[1]
|
Pons-Estel, G.J., Alarcón, G.S., Scofield, L., Reinlib, L. and Cooper, G.S. (2010) Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Seminars in Arthritis and Rheumatism, 39, 257-268. https://doi.org/10.1016/j.semarthrit.2008.10.007
|
[2]
|
Nakano, M., Iwasaki, Y. and Fujio, K. (2021) Transcriptomic Studies of Systemic Lupus Erythematosus. Inflammation and Regeneration, 41, Article No. 11. https://doi.org/10.1186/s41232-021-00161-y
|
[3]
|
Weckerle, C.E., Franek, B.S., Kelly, J.A., Kumabe, M., Mikolaitis, R.A., Green, S.L., et al. (2011) Network Analysis of Associations between Serum Interferon‐α Activity, Autoantibodies, and Clinical Features in Systemic Lupus Erythematosus. Arthritis & Rheumatism, 63, 1044-1053. https://doi.org/10.1002/art.30187
|
[4]
|
Rönnblom, L. and Alm, G.V. (2001) An Etiopathogenic Role for the Type I IFN System in SLE. Trends in Immunology, 22, 427-431. https://doi.org/10.1016/s1471-4906(01)01955-x
|
[5]
|
Li, S., Gong, M., Zhao, F., Shao, J., Xie, Y., Zhang, Y., et al. (2018) Type I Interferons: Distinct Biological Activities and Current Applications for Viral Infection. Cellular Physiology and Biochemistry, 51, 2377-2396. https://doi.org/10.1159/000495897
|
[6]
|
Gallucci, S., Meka, S. and Gamero, A.M. (2021) Abnormalities of the Type I Interferon Signaling Pathway in Lupus Autoimmunity. Cytokine, 146, Article ID: 155633. https://doi.org/10.1016/j.cyto.2021.155633
|
[7]
|
Xue, Z., Cui, C., Liao, Z., Xia, S., Zhang, P., Qin, J., et al. (2018) Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway. Frontiers in Immunology, 9, 2967. https://doi.org/10.3389/fimmu.2018.02967
|
[8]
|
Chen, Q., Sun, L. and Chen, Z.J. (2016) Regulation and Function of the cGAS-Sting Pathway of Cytosolic DNA Sensing. Nature Immunology, 17, 1142-1149. https://doi.org/10.1038/ni.3558
|
[9]
|
Rönnblom, L. and Alm, G.V. (2003) Systemic Lupus Erythematosus and the Type I Interferon System. Arthritis Research & Therapy, 5, 68-75. https://doi.org/10.1186/ar625
|
[10]
|
Li, J., Fu, Q., Cui, H., Qu, B., Pan, W., Shen, N., et al. (2011) Interferon‐α Priming Promotes Lipid Uptake and Macrophage‐Derived Foam Cell Formation: A Novel Link between Interferon‐α and Atherosclerosis in Lupus. Arthritis & Rheumatism, 63, 492-502. https://doi.org/10.1002/art.30165
|
[11]
|
Smith, N., Vidalain, P., Nisole, S. and Herbeuval, J. (2016) An Efficient Method for Gene Silencing in Human Primary Plasmacytoid Dendritic Cells: Silencing of the TLR7/IRF-7 Pathway as a Proof of Concept. Scientific Reports, 6, Article No. 29891. https://doi.org/10.1038/srep29891
|
[12]
|
Gilliet, M., Cao, W. and Liu, Y. (2008) Plasmacytoid Dendritic Cells: Sensing Nucleic Acids in Viral Infection and Autoimmune Diseases. Nature Reviews Immunology, 8, 594-606. https://doi.org/10.1038/nri2358
|
[13]
|
Niewold, T.B., Kelly, J.A., Flesch, M.H., Espinoza, L.R., Harley, J.B. and Crow, M.K. (2008) Association of the IRF5 Risk Haplotype with High Serum Interferon‐α Activity in Systemic Lupus Erythematosus Patients. Arthritis & Rheumatism, 58, 2481-2487. https://doi.org/10.1002/art.23613
|
[14]
|
Henault, J., Riggs, J.M., Karnell, J.L., Liarski, V.M., Li, J., Shirinian, L., et al. (2015) Self-Reactive IgE Exacerbates Interferon Responses Associated with Autoimmunity. Nature Immunology, 17, 196-203. https://doi.org/10.1038/ni.3326
|
[15]
|
