[1]
|
Stull, C., Sprow, G. and Werth, V.P. (2022) Cutaneous Involvement in Systemic Lupus Erythematosus: A Review for the Rheumatologist. The Journal of Rheumatology, 50, 27-35. https://doi.org/10.3899/jrheum.220089
|
[2]
|
Liu, M., Kang, W., Hu, Z., Wang, C. and Zhang, Y. (2023) Targeting MyD88: Therapeutic Mechanisms and Potential Applications of the Specific Inhibitor St2825. Inflammation Research, 72, 2023-2036. https://doi.org/10.1007/s00011-023-01801-4
|
[3]
|
Liu, M., Hu, Z., Wang, C. and Zhang, Y. (2023) The TLR/MyD88 Signalling Cascade in Inflammation and Gastric Cancer: The Immune Regulatory Network of Helicobacter pylori. Journal of Molecular Medicine, 101, 767-781. https://doi.org/10.1007/s00109-023-02332-5
|
[4]
|
Medzhitov, R., Preston-Hurlburt, P. and Janeway, C.A. (1997) A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity. Nature, 388, 394-397. https://doi.org/10.1038/41131
|
[5]
|
Balka, K.R. and De Nardo, D. (2018) Understanding Early TLR Signaling through the Myddosome. Journal of Leukocyte Biology, 105, 339-351. https://doi.org/10.1002/jlb.mr0318-096r
|
[6]
|
Duan, T., Du, Y., Xing, C., Wang, H.Y. and Wang, R. (2022) Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Frontiers in Immunology, 13, Article ID: 812774. https://doi.org/10.3389/fimmu.2022.812774
|
[7]
|
Kalliolias, G.D., Basdra, E.K. and Papavassiliou, A.G. (2024) Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines, 12, Article No. 138. https://doi.org/10.3390/biomedicines12010138
|
[8]
|
Lord, K.A., Hoffman-Liebermann, B. and Liebermann, D.A. (1990) Nucleotide Sequence and Expression of a cDNA Encoding MyD88, a Novel Myeloid Differentiation Primary Response Gene Induced by IL6. Oncogene, 5, 1095-1097.
|
[9]
|
Muzio, M., Ni, J., Feng, P., et al. (2013) Pillars Article: IRAK (Pelle) Family Member IRAK-2 and MyD88 as Proximal Mediators of IL-1 Signaling. Science. 1997. 278: 1612-1615. The Journal of Immunology, 190, 16-19.
|
[10]
|
Wesche, H., Henzel, W.J., Shillinglaw, W., et al. (2013) Pillars Article: MyD88: An Adapter That Recruits IRAK to the IL-1 Receptor Complex. Immunity. 1997. 7: 837-847. The Journal of Immunology, 190, 5-15.
|
[11]
|
Dunne, A. and O’Neill, L.A.J. (2003) The Interleukin-1 Receptor/Toll-Like Receptor Superfamily: Signal Transduction during Inflammation and Host Defense. Science’s STKE, 2003, e3. https://doi.org/10.1126/stke.2003.171.re3
|
[12]
|
Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., et al. (1998) MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Molecular Cell, 2, 253-258. https://doi.org/10.1016/s1097-2765(00)80136-7
|
[13]
|
Saikh, K.U. (2021) MyD88 and beyond: A Perspective on MyD88-Targeted Therapeutic Approach for Modulation of Host Immunity. Immunologic Research, 69, 117-128. https://doi.org/10.1007/s12026-021-09188-2
|
[14]
|
Iwasaki, A. and Medzhitov, R. (2004) Toll-Like Receptor Control of the Adaptive Immune Responses. Nature Immunology, 5, 987-995. https://doi.org/10.1038/ni1112
|
[15]
|
Săsăran, M.O., Meliț, L.E. and Dobru, E.D. (2021) MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. International Journal of Molecular Sciences, 22, Article No. 1406. https://doi.org/10.3390/ijms22031406
|
[16]
|
