TLR-MyD88信号通路在系统性红斑狼疮中的研究进展
Research Progress on TLR-MyD88 Signaling Pathway in Systemic Lupus Erythematosus
DOI: 10.12677/jcpm.2024.34214, PDF, HTML, XML,    科研立项经费支持
作者: 薄 静:济宁医学院临床医学院,山东 济宁;邵 莉:山东省第三人民医院风湿免疫科,山东 济南;李 健, 宋 芹*:济宁医学院附属医院风湿免疫科,山东 济宁
关键词: 系统性红斑狼疮TLR/MyD88信号通路免疫细胞治疗靶点Systemic Lupus Erythematosus TLR/MyD88 Signaling Pathway Immune Cells Therapeutic Targets
摘要: 系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种慢性炎症性自身免疫性疾病,可影响多个器官,包括皮肤、关节、中枢神经系统和肾脏等,其发病因素包括环境、免疫和激素因素以及遗传易感性等。TLR/MyD88信号通路是调控先天免疫反应和相关的炎症反应的重要通路之一,参与SLE疾病的发生发展。本文总结了TLR/MyD88通路的构成、激活途径,重点介绍了该信号通路在SLE中在免疫细胞中的相关机制,并总结了近年来针对TLR和MyD88的拮抗剂及其潜在的临床应用。
Abstract: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that can affect multiple organs, including the skin, joints, central nervous system, and kidneys. The pathogenic factors include environmental, immune, and hormonal factors, as well as genetic susceptibility. The TLR/MyD88 signaling pathway is one of the important pathways that regulate innate immune responses and related inflammatory responses, and is involved in the occurrence and development of systemic lupus erythematosus (SLE). This article summarizes the composition and activation pathways of the TLR/MyD88 pathway, focusing on the relevant mechanisms of this signaling pathway in immune cells in SLE, and summarizes the antagonists against TLR and MyD88 in recent years and their potential clinical applications.
文章引用:薄静, 邵莉, 李健, 宋芹. TLR-MyD88信号通路在系统性红斑狼疮中的研究进展[J]. 临床个性化医学, 2024, 3(4): 1497-1503. https://doi.org/10.12677/jcpm.2024.34214

1. 引言

系统性红斑狼疮是一种高流行于年轻女性,以免疫耐受性下降、过度炎症反应和组织损伤为特征的自身免疫病。可累及多个器官或系统,病情复杂迁延,其严重程度可从轻度的皮疹或关节炎到危及生命的终末期器官衰竭[1]。Toll样受体(TLR)作为模式识别受体(PRR),在先天免疫反应中起关键作用,其信号传导与越来越多的炎症相关的发病机制有关。核心适配器髓样分化因子88 (myeloid differentiation primary response protein, MyD88)是TLR信号通路的关键适配器,在免疫信号转导中起着至关重要的作用[2]。近年来,TLR/MyD88信号通路因其在调节先天和适应性免疫反应、诱导炎症激活的作用而受到越来越多的关注[3]。本研究将就TLR/MyD88信号通路引发的SLE发生发展的机制,并为后续临床治疗策略提供思路。

2. TLR/MyD88信号通路构成及调控

2.1. TLR分子组成

1997年,人们发现果蝇Toll蛋白的人类同源物可诱导核因子κB (nuclear factor kappa-light-chain-enhancer of activated B cells, NF-κB)的激活以及促炎细胞因子和共刺激分子的产生[4]。从结构上讲,TLR包含一个配体结合胞外结构域和一个胞质Toll/白细胞介素1受体(Toll-interleukin receptor domain, TIR)同源结构域,可协调细胞内信号转导级联,这些受体充当“陌生”或“危险”信号的哨兵,识别微生物的结构保守分子和受损细胞释放的内源性配体[5]。迄今为止,人类TLR家族包含10个成员(TLR1-10),由于结构相似,TLR具有共同的信号传导原理和信号分子[6]。TLR与配体结合后,会形成同源或异源二聚体,然后TIR结构域会促进信号复合物(信号体)的组装[7]

