[1]
|
Yu, Q., Qiao, G., Wang, M., Yu, L., Sun, Y., Shi, H., et al. (2022) Stem Cell-Based Therapy for Diabetic Foot Ulcers. Frontiers in Cell and Developmental Biology, 10, Article 812262. https://doi.org/10.3389/fcell.2022.812262
|
[2]
|
Mirzaei, M., Rahmaninan, M., Mirzaei, M., Nadjarzadeh, A. and Dehghani Tafti, A.A. (2020) Epidemiology of Diabetes Mellitus, Pre-Diabetes, Undiagnosed and Uncontrolled Diabetes in Central Iran: Results from Yazd Health Study. BMC Public Health, 20, Article No. 166. https://doi.org/10.1186/s12889-020-8267-y
|
[3]
|
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843. https://doi.org/10.1016/j.diabres.2019.107843
|
[4]
|
Brod, M., Nikolajsen, A., Weatherall, J. and Pfeiffer, K.M. (2016) Understanding Post-Prandial Hyperglycemia in Patients with Type 1 and Type 2 Diabetes: A Web-Based Survey in Germany, the UK, and Usa. Diabetes Therapy, 7, 335-348. https://doi.org/10.1007/s13300-016-0175-x
|
[5]
|
Bian, D., Wu, Y., Song, G., Azizi, R. and Zamani, A. (2022) The Application of Mesenchymal Stromal Cells (MSCs) and Their Derivative Exosome in Skin Wound Healing: A Comprehensive Review. Stem Cell Research & Therapy, 13, Article No. 24. https://doi.org/10.1186/s13287-021-02697-9
|
[6]
|
Doğruel, H., Aydemir, M. and Balci, M.K. (2022) Management of Diabetic Foot Ulcers and the Challenging Points: An Endocrine View. World Journal of Diabetes, 13, 27-36. https://doi.org/10.4239/wjd.v13.i1.27
|
[7]
|
Boulton, A.J., Vileikyte, L., Ragnarson-Tennvall, G. and Apelqvist, J. (2005) The Global Burden of Diabetic Foot Disease. The Lancet, 366, 1719-1724. https://doi.org/10.1016/s0140-6736(05)67698-2
|
[8]
|
Han, Z., Cao, J., Liu, Z., Yang, Z., Qi, R. and Xu, H. (2022) Exosomal lncRNA KLF3-AS1 Derived from Bone Marrow Mesenchymal Stem Cells Stimulates Angiogenesis to Promote Diabetic Cutaneous Wound Healing. Diabetes Research and Clinical Practice, 183, Article ID: 109126. https://doi.org/10.1016/j.diabres.2021.109126
|
[9]
|
Rubio, J.A., Jiménez, S. and Lázaro-Martínez, J.L. (2020) Mortality in Patients with Diabetic Foot Ulcers: Causes, Risk Factors, and Their Association with Evolution and Severity of Ulcer. Journal of Clinical Medicine, 9, Article 3009. https://doi.org/10.3390/jcm9093009
|
[10]
|
Marzoq, A., Shiaa, N., Zaboon, R., Baghlany, Q. and Alabbood, M.H. (2019) Assessment of the Outcome of Diabetic Foot Ulcers in Basrah, Southern Iraq: A Cohort Study. Dubai Diabetes and Endocrinology Journal, 25, 33-38. https://doi.org/10.1159/000500911
|
[11]
|
An, Y., Lin, S., Tan, X., Zhu, S., Nie, F., Zhen, Y., et al. (2021) Exosomes from Adipose‐Derived Stem Cells and Application to Skin Wound Healing. Cell Proliferation, 54, e12993. https://doi.org/10.1111/cpr.12993
|
[12]
|
Bandyk, D.F. (2018) The Diabetic Foot: Pathophysiology, Evaluation, and Treatment. Seminars in Vascular Surgery, 31, 43-48. https://doi.org/10.1053/j.semvascsurg.2019.02.001
|
[13]
|
Wang, X., Yuan, C., Xu, B. and Yu, Z. (2022) Diabetic Foot Ulcers: Classification, Risk Factors and Management. World Journal of Diabetes, 13, 1049-1065. https://doi.org/10.4239/wjd.v13.i12.1049