Takeda, K., Kaisho, T. and Akira, S. (2003) Toll-Like Receptors. Annual Review of Immunology, 21, 335-376. https://doi.org/10.1146/annurev.immunol.21.120601.141126
|
[17]
|
Fairhurst, A., Wandstrat, A.E. and Wakeland, E.K. (2006) Systemic Lupus Erythematosus: Multiple Immunological Phenotypes in a Complex Genetic Disease. In: Advances in Immunology, Elsevier, 1-69. https://doi.org/10.1016/s0065-2776(06)92001-x
|
[18]
|
Hamilton, J.A., Hsu, H. and Mountz, J.D. (2019) Autoreactive B Cells in SLE, Villains or Innocent Bystanders? Immunological Reviews, 292, 120-138. https://doi.org/10.1111/imr.12815
|
[19]
|
Tipton, C.M., Hom, J.R., Fucile, C.F., Rosenberg, A.F. and Sanz, I. (2018) Understanding B‐Cell Activation and Autoantibody Repertoire Selection in Systemic Lupus Erythematosus: A B‐Cell Immunomics Approach. Immunological Reviews, 284, 120-131. https://doi.org/10.1111/imr.12660
|
[20]
|
Fillatreau, S., Manfroi, B. and Dörner, T. (2020) Toll-Like Receptor Signalling in B Cells during Systemic Lupus Erythematosus. Nature Reviews Rheumatology, 17, 98-108. https://doi.org/10.1038/s41584-020-00544-4
|
[21]
|
Loftus, S.N., Liu, J., Berthier, C.C., Gudjonsson, J.E., Gharaee-Kermani, M., Tsoi, L.C., et al. (2023) Loss of Interleukin-1 Beta Is Not Protective in the Lupus-Prone NZM2328 Mouse Model. Frontiers in Immunology, 14, Article ID: 1162799. https://doi.org/10.3389/fimmu.2023.1162799
|
[22]
|
Tilstra, J.S., Kim, M., Gordon, R.A., Leibler, C., Cosgrove, H.A., Bastacky, S., et al. (2023) B Cell-Intrinsic MyD88 Regulates Disease Progression in Murine Lupus. Journal of Experimental Medicine, 220, e20230263. https://doi.org/10.1084/jem.20230263
|
[23]
|
Teichmann, L.L., Schenten, D., Medzhitov, R., Kashgarian, M. and Shlomchik, M.J. (2013) Signals via the Adaptor MyD88 in B Cells and Dcs Make Distinct and Synergistic Contributions to Immune Activation and Tissue Damage in Lupus. Immunity, 38, 528-540. https://doi.org/10.1016/j.immuni.2012.11.017
|
[24]
|
Liao, Z., Yang, X., He, L., Bai, J., Zhou, X., Yang, J., et al. (2024) Cordyceps Protein Alleviates Renal Injury by Inhibiting T Cell Infiltration and Th1 Cell Differentiation in Lupus Nephritis Mice. International Immunopharmacology, 138, Article ID: 112566. https://doi.org/10.1016/j.intimp.2024.112566
|
[25]
|
Reynolds, J.M. and Dong, C. (2013) Toll-Like Receptor Regulation of Effector T Lymphocyte Function. Trends in Immunology, 34, 511-519. https://doi.org/10.1016/j.it.2013.06.003
|
[26]
|
Li, B., Wang, M., Chen, S., Li, M., Zeng, J., Wu, S., et al. (2022) Baicalin Mitigates the Neuroinflammation through the TLR4/MyD88/NF-κB and MAPK Pathways in LPS-Stimulated BV-2 Microglia. BioMed Research International, 2022, Article ID: 3263446. https://doi.org/10.1155/2022/3263446
|
[27]
|
Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261. https://doi.org/10.1007/s00018-020-03656-y
|
[28]
|
Li, J., Yang, Y., Wang, H., Ma, D., Wang, H., Chu, L., et al. (2022) Baicalein Ameliorates Myocardial Ischemia through Reduction of Oxidative Stress, Inflammation and Apoptosis via TLR4/MyD88/MAPK(S)/NF-κB Pathway and Regulation of Ca2+ Homeostasis by L-Type Ca2+ Channels. Frontiers in Pharmacology, 13, Article ID: 842723. https://doi.org/10.3389/fphar.2022.842723