2.2. MyD88的结构和功能

在白细胞介素-6 (IL-6)诱导终末分化和生长停滞后,MyD88于1990年首次被鉴定为在M1D + 骨髓前体中激活的基因,并推导出MyD88的全长cDNA序列和氨基酸序列[8]。后来,Muzio等人和Wesche等人发现MyD88是白细胞介素-1受体(IL-1R)信号通路的近端信号转导接头,并证明MyD88将白细胞介素-1受体1型(IL-1R1)启动的信号转导至NF-κB中[9] [10]。在各种TLR-IL-1R接头蛋白中,MyD88是激活除TLR3之外的所有TLR特异性的MyD88依赖性信号通路以及IL-1、IL-18或IL-33等刺激细胞所必需的[11]。MyD88作为参与IL-1信号传导的接头蛋白,是由三个结构域组成的胞质可溶性蛋白,包括N端死亡结构域(DD)、中间结构域(INT)和Toll-白细胞介素-1受体结构域(TIR)。MyD88的TIR结构域位于其C端,负责与受体TIR结构域结合,而N端DD负责与IL-1R相关激酶4 (IL-R-associated kinase 4, IRAK4)结合,并在信号通路中进一步传递信号(即:结构域的缺失可导致MyD88无法支持信号传导) [12]。共免疫沉淀实验中显示,MyD88的TIR结构域与IL-1R1和白介素-1辅助蛋白(IL-1RAP)的TIR域相互作用;基于独特的结构,MyD88充当连接TLR-IL-1R家族成员与IL-R相关激酶(IL-R-associated kinases, IRAKs)的中心环节。MyD88通过异型死亡结构域介导的相互作用,与丝氨酸–苏氨酸激酶IRAK1和IRAK2 (Toll通路中果蝇Pelle的哺乳动物同系物)结合,充当连接IL-1R1与下游IRAK激酶的纯接头。因此,MyD88功能的核心是其TIR结构域与受体的TIR结构域异二聚化并与另一个MyD88分子同二聚化以募集下游信号分子的能力[13]

2.3. TLR/MyD88信号通路

TLR属于PRR家族,通过检测PAMP和DAMP介导先天免疫反应和相关的炎症反应[14]。在细胞内信号通路激活过程中,病原体相关配体与toll样/IL-1R家族和其他细胞受体结合,募集细胞内信号适配器蛋白(主要是MyD88)并发生同源和异源二聚化,然后该通路的下游信号分子被募集[5]。MyD88与下游IRAK组装形成肌小体复合物,进而引发信号级联,介导多种转录因子和细胞因子(如NF-κB)的产生[2]。TLR通过感知细菌配体来激活细胞内信号通路,对先天免疫反应至关重要。其中研究最广泛的是MyD88介导的信号通路[15]。除TLR3外,大多数TLR引发的炎症反应依赖于一种由细胞内信号转导接头蛋白(包括MyD88)募集介导的共同信号通路,并激活炎症级联反应[16]

3. TLR/MyD88信号通路在SLE免疫细胞中的作用

SLE是一种自身免疫性炎症性结缔组织疾病,在年轻女性中发病率较高。其病因尚不清楚,被认为与遗传因素或环境因素有关[17]。在SLE期间,T细胞和B细胞被过度激活,产生大量自身抗体,导致受影响器官发生广泛的炎症和组织损伤[18],狼疮样表型的kika小鼠脾细胞中MyD88水平升高与TLR7信号传导增强相一致。kika小鼠与MyD88敲除小鼠杂交可完全挽救狼疮样表型,进一步支持TLR7-MyD88信号传导轴在SLE发病机制中的作用[7]

