, G. (2023) DNMT1 Regulates Polarization of Macrophage-Induced Intervertebral Disc Degeneration by Modulating SIRT6 Expression and Promoting Pyroptosis in Vivo. Aging, 15, 4288-4303. https://doi.org/10.18632/aging.204729
|
[20]
|
Wang, B., Xu, N., Cao, L., Yu, X., Wang, S., Liu, Q., et al. (2022) Mir-31 from Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviates Intervertebral Disc Degeneration by Inhibiting NFAT5 and Upregulating the Wnt/β-Catenin Pathway. Stem Cells International, 2022, Article ID: 2164057. https://doi.org/10.1155/2022/2164057
|
[21]
|
Schol, J., Sakai, D., Warita, T., Nukaga, T., Sako, K., Wangler, S., et al. (2022) Homing of Vertebral‐Delivered Mesenchymal Stromal Cells for Degenerative Intervertebral Discs Repair—An in Vivo Proof‐of‐Concept Study. JOR Spine, 6, e1228. https://doi.org/10.1002/jsp2.1228
|
[22]
|
Wang, Z., Liu, B., Ma, X., Wang, Y., Han, W. and Xiang, L. (2022) LncRNA ZFAS1 Promotes Intervertebral Disc Degeneration by Upregulating AAK1. Open Medicine, 17, 1973-1986. https://doi.org/10.1515/med-2022-0530
|
[23]
|
Khalid, S., Ekram, S., Ramzan, F., Salim, A. and Khan, I. (2023) Co-Regulation of Sox9 and TGFβ1 Transcription Factors in Mesenchymal Stem Cells Regenerated the Intervertebral Disc Degeneration. Frontiers in Medicine, 10, Article ID: 1127303. https://doi.org/10.3389/fmed.2023.1127303
|
[24]
|
Akeda, K., Fujiwara, T., Takegami, N., Yamada, J. and Sudo, A. (2023) Retrospective Analysis of Factors Associated with the Treatment Outcomes of Intradiscal Platelet-Rich Plasma-Releasate Injection Therapy for Patients with Discogenic Low Back Pain. Medicina, 59, Article No. 640. https://doi.org/10.3390/medicina59040640
|
[25]
|
Hao, Y., Zhu, G., Yu, L., Ren, Z., Zhang, P., Zhu, J., et al. (2022) Extracellular Vesicles Derived from Mesenchymal Stem Cells Confer Protection against Intervertebral Disc Degeneration through a Microrna-217-Dependent Mechanism. Osteoarthritis and Cartilage, 30, 1455-1467. https://doi.org/10.1016/j.joca.2022.08.009
|
[26]
|
Gao, D., Hu, B., Ding, B., Zhao, Q., Zhang, Y. and Xiao, L. (2022) N6-Methyladenosine-Induced Mir-143-3p Promotes Intervertebral Disc Degeneration by Regulating Sox5. Bone, 163, Article ID: 116503. https://doi.org/10.1016/j.bone.2022.116503
|
[27]
|
Gong, Y., Qiu, J., Jiang, T., Li, Z., Zhang, W., Zheng, X., et al. (2022) Maltol Ameliorates Intervertebral Disc Degeneration through Inhibiting PI3K/Akt/NF-κB Pathway and Regulating NLRP3 Inflammasome-Mediated Pyroptosis. Inflammopharmacology, 31, 369-384. https://doi.org/10.1007/s10787-022-01098-5
|
[28]
|
Zhang, W., Wang, D., Li, H., Xu, G., Zhang, H., Xu, C., et al. (2023) Mesenchymal Stem Cells Can Improve Discogenic Pain in Patients with Intervertebral Disc Degeneration: A Systematic Review and Meta-Analysis. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1155357. https://doi.org/10.3389/fbioe.2023.1155357
|
[29]
|
Wang, J., Xia, Z., Su, Z., et al. (2023) Knockdown of microRNA-96-5p Resists Oxidative Stress-Induced Apoptosis in Nucleus Pulposus Cells. American Journal of Translational Research, 15, 4912-4921.
|
[30]
|
Chen, Z., Liao, Z., Liu, M., Lin, F., Chen, S., Wang, G., et al. (2023) Nucleus Pulposus‐targeting Nanocarriers Facilitate Mirna‐Based Therapeutics for Intervertebral Disc Degeneration. Advanced Healthcare Materials, 12, e2301337. https://doi.org/10.1002/adhm.202301337
|
[31]
|
Chen, W., Deng, Z., Zhu, J., Yuan, L., Li, S., Zhang, Y., et al. (2023) Rosuvastatin Suppresses TNF-α-Induced Matrix Catabolism, Pyroptosis and Senescence via the Hmgb1/NF-κB Signaling Pathway in Nucleus Pulposus Cells. Acta Biochimica et Biophysica Sinica, 55, 795-808. https://doi.org/10.3724/abbs.2023026
|