[1]
|
Nazari, A., Khorramdelazad, H., Hassanshahi, G., Day, A.S., Sardoo, A.M., Fard, E.T., et al. (2017) S100A12 in Renal and Cardiovascular Diseases. Life Sciences, 191, 253-258. https://doi.org/10.1016/j.lfs.2017.10.036
|
[2]
|
Gonzalez, L.L., Garrie, K. and Turner, M.D. (2020) Role of S100 Proteins in Health and Disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1867, Article 118677. https://doi.org/10.1016/j.bbamcr.2020.118677
|
[3]
|
Klingelhöfer, J., Møller, H.D., Sumer, E.U., Berg, C.H., Poulsen, M., Kiryushko, D., et al. (2009) Epidermal Growth Factor Receptor Ligands as New Extracellular Targets for the Metastasis-Promoting S100A4 Protein. The FEBS Journal, 276, 5936-5948. https://doi.org/10.1111/j.1742-4658.2009.07274.x
|
[4]
|
Leclerc, E., Fritz, G., Vetter, S.W. and Heizmann, C.W. (2009) Binding of S100 Proteins to RAGE: An Update. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1793, 993-1007. https://doi.org/10.1016/j.bbamcr.2008.11.016
|
[5]
|
Sreejit, G., Flynn, M.C., Patil, M., Krishnamurthy, P., Murphy, A.J. and Nagareddy, P.R. (2020) S100 Family Proteins in Inflammation and Beyond. In: Advances in Clinical Chemistry, Elsevier, 173-231. https://doi.org/10.1016/bs.acc.2020.02.006
|
[6]
|
Xia, P., Ji, X., Yan, L., Lian, S., Chen, Z. and Luo, Y. (2023) Roles of S100A8, S100A9 and S100A12 in Infection, Inflammation and Immunity. Immunology, 171, 365-376. https://doi.org/10.1111/imm.13722
|
[7]
|
Zimmer, D.B., Eubanks, J.O., Ramakrishnan, D. and Criscitiello, M.F. (2013) Evolution of the S100 Family of Calcium Sensor Proteins. Cell Calcium, 53, 170-179. https://doi.org/10.1016/j.ceca.2012.11.006
|
[8]
|
Carvalho, A., Lu, J., Francis, J.D., Moore, R.E., Haley, K.P., Doster, R.S., et al. (2020) S100A12 in Digestive Diseases and Health: A Scoping Review. Gastroenterology Research and Practice, 2020, 1-11. https://doi.org/10.1155/2020/2868373
|
[9]
|
Hou, F., Wang, L., Wang, H., Gu, J., Li, M., Zhang, J., et al. (2015) Elevated Gene Expression of S100A12 Is Correlated with the Predominant Clinical Inflammatory Factors in Patients with Bacterial Pneumonia. Molecular Medicine Reports, 11, 4345-4352. https://doi.org/10.3892/mmr.2015.3295
|
[10]
|
Gomez, H., Ince, C., De Backer, D., Pickkers, P., Payen, D., Hotchkiss, J., et al. (2014) A Unified Theory of Sepsis-Induced Acute Kidney Injury. Shock, 41, 3-11. https://doi.org/10.1097/shk.0000000000000052
|
[11]
|
张红英, 杨芬, 张怡. 血清钙结合蛋白S100A12及可溶性sRAGE在急性胰腺炎患者血清中的表达及意义[J]. 陕西医学杂志, 2018, 47(5): 557-560.
|
[12]
|
Sorci, G., Riuzzi, F., Giambanco, I. and Donato, R. (2013) RAGE in Tissue Homeostasis, Repair and Regeneration. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 101-109. https://doi.org/10.1016/j.bbamcr.2012.10.021
|
[13]
|
郑海涵, 吴正祥, 杨枫, 等. 炎症性肠病中S100A12抗体的表达及临床意义[J]. 安徽医科大学学报, 2012, 47(3): 295-298.
|
[14]
|
Lewis, J.D. (2011) The Utility of Biomarkers in the Diagnosis and Therapy of Inflammatory Bowel Disease. Gastroenterology, 140, 1817-1826.e2. https://doi.org/10.1053/j.gastro.2010.11.058
|
[15]
|
Witarto, B.S., Visuddho, V., Witarto, A.P., Sampurna, M.T.A. and Irzaldy, A. (2023) Performance of Fecal S100A12 as a Novel Non-Invasive Diagnostic Biomarker for Pediatric Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Jornal de Pediatria, 99, 432-442. https://doi.org/10.1016/j.jped.2023.03.002
|
[16]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Aaaociation, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[17]
|
黄迪希, 欧阳慧, 罗玉婷, 等. 细菌感染患者发生脓毒症的临床特点及危险因素分析[J]. 广东医学, 2024, 45(5): 571-576.