3.1. B细胞

SLE患者体内广泛的B细胞异常活化与SLE的发病密切相关,而且异常激活的B细胞参与了疾病发生发展的几乎整个过程。B细胞通过分泌自身抗体影响自身免疫细胞,从而促进狼疮的发病[19]。此外,异常激活的B细胞还可通过抗原提呈及多种细胞因子的释放调节T细胞的活化和极化,这对于SLE的发病及病情进展同样有着促进作用。在SLE患者中,B细胞对自身抗原耐受的丧失是由toll样受体以细胞内在方式控制的,TLRs能感知核内体中的核酸。其中TLR7驱动滤泡外B细胞反应和生发中心反应,参与自身抗体的产生和疾病的发病机制[20]。TLR7和TLR9等位基因均缺失的小鼠重现了大多数MyD88/MRL.Faslpr表型,这表明MyD88疾病增强位于这两个内体TLR的下游并且独立于IL-1信号传导[21]。在SLE的MRL.Faslpr小鼠中诱导性B细胞特异性MyD88缺失是有效的,并阻断TLR信号传导[22]。后续研究表明,B细胞特异性MyD88信号传导负责促进大多数狼疮表型,但皮炎是一个显着的例外,它依赖于CD11c阳性细胞中表达的MyD88 [23]

3.2. T细胞

T细胞异常活化和T辅助细胞异常分泌细胞因子被认为是对自身抗原失耐受的机制之一。在SLE中,CD4+T细胞是自身抗体反应的关键驱动因素。活化的CD4+T淋巴细胞浸润于肾脏和皮肤等受影响器官中,并导致组织损伤[24]。CD4+T细胞,几乎所有已知TLR的表达均已在mRNA水平上得到鉴定;然而,CD4+T细胞是否能够表达所有TLR蛋白尚有争议。尽管如此,T细胞表达MyD88,其缺失会影响T细胞功能。MyD88/CD4+T细胞在TLR激活后表现出增殖减少[25]。有研究发现渗入狼疮小鼠肾脏的T细胞加重了炎症,TLR4/MyD88/MAPK信号通路是调节趋化因子分泌的最重要通路[26]。TLR4是TLR受体家族的一部分,可触发促炎对入侵病原体的反应[27]。激活TLR4将导致MyD88水平发生变化,进而进一步导致下游MAPK亚家族水平发生变化[28]。而WCP能够降低TLR4和MyD88 mRNA水平,并降低磷酸化ERK、p38和JNK蛋白的表达,从而阻止T细胞向肾脏迁移,进一步减轻肾脏炎症并保护LN小鼠的肾功能[24]

4. 与TLR/MyD88信号通路相关的SLE药物治疗

4.1. TLR相关药物

由于TLR在SLE进展中起着至关重要的作用,因此针对TLR进行治疗具有无限的治疗潜力。有动物实验表明,通过降低TLR信号或破坏PAMPs可以达到治疗或预防SLE的目的[29]。通过TLR及其相关通路对SLE发挥治疗作用的药物也逐渐被开发出来,例如传统的抗疟药物(羟氯喹(HCQ)、氯喹和奎纳克林)对SLE患者的有效性证明了内体TLR抑制在SLE中的治疗潜力[7],但由于其明显的副作用,其应用受到限制[30]。因此,特异性抑制TLR被认为是治疗SLE的一种策略。Rommler发现TLR7或TLR9激动剂可激活狼疮患者甚至健康人的pDC,诱导大量IFNα和免疫过度激活。因此,TLR7/9抑制剂治疗可成为狼疮的一种治疗策略[31]

