[1]
|
Al-Aly, Z., Xie, Y. and Bowe, B. (2021) High-Dimensional Characterization of Post-Acute Sequelae of Covid-19. Nature, 594, 259-264. https://doi.org/10.1038/s41586-021-03553-9
|
[2]
|
Fabbri, L., Moss, S., Khan, F., et al. (2021) Post-Viral Parenchymal Lung Disease Following COVID-19 and Viral Pneumonitis Hospitalisation: A Systematic Review and Meta-Analysis.
|
[3]
|
Huang, W.J. and Tang, X.X. (2021) Virus Infection Induced Pulmonary Fibrosis. Journal of Translational Medicine, 19, Article No. 496. https://doi.org/10.1186/s12967-021-03159-9
|
[4]
|
Mabrey, F.L., Morrell, E.D. and Wurfel, M.M. (2021) TLRs in COVID-19: How They Drive Immunopathology and the Rationale for Modulation. Innate Immunity, 27, 503-513. https://doi.org/10.1177/17534259211051364
|
[5]
|
Park, G.J., Osinski, A., Hernandez, G., Eitson, J.L., Majumdar, A., Tonelli, M., et al. (2022) The Mechanism of RNA Capping by Sars-Cov-2. Nature, 609, 793-800. https://doi.org/10.1038/s41586-022-05185-z
|
[6]
|
Duan, T., Xing, C., Chu, J., Deng, X., Du, Y., Liu, X., et al. (2024) ACE2-Dependent and-Independent Sars-Cov-2 Entries Dictate Viral Replication and Inflammatory Response during Infection. Nature Cell Biology, 26, 628-644. https://doi.org/10.1038/s41556-024-01388-w
|
[7]
|
Leng, L., Cao, R., Ma, J., Mou, D., Zhu, Y., Li, W., et al. (2020) Pathological Features of Covid-19-Associated Lung Injury: A Preliminary Proteomics Report Based on Clinical Samples. Signal Transduction and Targeted Therapy, 5, Article No. 240. https://doi.org/10.1038/s41392-020-00355-9
|
[8]
|
Crisan-Dabija, R., Pavel, C.A., Popa, I.V., Tarus, A. and Burlacu, A. (2020) “A Chain Only as Strong as Its Weakest Link”: An Up-to-Date Literature Review on the Bidirectional Interaction of Pulmonary Fibrosis and Covid-19. Journal of Proteome Research, 19, 4327-4338. https://doi.org/10.1021/acs.jproteome.0c00387
|
[9]
|
Yim, W.W. and Mizushima, N. (2021) Autophagosome Maturation Stymied by Sars-Cov-2. Developmental Cell, 56, 400-402. https://doi.org/10.1016/j.devcel.2021.02.002
|
[10]
|
Hill, C., Li, J., Liu, D., Conforti, F., Brereton, C.J., Yao, L., et al. (2019) Autophagy Inhibition-Mediated Epithelial-Mesenchymal Transition Augments Local Myofibroblast Differentiation in Pulmonary Fibrosis. Cell Death & Disease, 10, Article No. 591. https://doi.org/10.1038/s41419-019-1820-x
|
[11]
|
Picchi, G., Mari, A., Ricciardi, A., Carucci, A.C., Sinatti, G., Cosimini, B., et al. (2020) Three Cases of COVID-19 Pneumonia in Female Patients in Italy Who Had Pulmonary Fibrosis on Follow-Up Lung Computed Tomography Imaging. American Journal of Case Reports, 21, e926921. https://doi.org/10.12659/ajcr.926921
|
[12]
|
Yu, M., Liu, Y., Xu, D., Zhang, R., Lan, L. and Xu, H. (2020) Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean Journal of Radiology, 21, 746-755. https://doi.org/10.3348/kjr.2020.0215
|
[13]
|
Daher, A., Balfanz, P., Cornelissen, C., Müller, A., Bergs, I., Marx, N., et al. (2020) Follow Up of Patients with Severe Coronavirus Disease 2019 (COVID-19): Pulmonary and Extrapulmonary Disease Sequelae. Respiratory Medicine, 174, Article ID: 106197. https://doi.org/10.1016/j.rmed.2020.106197
|
[14]
|
Tanni, S.E., Fabro, A.T., de Albuquerque, A., Ferreira, E.V.M., Verrastro, C.G.Y., Sawamura, M.V.Y., et al. (2021) Pulmonary Fibrosis Secondary to COVID-19: A Narrative Review. Expert Review of Respiratory Medicine, 15, 791-803. https://doi.org/10.1080/17476348.2021.1916472
|
[15]
|