|
[18]
|
于帆, 韦唯, 楼爽, 等. 基于转录组学分析筛选早期脓毒症患者外周血关键基因及其相关机制研究[J]. 中国急救医学, 2022, 42(12): 1044-1049.
|
[19]
|
Hsu, K., Champaiboon, C., Guenther, B., Sorenson, B., Khammanivong, A., Ross, K., et al. (2009) Anti-Infective Protective Properties of S100 Calgranulins. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 8, 290-305. https://doi.org/10.2174/187152309789838975
|
[20]
|
Kehl-Fie, T.E. and Skaar, E.P. (2010) Nutritional Immunity Beyond Iron: A Role for Manganese and Zinc. Current Opinion in Chemical Biology, 14, 218-224. https://doi.org/10.1016/j.cbpa.2009.11.008
|
[21]
|
Zackular, J.P., Chazin, W.J. and Skaar, E.P. (2015) Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface. Journal of Biological Chemistry, 290, 18991-18998. https://doi.org/10.1074/jbc.r115.645085
|
[22]
|
Tosson, A.M.S., Glaser, K., Weinhage, T., Foell, D., Aboualam, M.S., Edris, A.A., et al. (2019) Evaluation of the S100 Protein A12 as a Biomarker of Neonatal Sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 33, 2768-2774. https://doi.org/10.1080/14767058.2018.1560411
|
[23]
|
Barber, M.R.W., Drenkard, C., Falasinnu, T., Hoi, A., Mak, A., Kow, N.Y., et al. (2021) Global Epidemiology of Systemic Lupus Erythematosus. Nature Reviews Rheumatology, 17, 515-532. https://doi.org/10.1038/s41584-021-00668-1
|
[24]
|
Xu, L., Su, X., Liu, Z. and Zhou, A. (2022) Predicted Immune-Related Genes and Subtypes in Systemic Lupus Erythematosus Based on Immune Infiltration Analysis. Disease Markers, 2022, 1-25. https://doi.org/10.1155/2022/8911321
|
[25]
|
Srivastava, P., Bamba, C., Pilania, R.K., Kumari, A., Kumrah, R., Sil, A., et al. (2022) Exploration of Potential Biomarker Genes and Pathways in Kawasaki Disease: An Integrated In-Silico Approach. Frontiers in Genetics, 13, Article 849834. https://doi.org/10.3389/fgene.2022.849834
|
[26]
|
Šumová, B., Cerezo, L.A., Szczuková, L., Nekvindová, L., Uher, M., Hulejová, H., et al. (2018) Circulating S100 Proteins Effectively Discriminate SLE Patients from Healthy Controls: A Cross-Sectional Study. Rheumatology International, 39, 469-478. https://doi.org/10.1007/s00296-018-4190-2
|
[27]
|
Turnier, J.L., Fall, N., Thornton, S., Witte, D., Bennett, M.R., Appenzeller, S., et al. (2017) Urine S100 Proteins as Potential Biomarkers of Lupus Nephritis Activity. Arthritis Research & Therapy, 19, Article No. 242. https://doi.org/10.1186/s13075-017-1444-4
|
[28]
|
Ren, J.X., Chen, L., Guo, W., Feng, K.Y., Cai, Y. and Huang, T. (2024) Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Combinatorial Chemistry & High Throughput Screening, 27, 2921-2934. https://doi.org/10.2174/0113862073266300231026103844
|
[29]
|
Zhu, Q., Zhang, L., Deng, Y. and Tang, L. (2022) Identification of Immune-Related and Autophagy-Related Genes for the Prediction of Survival in Bladder Cancer. BMC Genomic Data, 23, Article No. 60. https://doi.org/10.1186/s12863-022-01073-7
|
[30]
|
Mints, M., Landin, D., Näsman, A., Mirzaie, L., Ursu, R.G., Zupancic, M., et al. (2021) Tumour Inflammation Signature and Expression of S100A12 and HLA Class I Improve Survival in HPV-Negative Hypopharyngeal Cancer. Scientific Reports, 11, Article No. 1782. https://doi.org/10.1038/s41598-020-80226-z
|
[31]
|
Chen, X., Zhao, X., Li, D. and Zha, W. (2024) Identification of Key Genes and Signaling Pathways in Entrectinibresistant Non-Small Cell Lung Cancer Using Bioinformatic Analysis and Experimental Verification. Current Medicinal Chemistry, 31, 1-19. https://doi.org/10.2174/0109298673320448240801061941
|