寡脱氧核苷酸(ODN)可发挥免疫调节作用。抑制性ODN (INH-ODN)通过调节CpG基序或骨架拮抗TLR信号,从而下调炎症反应,减轻炎症反应[32]。近期有研究通过滚环扩增制备了3种具有INH-ODN序列的纳米花分别为IRS 661、IRS 869和IRS 954,并将其皮下注射到MRL/lpr小鼠体内。IRS 661纳米花TLR7阻断剂和IRS 869纳米花TLR9拮抗剂可降低小鼠自身抗体,减少细胞因子分泌,缓解狼疮肾炎。而TLR7和TLR9双拮抗剂IRS 954纳米花对狼疮肾炎无加性或相反性作用,仅显示血清IFN-α降低,提示TLR7和TLR9拮抗剂可能存在竞争机制或信号依赖切换关系。INH-ODN纳米花被认为是一种新型且有潜力治疗SLE的核酸[32]。另有研究发现了新的toll样受体(TLR)7和TLR8抑制剂(M5049),并在两个小鼠狼疮模型中证明了其治疗自身免疫性疾病的潜力。TLR7/8抑制是独特的,因为它可能阻断先天和适应性自身免疫;因此,本研究提示M5049有可能对自身免疫性疾病患者有益[33]。有一种新的候选药物E6742是toll样受体7/8的特异性拮抗剂。为了应对SLE药物开发的挑战,E6742的开发过程利用了日本医学研究开发机构(AMED)的独特系统,即临床授权循环创新(CiCLE)计划。在CiCLE项目中,一项已经完成(NCT04683185),一项针对SLE患者的1/2期研究正在进行(NCT05278663)。该项目的潜在好处之一是开展学术主导的临床研究,与临床研究(UMIN000042037)并行,识别E6742的特定生物标志物。本综述的目的是介绍优化SLE患者临床开发的AMED CiCLE项目战略合作的当前进展[34]

4.2. MyD88相关药物

核心适配器髓样分化因子88 (MyD88)由大多数TLR共享,是调节免疫反应的潜在靶点。解毒祛瘀子饮方(Jieduquyuziyin prescription, JP)作为一种中药方剂,被广泛应用于治疗系统性红斑狼疮。何元芳等人的研究表明JP可能通过抑制TLR9/MyD88信号转导,在体外抑制TLR9和MyD88的表达和促进胆固醇外泻,对ApoE/小鼠腹腔注射姥鲛烷诱导的狼疮样疾病和动脉粥样硬化具有治疗作用[35]。基于MyD88 TIR结构域(196-202)的BBloop区域内的模拟肽可干扰MyD88同型二聚化并介导下游NF-κB活化的证据[2],Loiarro等人根据MyD88的七肽序列(RDVLPGT)设计并合成了一系列分子。然后评估这些化合物对MyD88信号通路的生物活性,并用于进一步筛选可干扰IL-1诱导的NF-κB活化的化合物ST2825 [2]。Olson等人利用高通量计算构建和预测MyD88 TIR结构域对接小分子的结合位点,筛选出化合物T6167923,该化合物通过抑制全长MyD88二聚体的形成来阻断MyD88特异性信号传导[36]。基于抑制MyD88 TIR结构域同源二聚化的概念,周志强等人开发了一系列针对MyD88的新型小分子化合物,包括TJ-2010和TJ-M2010-5 [37]。陈志强等人创建了MyD88抑制剂M20和LM9 [38] [39],它们都是很有前途的抗炎药物候选物。这些针对MyD88的化合物具有良好的安全性和有效性,但MyD88调节剂治疗潜力的直接证据仍然缺乏,需要进一步研究。

5. 总结与展望

SLE发病机制复杂,多种免疫细胞分泌多种细胞因子组成信号通路网络相互作用,均参与了SLE的发病过程,其相互作用的每个节点都是潜在的致病关键点,同时也是潜在的治疗靶点。TLR/MyD88信号通路被证实和自身免疫性疾病存在密切关联,该通路是多调节功能传导通路,在免疫炎症反应中发挥重要作用,其靶向治疗方法在控制炎症性疾病方面的概念验证已经得到验证,目前尚存在许多值得深入研究的地方,进一步研究TLR/MyD88信号通路的功能以及在SLE中的影响和作用机制,有助于深入发现SLE的发病机制,并有利于为SLE的治疗提供新的治疗思路和方向。

