[1]
|
The Kidney Disease Improving Global Outcomes (KDIGO) Working Group (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements, 2, 1-138.
|
[2]
|
de Geus, H.R.H., Ronco, C., Haase, M., Jacob, L., Lewington, A. and Vincent, J. (2016) The Cardiac Surgery-Associated Neutrophil Gelatinase-Associated Lipocalin (CSA-NGAL) Score: A Potential Tool to Monitor Acute Tubular Damage. The Journal of Thoracic and Cardiovascular Surgery, 151, 1476-1481. https://doi.org/10.1016/j.jtcvs.2016.01.037
|
[3]
|
Quan, S., Pannu, N., Wilson, T., Ball, C., Tan, Z., Tonelli, M., et al. (2016) Prognostic Implications of Adding Urine Output to Serum Creatinine Measurements for Staging of Acute Kidney Injury after Major Surgery: A Cohort Study. Nephrology Dialysis Transplantation, 31, 2049-2056. https://doi.org/10.1093/ndt/gfw374
|
[4]
|
Zarbock, A., Koyner, J.L., Hoste, E.A.J. and Kellum, J.A. (2018) Update on Perioperative Acute Kidney Injury. Anesthesia & Analgesia, 127, 1236-1245. https://doi.org/10.1213/ane.0000000000003741
|
[5]
|
Kellum, J.A., Sileanu, F.E., Murugan, R., Lucko, N., Shaw, A.D. and Clermont, G. (2015) Classifying AKI by Urine Output versus Serum Creatinine Level. Journal of the American Society of Nephrology, 26, 2231-2238. https://doi.org/10.1681/asn.2014070724
|
[6]
|
Grams, M.E., Waikar, S.S., MacMahon, B., Whelton, S., Ballew, S.H. and Coresh, J. (2014) Performance and Limitations of Administrative Data in the Identification of Aki. Clinical Journal of the American Society of Nephrology, 9, 682-689. https://doi.org/10.2215/cjn.07650713
|
[7]
|
郑辉, 樊国亮, 王正清, 等. 术前收缩压对冠状动脉旁路移植术 后急性肾损伤的影响[J]. 中华胸心血管外科杂志, 2021, 37(5): 297-302
|
[8]
|
杜晓志, 马智勇, 李莉, 等. 尼可地尔减轻冠心病合并I型心肾综合征患者的肾损伤[J]. 心血管药理学杂志, 2021, 78(5): e675-e680.
|
[9]
|
Hoste, E., Bihorac, A., Al-Khafaji, A., Ortega, L.M., Ostermann, M., Haase, M., et al. (2020) Identification and Validation of Biomarkers of Persistent Acute Kidney Injury: The RUBY Study. Intensive Care Medicine, 46, 943-953. https://doi.org/10.1007/s00134-019-05919-0
|
[10]
|
Kheterpal, S., Tremper, K.K., Heung, M., Rosenberg, A.L., Englesbe, M., Shanks, A.M., et al. (2009) Development and Validation of an Acute Kidney Injury Risk Index for Patients Undergoing General Surgery. Anesthesiology, 110, 505-515. https://doi.org/10.1097/aln.0b013e3181979440
|
[11]
|
Slankamenac, K., Beck‐Schimmer, B., Breitenstein, S., Puhan, M.A. and Clavien, P. (2013) Novel Prediction Score Including Pre‐ and Intraoperative Parameters Best Predicts Acute Kidney Injury after Liver Surgery: Results from a National Data Set. World Journal of Surgery, 37, 2618-2628. https://doi.org/10.1007/s00268-013-2159-6
|
[12]
|
Brienza, N., Giglio, M.T., Marucci, M. and Fiore, T. (2009) Does Perioperative Hemodynamic Optimization Protect Renal Function in Surgical Patients? A Meta-Analytic Study. Critical Care Medicine, 37, 2079-2090. https://doi.org/10.1097/ccm.0b013e3181a00a43
|
[13]
|
