|
[1]
|
Lee, C., Lee, J.H., Park, K.S., Jeon, J.H., Kim, Y.B., Cha, C., et al. (2017) Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Frontiers in Cellular and Infection Microbiology, 7, Article 483. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lou, T., Du, X., Zhang, P., Shi, Q., Han, X., Lan, P., et al. (2022) Risk Factors for Infection and Mortality Caused by Carbapenem-Resistant Klebsiella pneumoniae: A Large Multicentre Case-Control and Cohort Study. Journal of Infection, 84, 637-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhen, X., Stålsby Lundborg, C., Sun, X., Gu, S. and Dong, H. (2020) Clinical and Economic Burden of Carbapenem-Resistant Infection or Colonization Caused by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii: A Multicenter Study in China. Antibiotics, 9, Article 514. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Andersson, D.I., Nicoloff, H. and Hjort, K. (2019) Mechanisms and Clinical Relevance of Bacterial Heteroresistance. Nature Reviews Microbiology, 17, 479-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fleming, A. (2001) On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzae. Bulletin of the World Health Organization, 79, 780-790.
|
|
[6]
|
Liu, L., Zhao, M., Tang, Y., Shen, A., Yang, X., Yao, L., et al. (2024) Dissemination of Clinical Escherichia coli Strains Harboring mcr-1, blaNDM-7 and Siderophore-Producing Plasmids in a Chinese Hospital. Antimicrobial Resistance & Infection Control, 13, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
El-Halfawy, O.M. and Valvano, M.A. (2015) Antimicrobial Heteroresistance: An Emerging Field in Need of Clarity. Clinical Microbiology Reviews, 28, 191-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Alexander, H.E. and Leidy, G. (1947) Mode of Action of Streptomycin on Type b Hemophilus Influenzae: II. Nature of Resistant Variants. Journal of Experimental Medicine, 85, 607-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sutherland, R. and Rolinson, G.N. (1964) Characteristics of Methicillin-Resistant Staphylococci. Journal of Bacteriology, 87, 887-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kayser, F.H., Benner, E.J. and Hoeprich, P.D. (1970) Acquired and Native Resistance of Staphylococcus aureus to Cephalexin and Other β-Lactam Antibiotics. Applied Microbiology, 20, 1-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qin, J., Wu, N., Bao, J., Shi, X., Ou, H., Ye, S., et al. (2021) Heterogeneous Klebsiella pneumoniae Co-Infections Complicate Personalized Bacteriophage Therapy. Frontiers in Cellular and Infection Microbiology, 10, Article 608402. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
傅豪, 罗琦霞, 肖永红. 多黏菌素异质性耐药的研究进展及临床意义[J]. 中国抗生素杂志, 2020, 45(11): 1103-1108.
|
|
[13]
|
Falagas, M.E., Makris, G.C., Dimopoulos, G. and Matthaiou, D.K. (2008) Heteroresistance: A Concern of Increasing Clinical Significance? Clinical Microbiology and Infection, 14, 101-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lin, J.Y., Zhu, Z.C., Zhu, J., Chen, L. and Du, H. (2024) Antibiotic Heteroresistance in Klebsiella pneumoniae: Definition, Detection Methods, Mechanisms, and Combination Therapy. Microbiological Research, 283, Article ID: 127701. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dewachter, L., Fauvart, M. and Michiels, J. (2019) Bacterial Heterogeneity and Antibiotic Survival: Understanding and Combatting Persistence and Heteroresistance. Molecular Cell, 76, 255-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pereira, C., Larsson, J., Hjort, K., Elf, J. and Andersson, D.I. (2021) The Highly Dynamic Nature of Bacterial Heteroresistance Impairs Its Clinical Detection. Communications Biology, 4, Article No. 521. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nicoloff, H., Hjort, K., Levin, B.R. and Andersson, D.I. (2019) The High Prevalence of Antibiotic Heteroresistance in Pathogenic Bacteria Is Mainly Caused by Gene Amplification. Nature Microbiology, 4, 504-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
岑坷, 裘春宁, 徐丽慧, 等. 基于K-B法筛选异质性耐药菌株及其对抗菌药物敏感试验结果的影响[J]. 中国微生态学杂志, 2019, 31(4): 466-470.