基金项目

基于转录组数据的系统性红斑狼疮疾病机制及治疗的研究(2021YXNS091);ANCA相关性血管炎肺受累风险因素分析及预测模型建立(2023YXNS154)。

NOTES

*通讯作者。

参考文献

[1] Stull, C., Sprow, G. and Werth, V.P. (2022) Cutaneous Involvement in Systemic Lupus Erythematosus: A Review for the Rheumatologist. The Journal of Rheumatology, 50, 27-35.
https://doi.org/10.3899/jrheum.220089
[2] Liu, M., Kang, W., Hu, Z., Wang, C. and Zhang, Y. (2023) Targeting MyD88: Therapeutic Mechanisms and Potential Applications of the Specific Inhibitor St2825. Inflammation Research, 72, 2023-2036.
https://doi.org/10.1007/s00011-023-01801-4
[3] Liu, M., Hu, Z., Wang, C. and Zhang, Y. (2023) The TLR/MyD88 Signalling Cascade in Inflammation and Gastric Cancer: The Immune Regulatory Network of Helicobacter pylori. Journal of Molecular Medicine, 101, 767-781.
https://doi.org/10.1007/s00109-023-02332-5
[4] Medzhitov, R., Preston-Hurlburt, P. and Janeway, C.A. (1997) A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity. Nature, 388, 394-397.
https://doi.org/10.1038/41131
[5] Balka, K.R. and De Nardo, D. (2018) Understanding Early TLR Signaling through the Myddosome. Journal of Leukocyte Biology, 105, 339-351.
https://doi.org/10.1002/jlb.mr0318-096r
[6] Duan, T., Du, Y., Xing, C., Wang, H.Y. and Wang, R. (2022) Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Frontiers in Immunology, 13, Article ID: 812774.
https://doi.org/10.3389/fimmu.2022.812774
[7] Kalliolias, G.D., Basdra, E.K. and Papavassiliou, A.G. (2024) Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines, 12, Article No. 138.
https://doi.org/10.3390/biomedicines12010138
[8] Lord, K.A., Hoffman-Liebermann, B. and Liebermann, D.A. (1990) Nucleotide Sequence and Expression of a cDNA Encoding MyD88, a Novel Myeloid Differentiation Primary Response Gene Induced by IL6. Oncogene, 5, 1095-1097.
[9] Muzio, M., Ni, J., Feng, P., et al. (2013) Pillars Article: IRAK (Pelle) Family Member IRAK-2 and MyD88 as Proximal Mediators of IL-1 Signaling. Science. 1997. 278: 1612-1615. The Journal of Immunology, 190, 16-19.
[10] Wesche, H., Henzel, W.J., Shillinglaw, W., et al. (2013) Pillars Article: MyD88: An Adapter That Recruits IRAK to the IL-1 Receptor Complex. Immunity. 1997. 7: 837-847. The Journal of Immunology, 190, 5-15.
[11] Dunne, A. and O’Neill, L.A.J. (2003) The Interleukin-1 Receptor/Toll-Like Receptor Superfamily: Signal Transduction during Inflammation and Host Defense. Sciences STKE, 2003, e3.
https://doi.org/10.1126/stke.2003.171.re3
[12] Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., et al. (1998) MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Molecular Cell, 2, 253-258.
https://doi.org/10.1016/s1097-2765(00)80136-7
[13] Saikh, K.U. (2021) MyD88 and beyond: A Perspective on MyD88-Targeted Therapeutic Approach for Modulation of Host Immunity. Immunologic Research, 69, 117-128.
https://doi.org/10.1007/s12026-021-09188-2
[14] Iwasaki, A. and Medzhitov, R. (2004) Toll-Like Receptor Control of the Adaptive Immune Responses. Nature Immunology, 5, 987-995.
https://doi.org/10.1038/ni1112
[15] Săsăran, M.O., Meliț, L.E. and Dobru, E.D. (2021) MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. International Journal of Molecular Sciences, 22, Article No. 1406.