Chung, S.A., Taylor, K.E., Graham, R.R., Nititham, J., Lee, A.T., Ortmann, W.A., et al. (2011) Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti-dsDNA Autoantibody Production. PLOS Genetics, 7, e1001323. https://doi.org/10.1371/journal.pgen.1001323
|
[16]
|
Shen, N., Fu, Q., Deng, Y., Qian, X., Zhao, J., Kaufman, K.M., et al. (2010) Sex-Specific Association of X-Linked Toll-Like Receptor 7 (TLR7) with Male Systemic Lupus Erythematosus. Proceedings of the National Academy of Sciences, 107, 15838-15843. https://doi.org/10.1073/pnas.1001337107
|
[17]
|
Kato, Y., Park, J., Takamatsu, H., Konaka, H., Aoki, W., Aburaya, S., et al. (2018) Apoptosis-Derived Membrane Vesicles Drive the cGAS-Sting Pathway and Enhance Type I IFN Production in Systemic Lupus Erythematosus. Annals of the Rheumatic Diseases, 77, 1507-1515. https://doi.org/10.1136/annrheumdis-2018-212988
|
[18]
|
Gugliesi, F., De Andrea, M., Mondini, M., Cappello, P., Giovarelli, M., Shoenfeld, Y., et al. (2010) The Proapoptotic Activity of the Interferon-Inducible Gene IFI16 Provides New Insights into Its Etiopathogenetic Role in Autoimmunity. Journal of Autoimmunity, 35, 114-123. https://doi.org/10.1016/j.jaut.2010.04.001
|
[19]
|
Mavragani, C.P., Nezos, A., Sagalovskiy, I., Seshan, S., Kirou, K.A. and Crow, M.K. (2018) Defective Regulation of L1 Endogenous Retroelements in Primary Sjogren’s Syndrome and Systemic Lupus Erythematosus: Role of Methylating Enzymes. Journal of Autoimmunity, 88, 75-82. https://doi.org/10.1016/j.jaut.2017.10.004
|
[20]
|
Lee, P.Y., Li, Y., Richards, H.B., Chan, F.S., Zhuang, H., Narain, S., et al. (2007) Type I Interferon as a Novel Risk Factor for Endothelial Progenitor Cell Depletion and Endothelial Dysfunction in Systemic Lupus Erythematosus. Arthritis & Rheumatism, 56, 3759-3769. https://doi.org/10.1002/art.23035
|
[21]
|
Rafael-Vidal, C., Martínez-Ramos, S., Malvar-Fernández, B., Altabás-González, I., Mouriño, C., Veale, D.J., et al. (2023) Type I Interferons Induce Endothelial Destabilization in Systemic Lupus Erythematosus in a Tie2-Dependent Manner. Frontiers in Immunology, 14, Article ID: 1277267. https://doi.org/10.3389/fimmu.2023.1277267
|
[22]
|
Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. and Salazar-Mather, T.P. (1999) Natural Killer Cells in Antiviral Defense: Function and Regulation by Innate Cytokines. Annual Review of Immunology, 17, 189-220. https://doi.org/10.1146/annurev.immunol.17.1.189
|
[23]
|
Eloranta, M., Lövgren, T., Finke, D., Mathsson, L., Rönnelid, J., Kastner, B., et al. (2009) Regulation of the Interferon‐α Production Induced by RNA‐Containing Immune Complexes in Plasmacytoid Dendritic Cells. Arthritis & Rheumatism, 60, 2418-2427. https://doi.org/10.1002/art.24686
|
[24]
|
Garcia-Romo, G.S., Caielli, S., Vega, B., Connolly, J., Allantaz, F., Xu, Z., et al. (2011) Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus. Science Translational Medicine, 3, 73ra20. https://doi.org/10.1126/scitranslmed.3001201
|
[25]
|
Thacker, S.G., Zhao, W., Smith, C.K., Luo, W., Wang, H., Vivekanandan‐Giri, A., et al. (2012) Type I Interferons Modulate Vascular Function, Repair, Thrombosis, and Plaque Progression in Murine Models of Lupus and Atherosclerosis. Arthritis & Rheumatism, 64, 2975-2985. https://doi.org/10.1002/art.34504
|
[26]
|
Thacker, S.G., Berthier, C.C., Mattinzoli, D., Rastaldi, M.P., Kretzler, M. and Kaplan, M.J. (2010) The Detrimental Effects of IFN-α on Vasculogenesis in Lupus Are Mediated by Repression of IL-1 Pathways: Potential Role in Atherogenesis and Renal Vascular Rarefaction. The Journal of Immunology, 185, 4457-4469. https://doi.org/10.4049/jimmunol.1001782