|
[14]
|
Deng, H., Li, B., Shen, Q., Zhang, C., Kuang, L., Chen, R., et al. (2023) Mechanisms of Diabetic Foot Ulceration: A Review. Journal of Diabetes, 15, 299-312. https://doi.org/10.1111/1753-0407.13372
|
[15]
|
Callaghan, B.C., Price, R.S., Chen, K.S. and Feldman, E.L. (2015) The Importance of Rare Subtypes in Diagnosis and Treatment of Peripheral Neuropathy. JAMA Neurology, 72, 1510-1518. https://doi.org/10.1001/jamaneurol.2015.2347
|
[16]
|
Peltier, A., Goutman, S.A. and Callaghan, B.C. (2014) Painful Diabetic Neuropathy. BMJ, 348, g1799. https://doi.org/10.1136/bmj.g1799
|
[17]
|
Yang, P., Feng, J., Peng, Q., Liu, X. and Fan, Z. (2019) Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9570616. https://doi.org/10.1155/2019/9570616
|
[18]
|
Volmer-Thole, M. and Lobmann, R. (2016) Neuropathy and Diabetic Foot Syndrome. International Journal of Molecular Sciences, 17, Article 917. https://doi.org/10.3390/ijms17060917
|
[19]
|
Pouget, C., Dunyach-Remy, C., Pantel, A., Schuldiner, S., Sotto, A. and Lavigne, J. (2020) Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms, 8, Article 1580. https://doi.org/10.3390/microorganisms8101580
|
[20]
|
Wynn, T.A. and Vannella, K.M. (2016) Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44, 450-462. https://doi.org/10.1016/j.immuni.2016.02.015
|
[21]
|
Li, X., Lu, Y. and Wei, P. (2018) Association between VEGF Genetic Variants and Diabetic Foot Ulcer in Chinese Han Population: A Case-Control Study. Medicine, 97, e10672. https://doi.org/10.1097/md.0000000000010672
|
[22]
|
Schönborn, M., Łączak, P., Pasieka, P., Borys, S., Płotek, A. and Maga, P. (2021) Pro-and Anti-Angiogenic Factors: Their Relevance in Diabetic Foot Syndrome—A Review. Angiology, 73, 299-311. https://doi.org/10.1177/00033197211042684
|
[23]
|
Dasari, N., Jiang, A., Skochdopole, A., Chung, J., Reece, E.M., Vorstenbosch, J., et al. (2021) Updates in Diabetic Wound Healing, Inflammation, and Scarring. Seminars in Plastic Surgery, 35, 153-158. https://doi.org/10.1055/s-0041-1731460
|
[24]
|
Okonkwo, U. and DiPietro, L. (2017) Diabetes and Wound Angiogenesis. International Journal of Molecular Sciences, 18, Article 1419. https://doi.org/10.3390/ijms18071419
|
[25]
|
Patel, S., Srivastava, S., Singh, M.R. and Singh, D. (2019) Mechanistic Insight into Diabetic Wounds: Pathogenesis, Molecular Targets and Treatment Strategies to Pace Wound Healing. Biomedicine & Pharmacotherapy, 112, Article ID: 108615. https://doi.org/10.1016/j.biopha.2019.108615
|
[26]
|
Cunningham, D.J., Baumgartner, R.E., Federer, A.E., Richard, M.J. and Mithani, S.K. (2019) Elevated Preoperative Hemoglobin A1c Associated with Increased Wound Complications in Diabetic Patients Undergoing Primary, Open Carpal Tunnel Release. Plastic & Reconstructive Surgery, 144, 632e-638e. https://doi.org/10.1097/prs.0000000000006023
|
[27]
|
Rani, M., Nicholson, S.E., Zhang, Q. and Schwacha, M.G. (2017) Damage-associated Molecular Patterns (DAMPs) Released after Burn Are Associated with Inflammation and Monocyte Activation. Burns, 43, 297-303. https://doi.org/10.1016/j.burns.2016.10.001