https://doi.org/10.3390/ijms22031406
[16] Takeda, K., Kaisho, T. and Akira, S. (2003) Toll-Like Receptors. Annual Review of Immunology, 21, 335-376.
https://doi.org/10.1146/annurev.immunol.21.120601.141126
[17] Fairhurst, A., Wandstrat, A.E. and Wakeland, E.K. (2006) Systemic Lupus Erythematosus: Multiple Immunological Phenotypes in a Complex Genetic Disease. In: Advances in Immunology, Elsevier, 1-69.
https://doi.org/10.1016/s0065-2776(06)92001-x
[18] Hamilton, J.A., Hsu, H. and Mountz, J.D. (2019) Autoreactive B Cells in SLE, Villains or Innocent Bystanders? Immunological Reviews, 292, 120-138.
https://doi.org/10.1111/imr.12815
[19] Tipton, C.M., Hom, J.R., Fucile, C.F., Rosenberg, A.F. and Sanz, I. (2018) Understanding B‐Cell Activation and Autoantibody Repertoire Selection in Systemic Lupus Erythematosus: A B‐Cell Immunomics Approach. Immunological Reviews, 284, 120-131.
https://doi.org/10.1111/imr.12660
[20] Fillatreau, S., Manfroi, B. and Dörner, T. (2020) Toll-Like Receptor Signalling in B Cells during Systemic Lupus Erythematosus. Nature Reviews Rheumatology, 17, 98-108.
https://doi.org/10.1038/s41584-020-00544-4
[21] Loftus, S.N., Liu, J., Berthier, C.C., Gudjonsson, J.E., Gharaee-Kermani, M., Tsoi, L.C., et al. (2023) Loss of Interleukin-1 Beta Is Not Protective in the Lupus-Prone NZM2328 Mouse Model. Frontiers in Immunology, 14, Article ID: 1162799.
https://doi.org/10.3389/fimmu.2023.1162799
[22] Tilstra, J.S., Kim, M., Gordon, R.A., Leibler, C., Cosgrove, H.A., Bastacky, S., et al. (2023) B Cell-Intrinsic MyD88 Regulates Disease Progression in Murine Lupus. Journal of Experimental Medicine, 220, e20230263.
https://doi.org/10.1084/jem.20230263
[23] Teichmann, L.L., Schenten, D., Medzhitov, R., Kashgarian, M. and Shlomchik, M.J. (2013) Signals via the Adaptor MyD88 in B Cells and Dcs Make Distinct and Synergistic Contributions to Immune Activation and Tissue Damage in Lupus. Immunity, 38, 528-540.
https://doi.org/10.1016/j.immuni.2012.11.017
[24] Liao, Z., Yang, X., He, L., Bai, J., Zhou, X., Yang, J., et al. (2024) Cordyceps Protein Alleviates Renal Injury by Inhibiting T Cell Infiltration and Th1 Cell Differentiation in Lupus Nephritis Mice. International Immunopharmacology, 138, Article ID: 112566.
https://doi.org/10.1016/j.intimp.2024.112566
[25] Reynolds, J.M. and Dong, C. (2013) Toll-Like Receptor Regulation of Effector T Lymphocyte Function. Trends in Immunology, 34, 511-519.
https://doi.org/10.1016/j.it.2013.06.003
[26] Li, B., Wang, M., Chen, S., Li, M., Zeng, J., Wu, S., et al. (2022) Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. BioMed Research International, 2022, Article ID: 3263446.
https://doi.org/10.1155/2022/3263446
[27] Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[28] Li, J., Yang, Y., Wang, H., Ma, D., Wang, H., Chu, L., et al. (2022) Baicalein Ameliorates Myocardial Ischemia through Reduction of Oxidative Stress, Inflammation and Apoptosis via TLR4/MyD88/MAPK(S)/NF-κB Pathway and Regulation of Ca2+ Homeostasis by L-Type Ca2+ Channels. Frontiers in Pharmacology, 13, Article ID: 842723.