|
[27]
|
Diao, Y., Mohandas, R., Lee, P., Liu, Z., Sautina, L., Mu, W., et al. (2016) Effects of Long-Term Type I Interferon on the Arterial Wall and Smooth Muscle Progenitor Cells Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 266-273. https://doi.org/10.1161/atvbaha.115.306767
|
[28]
|
Ytterberg, S.R. and Schnitzer, T.J. (1982) Serum Interferon Levels in Patients with Systemic Lupus Erythematosus. Arthritis & Rheumatism, 25, 401-406. https://doi.org/10.1002/art.1780250407
|
[29]
|
Shiozawa, S., Kuroki, Y., Kim, M., Hirohata, S. and Ogino, T. (1992) Interferon‐alpha in Lupus Psychosis. Arthritis & Rheumatism, 35, 417-422. https://doi.org/10.1002/art.1780350410
|
[30]
|
Crow, M.K., Kirou, K.A. and Wohlgemuth, J. (2003) Microarray Analysis of Interferon-Regulated Genes in SLE. Autoimmunity, 36, 481-490. https://doi.org/10.1080/08916930310001625952
|
[31]
|
Baechler, E.C., Batliwalla, F.M., Karypis, G., Gaffney, P.M., Ortmann, W.A., Espe, K.J., et al. (2003) Interferon-Inducible Gene Expression Signature in Peripheral Blood Cells of Patients with Severe Lupus. Proceedings of the National Academy of Sciences, 100, 2610-2615. https://doi.org/10.1073/pnas.0337679100
|
[32]
|
Niewold, T.B., Adler, J.E., Glenn, S.B., Lehman, T.J.A., Harley, J.B. and Crow, M.K. (2008) Age‐ and Sex‐Related Patterns of Serum Interferon‐α Activity in Lupus Families. Arthritis & Rheumatism, 58, 2113-2119. https://doi.org/10.1002/art.23619
|
[33]
|
Hamilton, J.A., Wu, Q., Yang, P., Luo, B., Liu, S., Li, J., et al. (2018) Cutting Edge: Intracellular IFN-β and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. The Journal of Immunology, 201, 2203-2208. https://doi.org/10.4049/jimmunol.1800791
|
[34]
|
Hamilton, J.A., Hsu, H.C. and Mountz, J.D. (2018) Role of Production of Type I Interferons by B Cells in the Mechanisms and Patho-Genesis of Systemic Lupus Erythematosus. Discovery Medicine, 25, 21-29.
|
[35]
|
Hamilton, J.A., Hsu, H. and Mountz, J.D. (2019) Autoreactive B Cells in SLE, Villains or Innocent Bystanders? Immunological Reviews, 292, 120-138. https://doi.org/10.1111/imr.12815
|
[36]
|
Fu, Q., He, Q., Dong, Q., Xie, J., Geng, Y., Han, H., et al. (2022) The Role of Cyclic GMP-AMP Synthase and Interferon-I-Inducible Protein 16 as Candidate Biomarkers of Systemic Lupus Erythematosus. Clinica Chimica Acta, 524, 69-77. https://doi.org/10.1016/j.cca.2021.11.003
|
[37]
|
Hamilton, J.A., Wu, Q., Yang, P., Luo, B., Liu, S., Li, J., et al. (2018) Cutting Edge: Intracellular IFN-β and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. The Journal of Immunology, 201, 2203-2208. https://doi.org/10.4049/jimmunol.1800791
|
[38]
|
Gao, L., Liesveld, J., Anolik, J., Mcdavid, A. and Looney, R.J. (2020) IFNβ Signaling Inhibits Osteogenesis in Human SLE Bone Marrow. Lupus, 29, 1040-1049. https://doi.org/10.1177/0961203320930088
|
[39]
|
Vassileva, G., Chen, S., Zeng, M., Abbondanzo, S., Jensen, K., Gorman, D., et al. (2003) Expression of a Novel Murine Type I IFN in the Pancreatic Islets Induces Diabetes in Mice. The Journal of Immunology, 170, 5748-5755. https://doi.org/10.4049/jimmunol.170.11.5748
|
[40]
|