|
[28]
|
Yunna, C., Mengru, H., Lei, W. and Weidong, C. (2020) Macrophage M1/M2 Polarization. European Journal of Pharmacology, 877, Article ID: 173090. https://doi.org/10.1016/j.ejphar.2020.173090
|
[29]
|
den Dekker, A., Davis, F.M., Kunkel, S.L. and Gallagher, K.A. (2019) Targeting Epigenetic Mechanisms in Diabetic Wound Healing. Translational Research, 204, 39-50. https://doi.org/10.1016/j.trsl.2018.10.001
|
[30]
|
Aitcheson, S.M., Frentiu, F.D., Hurn, S.E., Edwards, K. and Murray, R.Z. (2021) Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 26, Article 4917. https://doi.org/10.3390/molecules26164917
|
[31]
|
Nirenjen, S., Narayanan, J., Tamilanban, T., Subramaniyan, V., Chitra, V., Fuloria, N.K., et al. (2023) Exploring the Contribution of Pro-Inflammatory Cytokines to Impaired Wound Healing in Diabetes. Frontiers in Immunology, 14, Article 1216321. https://doi.org/10.3389/fimmu.2023.1216321
|
[32]
|
Schilrreff, P. and Alexiev, U. (2022) Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. International Journal of Molecular Sciences, 23, Article 4928. https://doi.org/10.3390/ijms23094928
|
[33]
|
Li, H., Meng, Y., He, S., Tan, X., Zhang, Y., Zhang, X., et al. (2022) Macrophages, Chronic Inflammation, and Insulin Resistance. Cells, 11, Article 3001. https://doi.org/10.3390/cells11193001
|
[34]
|
Davis, F.M., Kimball, A., Boniakowski, A. and Gallagher, K. (2018) Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads. Current Diabetes Reports, 18, Article No. 2. https://doi.org/10.1007/s11892-018-0970-z
|
[35]
|
Zhu, Y., Xia, X., He, Q., Xiao, Q., Wang, D., Huang, M., et al. (2023) Diabetes-associated Neutrophil NETosis: Pathogenesis and Interventional Target of Diabetic Complications. Frontiers in Endocrinology, 14, Article 1202463. https://doi.org/10.3389/fendo.2023.1202463
|
[36]
|
Chimenti, I., Sattler, S., del Monte-Nieto, G. and Forte, E. (2022) Editorial: Fibrosis and Inflammation in Tissue Pathophysiology. Frontiers in Physiology, 12, Article 830683. https://doi.org/10.3389/fphys.2021.830683
|
[37]
|
Evans, C.J.F., Glastras, S.J., Tang, O. and Figtree, G.A. (2023) Therapeutic Potential for β-3 Adrenoreceptor Agonists in Peripheral Arterial Disease and Diabetic Foot Ulcers. Biomedicines, 11, Article 3187. https://doi.org/10.3390/biomedicines11123187
|
[38]
|
Fu, K., Zheng, X., Chen, Y., Wu, L., Yang, Z., Chen, X., et al. (2022) Role of Matrix Metalloproteinases in Diabetic Foot Ulcers: Potential Therapeutic Targets. Frontiers in Pharmacology, 13, Article 1050630. https://doi.org/10.3389/fphar.2022.1050630
|
[39]
|
Kim, J., Nomkhondorj, O., An, C.Y., Choi, Y.C. and Cho, J. (2023) Management of Diabetic Foot Ulcers: A Narrative Review. Journal of Yeungnam Medical Science, 40, 335-342. https://doi.org/10.12701/jyms.2023.00682
|
[40]
|
Schaper, N.C., van Netten, J.J., Apelqvist, J., Bus, S.A., Fitridge, R., Game, F., Monteiro-Soares, M., Senneville, E. and IWGDF Editorial Board (2024) Practical Guidelines on the Prevention and Management of Diabetes-Related Foot Disease (IWGDF 2023 Update). Diabetes/Metabolism Research and Reviews, 40, e3657.
