|
[1]
|
Chen, L., Xu, Y., Cheng, H., Li, Z., Lai, N., Li, M., et al. (2023) Adult-Born Neurons in Critical Period Maintain Hippocampal Seizures via Local Aberrant Excitatory Circuits. Signal Transduction and Targeted Therapy, 8, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Patel, D.C., Tewari, B.P., Chaunsali, L. and Sontheimer, H. (2019) Neuron-Glia Interactions in the Pathophysiology of Epilepsy. Nature Reviews Neuroscience, 20, 282-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jessberger, S. and Parent, J.M. (2015) Epilepsy and Adult Neurogenesis. Cold Spring Harbor Perspectives in Biology, 7, a020677. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hanaya, R., Boehm, N. and Nehlig, A. (2007) Dissociation of the Immunoreactivity of Synaptophysin and GAP-43 during the Acute and Latent Phases of the Lithium-Pilocarpine Model in the Immature and Adult Rat. Experimental Neurology, 204, 720-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, Y., Cheng, X., Wu, L., Li, J., Liu, C., Wei, M., et al. (2023) Pharmacological Inhibition of S6K1 Rescues Synaptic Deficits and Attenuates Seizures and Depression in Chronic Epileptic Rats. CNS Neuroscience & Therapeutics, 30, e14475. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Keezer, M.R., Sisodiya, S.M. and Sander, J.W. (2016) Comorbidities of Epilepsy: Current Concepts and Future Perspectives. The Lancet Neurology, 15, 106-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Marques, K.L., Moreira, M.L., Thiele, M.C., Cunha-Rodrigues, M.C. and Barradas, P.C. (2023) Depressive-Like Behavior and Impaired Synaptic Plasticity in the Prefrontal Cortex as Later Consequences of Prenatal Hypoxic-Ischemic Insult in Rats. Behavioural Brain Research, 452, Article ID: 114571. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lu, C., Gao, R., Zhang, Y., Jiang, N., Chen, Y., Sun, J., et al. (2021) S-Equol, a Metabolite of Dietary Soy Isoflavones, Alleviates Lipopolysaccharide-Induced Depressive-Like Behavior in Mice by Inhibiting Neuroinflammation and Enhancing Synaptic Plasticity. Food & Function, 12, 5770-5778. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nazir, F.H., Becker, B., Brinkmalm, A., Höglund, K., Sandelius, Å., Bergström, P., et al. (2018) Expression and Secretion of Synaptic Proteins during Stem Cell Differentiation to Cortical Neurons. Neurochemistry International, 121, 38-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
邱红梅, 郭旺, 杨雪萍, 等. 癫痫伴抑郁模型大鼠海马突触相关蛋白的表达[J]. 中华行为医学与脑科学杂志, 2024, 33(1): 9-14.
|
|
[11]
|
曹真真, 闫桂柳, 朱含笑, 等. 癫痫伴发抑郁大鼠杏仁核突触相关蛋白的表达[J]. 中风与神经疾病杂志, 2021, 38(12): 1088-1091.
|
|
[12]
|
Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B. and Uchida, N. (2012) Neuron-Type-Specific Signals for Reward and Punishment in the Ventral Tegmental Area. Nature, 482, 85-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nasrullah, N., Kerr, W.T., Stern, J.M., Wang, Y., Tatekawa, H., Lee, J.K., et al. (2023) Amygdala Subfield and Prefrontal Cortex Abnormalities in Patients with Functional Seizures. Epilepsy & Behavior, 145, Article ID: 109278. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Truckenbrodt, S., Viplav, A., Jähne, S., Vogts, A., Denker, A., Wildhagen, H., et al. (2018) Newly Produced Synaptic Vesicle Proteins Are Preferentially Used in Synaptic Transmission. The EMBO Journal, 37, e98044. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chung, D., Shum, A. and Caraveo, G. (2020) GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Frontiers in Cell and Developmental Biology, 8, Article 567537. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ying, Z., Najm, I., Nemes, A., Pinheiro‐Martins, A.P., Alexopoulos, A., Gonzalez‐Martinez, J., et al. (2014) Growth‐associated Protein 43 and Progressive Epilepsy in Cortical Dysplasia. Annals of Clinical and Translational Neurology, 1, 453-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
韩丽君, 王志恒, 尚婷惠子, 等. β-细辛醚对抑郁模型大鼠海马神经突触可塑性功能因子GAP-43的影响[J]. 全科口腔医学电子杂志, 2019, 6(30): 140-141.
|
|
[18]
|
Duman, R.S. and Aghajanian, G.K. (2012) Synaptic Dysfunction in Depression: Potential Therapeutic Targets. Science, 338, 68-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Royero, P.X., Higa, G.S.V., Kostecki, D.S., dos Santos, B.A., Almeida, C., Andrade, K.A., et al. (2020) Ryanodine Receptors Drive Neuronal Loss and Regulate Synaptic Proteins during Epileptogenesis. Experimental Neurology, 327, Article ID: 113213. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ota, K.T., Liu, R., Voleti, B., Maldonado-Aviles, J.G., Duric, V., Iwata, M., et al. (2014) REDD1 Is Essential for Stress-Induced Synaptic Loss and Depressive Behavior. Nature Medicine, 20, 531-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jia, C., Zhang, R., Wei, L., Xie, J., Zhou, S., Yin, W., et al. (2022) Investigation of the Mechanism of Tanshinone IIA to Improve Cognitive Function via Synaptic Plasticity in Epileptic Rats. Pharmaceutical Biology, 61, 100-110. [Google Scholar] [CrossRef] [PubMed]
|