|
[29]
|
Dima, A., Jurcut, C., Chasset, F., Felten, R. and Arnaud, L. (2022) Hydroxychloroquine in Systemic Lupus Erythematosus: Overview of Current Knowledge. Therapeutic Advances in Musculoskeletal Disease, 14, 1-25. https://doi.org/10.1177/1759720x211073001
|
[30]
|
Tsakonas, E., Joseph, L., Esdaile, J.M., Choquette, D., Senécal, J., Cividino, A., et al. (1998) A Long-Term Study of Hydroxychloroquine Withdrawal on Exacerbations in Systemic Lupus Erythematosus. Lupus, 7, 80-85. https://doi.org/10.1191/096120398678919778
|
[31]
|
Römmler, F., Jurk, M., Uhlmann, E., Hammel, M., Waldhuber, A., Pfeiffer, L., et al. (2013) Guanine Modification of Inhibitory Oligonucleotides Potentiates Their Suppressive Function. The Journal of Immunology, 191, 3240-3253. https://doi.org/10.4049/jimmunol.1300706
|
[32]
|
Wang, J. and Gan, M. (2022) DNA Nanoflowers’ Amelioration of Lupus Symptoms in Mice via Blockade of TLR7/9’s Signal. International Journal of Molecular Sciences, 23, Article No. 16030. https://doi.org/10.3390/ijms232416030
|
[33]
|
Vlach, J., Bender, A.T., Przetak, M., Pereira, A., Deshpande, A., Johnson, T.L., et al. (2020) Discovery of M5049: A Novel Selective Toll-Like Receptor 7/8 Inhibitor for Treatment of Autoimmunity. Journal of Pharmacology and Experimental Therapeutics, 376, 397-409. https://doi.org/10.1124/jpet.120.000275
|
[34]
|
Tanaka, Y., Tago, F., Yamakawa, N., Aoki, M., Yagi, T. and Akira, S. (2023) A New Therapeutic Target for Systemic Lupus Erythematosus: The Current Landscape for Drug Development of a Toll-Like Receptor 7/8 Antagonist through Academia-Industry-Government Collaboration. Immunological Medicine, 47, 24-29. https://doi.org/10.1080/25785826.2023.2264023
|
[35]
|
He, Y., Tian, W., Zhang, M., Qiu, H., Li, H., Shi, X., et al. (2023) Jieduquyuziyin Prescription Alleviates SLE Complicated by Atherosclerosis via Promoting Cholesterol Efflux and Suppressing TLR9/MyD88 Activation. Journal of Ethnopharmacology, 309, Article ID: 116283. https://doi.org/10.1016/j.jep.2023.116283
|
[36]
|
Olson, M.A., Lee, M.S., Kissner, T.L., Alam, S., Waugh, D.S. and Saikh, K.U. (2015) Discovery of Small Molecule Inhibitors of MyD88-Dependent Signaling Pathways Using a Computational Screen. Scientific Reports, 5, Article No. 14246. https://doi.org/10.1038/srep14246
|
[37]
|
Zou, Z., Du, D., Miao, Y., Yang, Y., Xie, Y., Li, Z., et al. (2020) TJ-M2010-5, a Novel MyD88 Inhibitor, Corrects R848-Induced Lupus-Like Immune Disorders of B Cells in Vitro. International Immunopharmacology, 85, Article ID: 106648. https://doi.org/10.1016/j.intimp.2020.106648
|
[38]
|
Zheng, X., Sun, C., Liu, Q., Lu, X., Fu, L., Liang, G., et al. (2020) Compound LM9, a Novel MyD88 Inhibitor, Efficiently Mitigates Inflammatory Responses and Fibrosis in Obesity-Induced Cardiomyopathy. Acta Pharmacologica Sinica, 41, 1093-1101. https://doi.org/10.1038/s41401-020-0410-x
|
[39]
|
Song, J., Chen, D., Pan, Y., Shi, X., Liu, Q., Lu, X., et al. (2021) Discovery of a Novel MyD88 Inhibitor M20 and Its Protection against Sepsis-Mediated Acute Lung Injury. Frontiers in Pharmacology, 12, Article ID: 775117. https://doi.org/10.3389/fphar.2021.775117
|