|
[41]
|
Vas, P.R.J., Edmonds, M., Kavarthapu, V., Rashid, H., Ahluwalia, R., Pankhurst, C., et al. (2018) The Diabetic Foot Attack: “Tis Too Late to Retreat!”. The International Journal of Lower Extremity Wounds, 17, 7-13. https://doi.org/10.1177/1534734618755582
|
[42]
|
Kim, J., Chun, D., Kim, S., Yang, H., Kim, J.H., Cho, J., et al. (2019) Trends in Lower Limb Amputation in Patients with Diabetic Foot Based on Vascular Intervention of Peripheral Arterial Disease in Korea: A Population-Based Nationwide Study. Journal of Korean Medical Science, 34, e178. https://doi.org/10.3346/jkms.2019.34.e178
|
[43]
|
Fitridge, R., Chuter, V., Mills, J., Hinchliffe, R., Azuma, N., Behrendt, C., et al. (2023) The Intersocietal IWGDF, ESVS, SVS Guidelines on Peripheral Artery Disease in People with Diabetes and a Foot Ulcer. Diabetes/Metabolism Research and Reviews, 40, e3686. https://doi.org/10.1002/dmrr.3686
|
[44]
|
Bus, S.A., Armstrong, D.G., Crews, R.T., Gooday, C., Jarl, G., Kirketerp‐Moller, K., et al. (2023) Guidelines on Offloading Foot Ulcers in Persons with Diabetes (IWGDF 2023 Update). Diabetes/Metabolism Research and Reviews, 40, e3647. https://doi.org/10.1002/dmrr.3647
|
[45]
|
Chun, D., Kim, S., Kim, J., Yang, H., Kim, J.H., Cho, J., et al. (2019) Epidemiology and Burden of Diabetic Foot Ulcer and Peripheral Arterial Disease in Korea. Journal of Clinical Medicine, 8, Article 748. https://doi.org/10.3390/jcm8050748
|
[46]
|
Moret, C.S., Schöni, M., Waibel, F.W.A., Winkler, E., Grest, A., Liechti, B.S., et al. (2022) Correction of Hyperglycemia after Surgery for Diabetic Foot Infection and Its Association with Clinical Outcomes. BMC Research Notes, 15, Article No. 264. https://doi.org/10.1186/s13104-022-06150-9
|
[47]
|
Perez-Favila, A., Martinez-Fierro, M.L., Rodriguez-Lazalde, J.G., Cid-Baez, M.A., Zamudio-Osuna, M.D.J., Martinez-Blanco, M.D.R., et al. (2019) Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina, 55, Article 714. https://doi.org/10.3390/medicina55110714
|
[48]
|
Uccioli, L., Meloni, M., Izzo, V., Giurato, L., Merolla, S. and Gandini, R. (2018) Critical Limb Ischemia: Current Challenges and Future Prospects. Vascular Health and Risk Management, 14, 63-74. https://doi.org/10.2147/vhrm.s125065
|
[49]
|
Jarrige, M., Frank, E., Herardot, E., Martineau, S., Darle, A., Benabides, M., et al. (2021) The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells, 10, Article 240. https://doi.org/10.3390/cells10020240
|
[50]
|
Marofi, F., Alexandrovna, K.I., Margiana, R., Bahramali, M., Suksatan, W., Abdelbasset, W.K., et al. (2021) MSCs and Their Exosomes: A Rapidly Evolving Approach in the Context of Cutaneous Wounds Therapy. Stem Cell Research & Therapy, 12, Article No. 597. https://doi.org/10.1186/s13287-021-02662-6
|
[51]
|
Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F. and Ding, J. (2019) Mesenchymal Stem Cells for Regenerative Medicine. Cells, 8, Article 886. https://doi.org/10.3390/cells8080886
|
[52]
|
Yu, X., Liu, P., Li, Z. and Zhang, Z. (2023) Function and Mechanism of Mesenchymal Stem Cells in the Healing of Diabetic Foot Wounds. Frontiers in Endocrinology, 14, Article 1099310. https://doi.org/10.3389/fendo.2023.1099310
|
[53]
|
Peng, Y., Zhao, M., Hu, Y., Guo, H., Zhang, Y., Huang, Y., et al. (2022) Blockade of Exosome Generation by GW4869 Inhibits the Education of M2 Macrophages in Prostate Cancer. BMC Immunology, 23, Article No. 37. https://doi.org/10.1186/s12865-022-00514-3
|
[54]
|
Soltani, S., Mansouri, K., Parvaneh, S., Thakor, A.S., Pociot, F. and Yarani, R. (2021) Diabetes Complications and Extracellular Vesicle Therapy. Reviews in Endocrine and Metabolic Disorders, 23, 357-385. https://doi.org/10.1007/s11154-021-09680-y
|
[55]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[56]
|
Wen, S.W., Lima, L.G., Lobb, R.J., Norris, E.L., Hastie, M.L., Krumeich, S., et al. (2019) Breast Cancer‐Derived Exosomes Reflect the Cell‐of‐Origin Phenotype. PROTEOMICS, 19, Article ID: 1800180. https://doi.org/10.1002/pmic.201800180
|
[57]
|
Xu, J., Bai, S., Cao, Y., Liu, L., Fang, Y., Du, J., et al. (2020) miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 1259-1270. https://doi.org/10.2147/dmso.s243549
|
[58]
|
He, Q. (2023) Advances in the Treatment of Diabetic Foot with MSC-Derived Exosomes. BIO Web of Conferences, 61, Article ID: 01007. https://doi.org/10.1051/bioconf/20236101007
|