Grocott, M.P.W., Dushianthan, A., Hamilton, M.A., Mythen, M.G., Harrison, D. and Rowan, K. (2013) Perioperative Increase in Global Blood Flow to Explicit Defined Goals and Outcomes after Surgery: A Cochrane Systematic Review. British Journal of Anaesthesia, 111, 535-548. https://doi.org/10.1093/bja/aet155
|
[14]
|
Walsh, M., Devereaux, P.J., Garg, A.X., et al. (2013) Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery: Toward an Empirical Definition of Hypotension. Anesthesiology, 119, 507-515. https://doi.org/10.1097/ALN.0b013e3182a10e26
|
[15]
|
Ichai, C., Vinsonneau, C., Souweine, B., Armando, F., Canet, E., Clec’h, C., et al. (2016) Acute Kidney Injury in the Perioperative Period and in Intensive Care Units (Excluding Renal Replacement Therapies). Annals of Intensive Care, 6, Article No. 48. https://doi.org/10.1186/s13613-016-0145-5
|
[16]
|
Koeppen, M., Lee, J.W., Seo, S., Brodsky, K.S., Kreth, S., Yang, I.V., et al. (2018) Hypoxia-Inducible Factor 2-Alpha-Dependent Induction of Amphiregulin Dampens Myocardial Ischemia-Reperfusion Injury. Nature Communications, 9, Article No. 816. https://doi.org/10.1038/s41467-018-03105-2
|
[17]
|
Eckle, T., Grenz, A., Köhler, D., et al. (2006) Systematic Evaluation of a Novel Model for Cardiac Ischemic Preconditioning in Mice. American Journal of Physiology. Heart and Circulatorhysiology, 291, H2533-H2540.
|
[18]
|
Eltzschig, H.K. and Eckle, T. (2011) Ischemia and Reperfusion—From Mechanism to Translation. Nature Medicine, 17, 1391-1401. https://doi.org/10.1038/nm.2507
|
[19]
|
Zarbock, A. and Kellum, J.A. (2016) Remote Ischemic Preconditioning and Protection of the Kidney—A Novel Therapeutic Option. Critical Care Medicine, 44, 607-616. https://doi.org/10.1097/ccm.0000000000001381
|
[20]
|
Er, F., Nia, A.M., Dopp, H., Hellmich, M., Dahlem, K.M., Caglayan, E., et al. (2012) Ischemic Preconditioning for Prevention of Contrast Medium-induced Nephropathy: Randomized Pilot RenPro Trial (Renal Protection Trial). Circulation, 126, 296-303. https://doi.org/10.1161/circulationaha.112.096370
|
[21]
|
Zarbock, A., Schmidt, C., Van Aken, H., Wempe, C., Martens, S., Zahn, P.K., et al. (2015) Effect of Remote Ischemic Preconditioning on Kidney Injury among High-Risk Patients Undergoing Cardiac Surgery: A Randomized Clinical Trial. JAMA, 313, 2133. https://doi.org/10.1001/jama.2015.4189
|
[22]
|
Wahlstrøm, K.L., Bjerrum, E., Gögenur, I., Burcharth, J. and Ekeloef, S. (2021) Effect of Remote Ischaemic Preconditioning on Mortality and Morbidity after Non-Cardiac Surgery: Meta-Analysis. BJS Open, 5, zraa026. https://doi.org/10.1093/bjsopen/zraa026
|
[23]
|
Bagshaw, S.M., Wald, R., Adhikari, N.K.J., et al. (2020) Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. New England Journal of Medicine, 383, 240-251. https://doi.org/10.1056/nejmoa2000741
|
[24]
|
Gumbert, S.D., Kork, F., Jackson, M.L., Vanga, N., Ghebremichael, S.J., Wang, C.Y., et al. (2020) Perioperative Acute Kidney Injury. Anesthesiology, 132, 180-204. https://doi.org/10.1097/aln.0000000000002968
|