Stannard, J.N., Reed, T.J., Myers, E., Lowe, L., Sarkar, M.K., Xing, X., et al. (2017) Lupus Skin Is Primed for IL-6 Inflammatory Responses through a Keratinocyte-Mediated Autocrine Type I Interferon Loop. Journal of Investigative Dermatology, 137, 115-122. https://doi.org/10.1016/j.jid.2016.09.008
|
[41]
|
Sarkar, M.K., Hile, G.A., Tsoi, L.C., Xing, X., Liu, J., Liang, Y., et al. (2018) Photosensitivity and Type I IFN Responses in Cutaneous Lupus Are Driven by Epidermal-Derived Interferon Kappa. Annals of the Rheumatic Diseases, 77, 1653-1664. https://doi.org/10.1136/annrheumdis-2018-213197
|
[42]
|
Wolf, S.J., Estadt, S.N., Theros, J., Moore, T., Ellis, J., Liu, J., et al. (2019) Ultraviolet Light Induces Increased T Cell Activation in Lupus-Prone Mice via Type I IFN-Dependent Inhibition of T Regulatory Cells. Journal of Autoimmunity, 103, Article ID: 102291. https://doi.org/10.1016/j.jaut.2019.06.002
|
[43]
|
Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. and Jahnsen, F.L. (2001) Plasmacytoid Dendritic Cells (Natural Interferon-α/β-Producing Cells) Accumulate in Cutaneous Lupus Erythematosus Lesions. The American Journal of Pathology, 159, 237-243. https://doi.org/10.1016/s0002-9440(10)61689-6
|
[44]
|
Postal, M., Sinicato, N.A., Appenzeller, S. and Niewold, T.B. (2016) Drugs in Early Clinical Development for Systemic Lupus Erythematosus. Expert Opinion on Investigational Drugs, 25, 573-583. https://doi.org/10.1517/13543784.2016.1162291
|
[45]
|
Kužnik, A., Benčina, M., Švajger, U., Jeras, M., Rozman, B. and Jerala, R. (2011) Mechanism of Endosomal TLR Inhibition by Antimalarial Drugs and Imidazoquinolines. The Journal of Immunology, 186, 4794-4804. https://doi.org/10.4049/jimmunol.1000702
|
[46]
|
An, J., Woodward, J.J., Sasaki, T., Minie, M. and Elkon, K.B. (2015) Cutting Edge: Antimalarial Drugs Inhibit IFN-β Production through Blockade of Cyclic GMP-AMP Synthase-DNA Interaction. The Journal of Immunology, 194, 4089-4093. https://doi.org/10.4049/jimmunol.1402793
|
[47]
|
Guiducci, C., Gong, M., Xu, Z., Gill, M., Chaussabel, D., Meeker, T., et al. (2010) TLR Recognition of Self Nucleic Acids Hampers Glucocorticoid Activity in Lupus. Nature, 465, 937-941. https://doi.org/10.1038/nature09102
|
[48]
|
McBride, J.M., Jiang, J., Abbas, A.R., Morimoto, A., Li, J., Maciuca, R., et al. (2012) Safety and Pharmacodynamics of Rontalizumab in Patients with Systemic Lupus Erythematosus: Results of a Phase I, Placebo‐Controlled, Double‐Blind, Dose‐Escalation Study. Arthritis & Rheumatism, 64, 3666-3676. https://doi.org/10.1002/art.34632
|
[49]
|
Merrill, J.T., Wallace, D.J., Petri, M., Kirou, K.A., Yao, Y., White, W.I., et al. (2011) Safety Profile and Clinical Activity of Sifalimumab, a Fully Human Anti-Interferon Monoclonal Antibody, in Systemic Lupus Erythematosus: A Phase I, Multicentre, Double-Blind Randomised Study. Annals of the Rheumatic Diseases, 70, 1905-1913. https://doi.org/10.1136/ard.2010.144485
|
[50]
|
Furie, R., Khamashta, M., Merrill, J.T., Werth, V.P., Kalunian, K., Brohawn, P., et al. (2017) Anifrolumab, an Anti-interferon‐α Receptor Monoclonal Antibody, in Moderate‐to‐Severe Systemic Lupus Erythematosus. Arthritis & Rheumatology, 69, 376-386. https://doi.org/10.1002/art.39962
|
[51]
|
Houssiau, F.A., Thanou, A., Mazur, M., Ramiterre, E., Gomez Mora, D.A., Misterska-Skora, M., et al. (2019) IFN-α Kinoid in Systemic Lupus Erythematosus: Results from a Phase IIb, Randomised, Placebo-Controlled Study. Annals of the Rheumatic Diseases, 79, 347-355. https://doi.org/10.1136/annrheumdis-2019-216379
|