Besutti, G., Monelli, F., Schirò, S., Milone, F., Ottone, M., Spaggiari, L., et al. (2022) Follow-Up CT Patterns of Residual Lung Abnormalities in Severe COVID-19 Pneumonia Survivors: A Multicenter Retrospective Study. Tomography, 8, 1184-1195. https://doi.org/10.3390/tomography8030097
|
[16]
|
Han, X., Fan, Y., Alwalid, O., Li, N., Jia, X., Yuan, M., et al. (2021) Six-Month Follow-Up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology, 299, E177-E186. https://doi.org/10.1148/radiol.2021203153
|
[17]
|
Crook, H., Raza, S., Nowell, J., Young, M. and Edison, P. (2021) Long Covid—Mechanisms, Risk Factors, and Management. BMJ, 374, n1648. https://doi.org/10.1136/bmj.n1648
|
[18]
|
Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., et al. (2023) 6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study. The Lancet, 401, e21-e33. https://doi.org/10.1016/s0140-6736(23)00810-3
|
[19]
|
Yan, X., Huang, H., Wang, C., Jin, Z., Zhang, Z., He, J., et al. (2021) Follow-Up Study of Pulmonary Function among COVID-19 Survivors 1 Year after Recovery. Journal of Infection, 83, 381-412. https://doi.org/10.1016/j.jinf.2021.05.034
|
[20]
|
Fabbri, L., Moss, S., Khan, F.A., Chi, W., Xia, J., Robinson, K., et al. (2022) Parenchymal Lung Abnormalities Following Hospitalisation for COVID-19 and Viral Pneumonitis: A Systematic Review and Meta-Analysis. Thorax, 78, 191-201. https://doi.org/10.1136/thoraxjnl-2021-218275
|
[21]
|
Lee, J.H., Yim, J. and Park, J. (2022) Pulmonary Function and Chest Computed Tomography Abnormalities 6-12 Months after Recovery from COVID-19: A Systematic Review and Meta-Analysis. Respiratory Research, 23, Article No. 233. https://doi.org/10.1186/s12931-022-02163-x
|
[22]
|
Ojha, V., Mani, A., Pandey, N.N., Sharma, S. and Kumar, S. (2020) CT in Coronavirus Disease 2019 (COVID-19): A Systematic Review of Chest CT Findings in 4410 Adult Patients. European Radiology, 30, 6129-6138. https://doi.org/10.1007/s00330-020-06975-7
|
[23]
|
Ding, M., Zhang, Q., Li, Q., Wu, T. and Huang, Y. (2020) Correlation Analysis of the Severity and Clinical Prognosis of 32 Cases of Patients with Covid-19. Respiratory Medicine, 167, Article ID: 105981. https://doi.org/10.1016/j.rmed.2020.105981
|
[24]
|
Huang, W., Wu, Q., Chen, Z., Xiong, Z., Wang, K., Tian, J., et al. (2021) The Potential Indicators for Pulmonary Fibrosis in Survivors of Severe Covid-19. Journal of Infection, 82, e5-e7. https://doi.org/10.1016/j.jinf.2020.09.027
|
[25]
|
Ojo, A.S., Balogun, S.A., Williams, O.T. and Ojo, O.S. (2020) Pulmonary Fibrosis in COVID-19 Survivors: Predictive Factors and Risk Reduction Strategies. Pulmonary Medicine, 2020, Article ID: 6175964. https://doi.org/10.1155/2020/6175964
|
[26]
|
Marvisi, M., Ferrozzi, F., Balzarini, L., Mancini, C., Ramponi, S. and Uccelli, M. (2020) First Report on Clinical and Radiological Features of COVID-19 Pneumonitis in a Caucasian Population: Factors Predicting Fibrotic Evolution. International Journal of Infectious Diseases, 99, 485-488. https://doi.org/10.1016/j.ijid.2020.08.054
|
[27]
|
Vasarmidi, E., Tsitoura, E., Spandidos, D., Tzanakis, N. and Antoniou, K. (2020) Pulmonary Fibrosis in the Aftermath of the Covid-19 Era (Review). Experimental and Therapeutic Medicine, 20, 2557-2560. https://doi.org/10.3892/etm.2020.8980
|
[28]
|
González, J., Benítez, I.D., Carmona, P., Santisteve, S., Monge, A., Moncusí-Moix, A., et al. (2021) Pulmonary Function and Radiologic Features in Survivors of Critical Covid-19: A 3-Month Prospective Cohort. Chest, 160, 187-198. https://doi.org/10.1016/j.chest.2021.02.062
|
[29]
|