https://doi.org/10.3389/fphar.2022.842723
[29] Dima, A., Jurcut, C., Chasset, F., Felten, R. and Arnaud, L. (2022) Hydroxychloroquine in Systemic Lupus Erythematosus: Overview of Current Knowledge. Therapeutic Advances in Musculoskeletal Disease, 14, 1-25.
https://doi.org/10.1177/1759720x211073001
[30] Tsakonas, E., Joseph, L., Esdaile, J.M., Choquette, D., Senécal, J., Cividino, A., et al. (1998) A Long-Term Study of Hydroxychloroquine Withdrawal on Exacerbations in Systemic Lupus Erythematosus. Lupus, 7, 80-85.
https://doi.org/10.1191/096120398678919778
[31] Römmler, F., Jurk, M., Uhlmann, E., Hammel, M., Waldhuber, A., Pfeiffer, L., et al. (2013) Guanine Modification of Inhibitory Oligonucleotides Potentiates Their Suppressive Function. The Journal of Immunology, 191, 3240-3253.
https://doi.org/10.4049/jimmunol.1300706
[32] Wang, J. and Gan, M. (2022) DNA Nanoflowers’ Amelioration of Lupus Symptoms in Mice via Blockade of TLR7/9’s Signal. International Journal of Molecular Sciences, 23, Article No. 16030.
https://doi.org/10.3390/ijms232416030
[33] Vlach, J., Bender, A.T., Przetak, M., Pereira, A., Deshpande, A., Johnson, T.L., et al. (2020) Discovery of M5049: A Novel Selective Toll-Like Receptor 7/8 Inhibitor for Treatment of Autoimmunity. Journal of Pharmacology and Experimental Therapeutics, 376, 397-409.
https://doi.org/10.1124/jpet.120.000275
[34] Tanaka, Y., Tago, F., Yamakawa, N., Aoki, M., Yagi, T. and Akira, S. (2023) A New Therapeutic Target for Systemic Lupus Erythematosus: The Current Landscape for Drug Development of a Toll-Like Receptor 7/8 Antagonist through Academia-Industry-Government Collaboration. Immunological Medicine, 47, 24-29.
https://doi.org/10.1080/25785826.2023.2264023
[35] He, Y., Tian, W., Zhang, M., Qiu, H., Li, H., Shi, X., et al. (2023) Jieduquyuziyin Prescription Alleviates SLE Complicated by Atherosclerosis via Promoting Cholesterol Efflux and Suppressing TLR9/MyD88 Activation. Journal of Ethnopharmacology, 309, Article ID: 116283.
https://doi.org/10.1016/j.jep.2023.116283
[36] Olson, M.A., Lee, M.S., Kissner, T.L., Alam, S., Waugh, D.S. and Saikh, K.U. (2015) Discovery of Small Molecule Inhibitors of MyD88-Dependent Signaling Pathways Using a Computational Screen. Scientific Reports, 5, Article No. 14246.
https://doi.org/10.1038/srep14246
[37] Zou, Z., Du, D., Miao, Y., Yang, Y., Xie, Y., Li, Z., et al. (2020) TJ-M2010-5, a Novel MyD88 Inhibitor, Corrects R848-Induced Lupus-Like Immune Disorders of B Cells in Vitro. International Immunopharmacology, 85, Article ID: 106648.
https://doi.org/10.1016/j.intimp.2020.106648
[38] Zheng, X., Sun, C., Liu, Q., Lu, X., Fu, L., Liang, G., et al. (2020) Compound LM9, a Novel MyD88 Inhibitor, Efficiently Mitigates Inflammatory Responses and Fibrosis in Obesity-Induced Cardiomyopathy. Acta Pharmacologica Sinica, 41, 1093-1101.
https://doi.org/10.1038/s41401-020-0410-x
[39] Song, J., Chen, D., Pan, Y., Shi, X., Liu, Q., Lu, X., et al. (2021) Discovery of a Novel MyD88 Inhibitor M20 and Its Protection against Sepsis-Mediated Acute Lung Injury. Frontiers in Pharmacology, 12, Article ID: 775117.
https://doi.org/10.3389/fphar.2021.775117