|
|
[19]
|
Zhang, Q., Lin, L., Pan, Y. and Chen, J. (2021) Characterization of Tigecycline-Heteroresistant Klebsiella pneumoniae Clinical Isolates from a Chinese Tertiary Care Teaching Hospital. Frontiers in Microbiology, 12, Article 671153. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wootton, M. (2001) A Modified Population Analysis Profile (PAP) Method to Detect Hetero-Resistance to Vancomycin in Staphylococcus aureus in a UK Hospital. Journal of Antimicrobial Chemotherapy, 47, 399-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Operario, D.J., Koeppel, A.F., Turner, S.D., Bao, Y., Pholwat, S., Banu, S., et al. (2017) Prevalence and Extent of Heteroresistance by Next Generation Sequencing of Multidrug-Resistant Tuberculosis. PLOS ONE, 12, e0176522. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, Z., Ke, J., Guo, Z., Wang, Y., Lei, K., Wang, S., et al. (2024) Transposase-Assisted Tagmentation: An Economical and Scalable Strategy for Single-Worm Whole-Genome Sequencing. G3: Genes, Genomes, Genetics, 14, jkae094. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Scheutz, F., Nielsen, C.H. and von Mentzer, A. (2024) Construction of the ETECFinder Database for the Characterization of Enterotoxigenic Escherichia coli (ETEC) and Revision of the VirulenceFinder Web Tool at the CGE Website. Journal of Clinical Microbiology, 62, e00570-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Schuster, K.C., Reese, I., Urlaub, E., Gapes, J.R. and Lendl, B. (2000) Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy. Analytical Chemistry, 72, 5529-5534. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bauer, D., Wieland, K., Qiu, L., Neumann-Cip, A., Magistro, G., Stief, C., et al. (2020) Heteroresistant Bacteria Detected by an Extended Raman-Based Antibiotic Susceptibility Test. Analytical Chemistry, 92, 8722-8731. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
姜羽, 胡佳莹, 杨立桃. 利用微滴数字PCR分析转基因生物外源基因拷贝数[J]. 农业生物技术学报, 2014, 22(10): 1298-1305.
|
|
[27]
|
Dai, Y., Li, C., Yi, J., Qin, Q., Liu, B. and Qiao, L. (2020) Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Analytical Chemistry, 92, 8051-8057. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sun, L., Talarico, S., Yao, L., He, L., Self, S., You, Y., et al. (2018) Droplet Digital PCR-Based Detection of Clarithromycin Resistance in Helicobacter pylori Isolates Reveals Frequent Heteroresistance. Journal of Clinical Microbiology, 56, e00019-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Falagas, M.E., Rafailidis, P.I. and Matthaiou, D.K. (2010) Resistance to Polymyxins: Mechanisms, Frequency and Treatment Options. Drug Resistance Updates, 13, 132-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jayol, A., Nordmann, P., Brink, A. and Poirel, L. (2015) Heteroresistance to Colistin in Klebsiella pneumoniae Associated with Alterations in the PhoPQ Regulatory System. Antimicrobial Agents and Chemotherapy, 59, 2780-2784. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Poirel, L., Jayol, A., Bontron, S., Villegas, M., Ozdamar, M., Turkoglu, S., et al. (2014) The mgrB Gene as a Key Target for Acquired Resistance to Colistin in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 70, 75-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yap, P.S., Cheng, W., Chang, S., Lim, S.E. and Lai, K. (2022) MgrB Mutations and Altered Cell Permeability in Colistin Resistance in Klebsiella pneumoniae. Cells, 11, Article 2995. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Morales-León, F., Lima, C.A., González-Rocha, G., Opazo-Capurro, A. and Bello-Toledo, H. (2020) Colistin Heteroresistance among Extended Spectrum β-Lactamases-Producing Klebsiella pneumoniae. Microorganisms, 8, Article 1279. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Formosa, C., Herold, M., Vidaillac, C., Duval, R.E. and Dague, E. (2015) Unravelling of a Mechanism of Resistance to Colistin in Klebsiella pneumoniae Using Atomic Force Microscopy. Journal of Antimicrobial Chemotherapy, 70, 2261-2270. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Arato, V., Raso, M.M., Gasperini, G., Berlanda Scorza, F. and Micoli, F. (2021) Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. International Journal of Molecular Sciences, 22, Article 4042. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Karaiskos, I., Galani, I., Papoutsaki, V., Galani, L. and Giamarellou, H. (2021) Carbapenemase Producing Klebsiella pneumoniae: Implication on Future Therapeutic Strategies. Expert Review of Anti-Infective Therapy, 20, 53-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Queenan, A.M. and Bush, K. (2007) Carbapenemases: The Versatile β-lactamases. Clinical Microbiology Reviews, 20, 440-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bush, K. and Bradford, P.A. (2019) Interplay between β-Lactamases and New β-Lactamase Inhibitors. Nature Reviews Microbiology, 17, 295-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Matsumura, Y., Peirano, G., Devinney, R., Bradford, P.A., Motyl, M.R., Adams, M.D., et al. (2017) Genomic Epidemiology of Global VIM-Producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 72, 2249-2258. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bouza, E. (2021) The Role of New Carbapenem Combinations in the Treatment of Multidrug-Resistant Gram-Negative Infections. Journal of Antimicrobial Chemotherapy, 76, iv38-iv45. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sugawara, E., Kojima, S. and Nikaido, H. (2016) Klebsiella pneumoniae Major Porins OmpK35 and OmpK36 Allow More Efficient Diffusion of β-Lactams than Their Escherichia coli Homologs OmpF and OmpC. Journal of Bacteriology, 198, 3200-3208. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Adams-Sapper, S., Nolen, S., Donzelli, G.F., Lal, M., Chen, K., Justo da Silva, L.H., et al. (2015) Rapid Induction of High-Level Carbapenem Resistance in Heteroresistant KPC-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 59, 3281-3289. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tasina, E., Haidich, A., Kokkali, S. and Arvanitidou, M. (2011) Efficacy and Safety of Tigecycline for the Treatment of Infectious Diseases: A Meta-Analysis. The Lancet Infectious Diseases, 11, 834-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Xu, L., Zhou, Y., Niu, S., Liu, Z., Zou, Y., Yang, Y., et al. (2022) A Novel Inhibitor of Monooxygenase Reversed the Activity of Tetracyclines against Tet(X3)/Tet(X4)-Positive Bacteria. eBioMedicine, 78, Article ID: 103943. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Stojowska-Swędrzyńska, K., Łupkowska, A., Kuczyńska-Wiśnik, D. and Laskowska, E. (2021) Antibiotic Heteroresistance in Klebsiella pneumoniae. International Journal of Molecular Sciences, 23, Article 449. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Grossman, T.H. (2016) Tetracycline Antibiotics and Resistance. Cold Spring Harbor Perspectives in Medicine, 6, a025387. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bialek-Davenet, S., Lavigne, J., Guyot, K., Mayer, N., Tournebize, R., Brisse, S., et al. (2014) Differential Contribution of AcrAB and OqxAB Efflux Pumps to Multidrug Resistance and Virulence in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 70, 81-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zheng, J., Lin, Z., Sun, X., Lin, W., Chen, Z., Wu, Y., et al. (2018) Overexpression of OqxAB and MacAB Efflux Pumps Contributes to Eravacycline Resistance and Heteroresistance in Clinical Isolates of Klebsiella pneumoniae. Emerging Microbes & Infections, 7, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Liang, C., Xing, B., Yang, X., et al. (2015) Molecular Epidemiology of Aminoglycosides Resistance on Klebsiella pneumonia in a Hospital in China. International Journal of Clinical and Experimental Medicine, 8, 1381-1385.
|
|
[50]
|
Zhang, F., Li, Q., Bai, J., Ding, M., Yan, X., Wang, G., et al. (2021) Heteroresistance to Amikacin in Carbapenem-Resistant Klebsiella pneumoniae Strains. Frontiers in Microbiology, 12, Article 682239. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
张菲阳, 周英顺. 临床常见革兰阴性菌异质性耐药研究进展[J]. 西南医科大学学报, 2021, 44(5): 520-524.
|
|
[52]
|
Cheong, H.S., Kim, S.Y., Wi, Y.M., Peck, K.R. and Ko, K.S. (2019) Colistin Heteroresistance in Klebsiella pneumoniae Isolates and Diverse Mutations of PmrAB and PhoPQ in Resistant Subpopulations. Journal of Clinical Medicine, 8, Article 1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tian, Y., Zhang, Q., Wen, L. and Chen, J. (2021) Combined Effect of Polymyxin B and Tigecycline to Overcome Heteroresistance in Carbapenem-Resistant Klebsiella pneumoniae. Microbiology Spectrum, 9, 00152-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ma, X., He, Y., Yu, X., Cai, Y., Zeng, J., Cai, R., et al. (2019) Ceftazidime/Avibactam Improves the Antibacterial Efficacy of Polymyxin B against Polymyxin B Heteroresistant KPC-2-Producing Klebsiella pneumoniae and Hinders Emergence of Resistant Subpopulation in Vitro. Frontiers in Microbiology, 10, Article 2029. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Band, V.I., Hufnagel, D.A., Jaggavarapu, S., Sherman, E.X., Wozniak, J.E., Satola, S.W., et al. (2019) Antibiotic Combinations That Exploit Heteroresistance to Multiple Drugs Effectively Control Infection. Nature Microbiology, 4, 1627-1635. [Google Scholar] [CrossRef] [PubMed]
|