Rajan, S.K., Cottin, V., Dhar, R., Danoff, S., Flaherty, K.R., Brown, K.K., et al. (2022) Progressive Pulmonary Fibrosis: An Expert Group Consensus Statement. European Respiratory Journal, 61, Article ID: 2103187. https://doi.org/10.1183/13993003.03187-2021
|
[30]
|
Camiciottoli, G., Orlandi, I., Bartolucci, M., Meoni, E., Nacci, F., Diciotti, S., et al. (2007) Lung CT Densitometry in Systemic Sclerosis: Correlation with Lung Function, Exercise Testing, and Quality of Life. Chest, 131, 672-681. https://doi.org/10.1378/chest.06-1401
|
[31]
|
Zou, J., Sun, L., Wang, B., Zou, Y., Xu, S., Ding, Y., et al. (2021) The Characteristics and Evolution of Pulmonary Fibrosis in COVID-19 Patients as Assessed by AI-Assisted Chest HRCT. PLOS ONE, 16, e0248957. https://doi.org/10.1371/journal.pone.0248957
|
[32]
|
Wang, Z., Yang, X., Zhou, Y., Sun, J., Liu, X., Zhang, J., et al. (2020) COVID-19 Severity Correlates with Weaker T-Cell Immunity, Hypercytokinemia, and Lung Epithelium Injury. American Journal of Respiratory and Critical Care Medicine, 202, 606-610. https://doi.org/10.1164/rccm.202005-1701le
|
[33]
|
Khalil, N., Manganas, H., Ryerson, C.J., Shapera, S., Cantin, A.M., Hernandez, P., et al. (2018) Phase 2 Clinical Trial of PBI-4050 in Patients with Idiopathic Pulmonary Fibrosis. European Respiratory Journal, 53, Article ID: 1800663. https://doi.org/10.1183/13993003.00663-2018
|
[34]
|
George, P.M., Wells, A.U. and Jenkins, R.G. (2020) Pulmonary Fibrosis and COVID-19: The Potential Role for Antifibrotic Therapy. The Lancet Respiratory Medicine, 8, 807-815. https://doi.org/10.1016/s2213-2600(20)30225-3
|
[35]
|
Seifirad, S. (2020) Pirfenidone: A Novel Hypothetical Treatment for Covid-19. Medical Hypotheses, 144, Article ID: 110005. https://doi.org/10.1016/j.mehy.2020.110005
|
[36]
|
Vitiello, A., Pelliccia, C. and Ferrara, F. (2020) COVID-19 Patients with Pulmonary Fibrotic Tissue: Clinical Pharmacological Rational of Antifibrotic Therapy. SN Comprehensive Clinical Medicine, 2, 1709-1712. https://doi.org/10.1007/s42399-020-00487-7
|
[37]
|
Flaherty, K.R., Wells, A.U., Cottin, V., Devaraj, A., Walsh, S.L.F., Inoue, Y., et al. (2019) Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New England Journal of Medicine, 381, 1718-1727. https://doi.org/10.1056/nejmoa1908681
|
[38]
|
King, T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., et al. (2014) A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2083-2092. https://doi.org/10.1056/nejmoa1402582
|
[39]
|
Richeldi, L., du Bois, R.M., Raghu, G., Azuma, A., Brown, K.K., Costabel, U., et al. (2014) Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 370, 2071-2082. https://doi.org/10.1056/nejmoa1402584
|
[40]
|
Zhao, Y., Yang, C., An, X., Xiong, Y., Shang, Y., He, J., et al. (2021) Follow-Up Study on COVID-19 Survivors One Year after Discharge from Hospital. International Journal of Infectious Diseases, 112, 173-182. https://doi.org/10.1016/j.ijid.2021.09.017
|
[41]
|
Wu, X., Liu, X., Zhou, Y., Yu, H., Li, R., Zhan, Q., et al. (2021) 3-Month, 6-Month, 9-Month, and 12-Month Respiratory Outcomes in Patients Following COVID-19-Related Hospitalisation: A Prospective Study. The Lancet Respiratory Medicine, 9, 747-754. https://doi.org/10.1016/s2213-2600(21)00174-0
|
[42]
|
Kerget, B., Çil, G., Araz, Ö., Alper, F. and Akgün, M. (2023) Comparison of Two Antifibrotic Treatments for Lung Fibrosis in Post-Covid-19 Syndrome: A Randomized, Prospective Study. Medicina Clínica (English Edition), 160, 525-530. https://doi.org/10.1016/j.medcle.2022.12.019
|
[43]
|
深圳市第三人民医院, 国家感染性疾病临床医学研究中心, 深圳市感染性疾病质量控制中心, 等. 长新冠综合征临床诊治专家共识[J]. 新发传染病电子杂志, 2024, 9(1): 80-97.
|
[44]
|
Egede, L.E. and Walker, R.J. (2020) Structural Racism, Social Risk Factors, and Covid-19—A Dangerous Convergence for Black Americans. New England Journal of Medicine, 383, e77. https://doi.org/10.1056/nejmp2023616
|
[45]
|
Myall, K.J., Mukherjee, B., Castanheira, A.M., Lam, J.L., Benedetti, G., Mak, S.M., et al. (2021) Persistent Post-Covid-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Annals of the American Thoracic Society, 18, 799-806. https://doi.org/10.1513/annalsats.202008-1002oc
|
[46]
|
Dhooria, S., Chaudhary, S., Sehgal, I.S., Agarwal, R., Arora, S., Garg, M., et al. (2021) High-Dose versus Low-Dose Prednisolone in Symptomatic Patients with Post-Covid-19 Diffuse Parenchymal Lung Abnormalities: An Open-Label, Randomised Trial (The COLDSTER Trial). European Respiratory Journal, 59, Article ID: 2102930. https://doi.org/10.1183/13993003.02930-2021
|
[47]
|
Stern, A., Skalsky, K., Avni, T., Carrara, E., Leibovici, L. and Paul, M. (2017) Corticosteroids for Pneumonia. Cochrane Database of Systematic Reviews, 12, CD007720. https://doi.org/10.1002/14651858.cd007720.pub3
|
[48]
|
Salama, C., Han, J., Yau, L., Reiss, W.G., Kramer, B., Neidhart, J.D., et al. (2021) Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. New England Journal of Medicine, 384, 20-30. https://doi.org/10.1056/nejmoa2030340
|
[49]
|
Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., et al. (2020) Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proceedings of the National Academy of Sciences, 117, 10970-10975. https://doi.org/10.1073/pnas.2005615117
|
[50]
|
Zannad, F., Alla, F., Dousset, B., Perez, A. and Pitt, B. (2000) Limitation of Excessive Extracellular Matrix Turnover May Contribute to Survival Benefit of Spironolactone Therapy in Patients with Congestive Heart Failure: Insights from the Randomized Aldactone Evaluation Study (RALES). Rales Investigators. Circulation, 102, 2700-2706. https://doi.org/10.1161/01.cir.102.22.2700
|
[51]
|
MacFadyen, R., et al. (1997) Aldosterone Blockade Reduces Vascular Collagen Turnover, Improves Heart Rate Variability and Reduces Early Morning Rise in Heart Rate in Heart Failure Patients. Cardiovascular Research, 35, 30-34. https://doi.org/10.1016/s0008-6363(97)00091-6
|
[52]
|
Hirasawa, G., Sasano, H., Takahashi, K., Fukushima, K., Suzuki, T., Hiwatashi, N., et al. (1997) Colocalization of 11β-Hydroxysteroid Dehydrogenase Type II and Mineralocorticoid Receptor in Human Epithelia. The Journal of Clinical Endocrinology & Metabolism, 82, 3859-3863. https://doi.org/10.1210/jcem.82.11.4337
|
[53]
|
Broillet, M., Berger, A. and Horisberger, J. (1993) Early Effects of Aldosterone on the Basolateral Potassium Conductance of A6 Cells. Pflügers Archiv European Journal of Physiology, 424, 91-93. https://doi.org/10.1007/bf00375106
|
[54]
|
Lieber, G.B., Fernandez, X., Mingo, G.G., Jia, Y., Caniga, M., Gil, M.A., et al. (2013) Mineralocorticoid Receptor Antagonists Attenuate Pulmonary Inflammation and Bleomycin-Evoked Fibrosis in Rodent Models. European Journal of Pharmacology, 718, 290-298. https://doi.org/10.1016/j.ejphar.2013.08.019
|
[55]
|
Golchin, A., Seyedjafari, E. and Ardeshirylajimi, A. (2020) Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Reviews and Reports, 16, 427-433. https://doi.org/10.1007/s12015-020-09973-w
|
[56]
|
Cadegiani, F.A., Wambier, C.G. and Goren, A. (2020) Spironolactone: An Anti-Androgenic and Anti-Hypertensive Drug That May Provide Protection against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in Covid-19. Frontiers in Medicine, 7, Article No. 453. https://doi.org/10.3389/fmed.2020.00453
|
[57]
|
Kotfis, K., Lechowicz, K., Drozdzal, S., et al. (2021) COVID-19—The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection. Pharmaceuticals (Basel), 14, 71. https://doi.org/10.3390/ph14010071
|
[58]
|
刘峰, 徐鑫, 胡春晓, 韩威力. 肺移植治疗新型冠状病毒感染后肺纤维化三例临床经验[J]. 中华器官移植杂志, 2020, 41(4): 199-202.
|
[59]
|
Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. and Husain, L. (2020) Management of Post-Acute Covid-19 in Primary Care. BMJ, 370, m3026. https://doi.org/10.1136/bmj.m3026
|