[1]
|
Bagshaw, S.M. (2008) Short-and Long-Term Survival after Acute Kidney Injury. Nephrology Dialysis Transplantation, 23, 2126-2128. https://doi.org/10.1093/ndt/gfn300
|
[2]
|
Kellum, J.A. and Lameire, N. (2013) Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1). Critical Care, 17, Article No. 204. https://doi.org/10.1186/cc11454
|
[3]
|
Moledina, D.G. and Parikh, C.R. (2018) Phenotyping of Acute Kidney Injury: Beyond Serum Creatinine. Seminars in Nephrology, 38, 3-11. https://doi.org/10.1016/j.semnephrol.2017.09.002
|
[4]
|
Prowle, J.R., Liu, Y., Licari, E., Bagshaw, S.M., Egi, M., Haase, M., et al. (2011) Oliguria as Predictive Biomarker of Acute Kidney Injury in Critically Ill Patients. Critical Care, 15, R172. https://doi.org/10.1186/cc10318
|
[5]
|
Soni, S.S., Cruz, D., Bobek, I., Chionh, C.Y., Nalesso, F., Lentini, P., et al. (2009) NGAL: A Biomarker of Acute Kidney Injury and Other Systemic Conditions. International Urology and Nephrology, 42, 141-150. https://doi.org/10.1007/s11255-009-9608-z
|
[6]
|
Kjeldsen, L., Cowland, J.B. and Borregaard, N. (2000) Human Neutrophil Gelatinase-Associated Lipocalin and Homologous Proteins in Rat and Mouse. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 1482, 272-283. https://doi.org/10.1016/s0167-4838(00)00152-7
|
[7]
|
Wheeler, D.S., Devarajan, P., Ma, Q., Harmon, K., Monaco, M., Cvijanovich, N., et al. (2008) Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Marker of Acute Kidney Injury in Critically Ill Children with Septic Shock. Critical Care Medicine, 36, 1297-1303. https://doi.org/10.1097/ccm.0b013e318169245a
|
[8]
|
Shang, W. and Wang, Z. (2017) The Update of NGAL in Acute Kidney Injury. Current Protein & Peptide Science, 18, 1211-1217. https://doi.org/10.2174/1389203717666160909125004
|
[9]
|
Elitok, S., Devarajan, P., Bellomo, R., Isermann, B., Haase, M. and Haase-Fielitz, A. (2021) NGAL/Hepcidin-25 Ratio and AKI Subtypes in Patients Following Cardiac Surgery: A Prospective Observational Study. Journal of Nephrology, 35, 597-605. https://doi.org/10.1007/s40620-021-01063-5
|
[10]
|
Si Nga, H., Medeiros, P., Menezes, P., Bridi, R., Balbi, A. and Ponce, D. (2015) Sepsis and AKI in Clinical Emergency Room Patients: The Role of Urinary NGAL. BioMed Research International, 2015, Article ID: 413751. https://doi.org/10.1155/2015/413751
|
[11]
|
Allegretti, A.S., Solà, E. and Ginès, P. (2020) Clinical Application of Kidney Biomarkers in Cirrhosis. American Journal of Kidney Diseases, 76, 710-719. https://doi.org/10.1053/j.ajkd.2020.03.016
|
[12]
|
Allegretti, A.S., Parada, X.V., Endres, P., et al. (2021) Urinary NGAL as a Diagnostic and Prognostic Marker for Acute Kidney Injury in Cirrhosis: A Prospective Study. Clinical and Translational Gastroenterology, 12, e359.
|
[13]
|
Perrone, R.D., Madias, N.E. and Levey, A.S. (1992) Serum Creatinine as an Index of Renal Function: New Insights into Old Concepts. Clinical Chemistry, 38, 1933-1953. https://doi.org/10.1093/clinchem/38.10.1933
|
[14]
|
Villa, P., Jiménez, M., Soriano, M., Manzanares, J. and Casasnovas, P. (2005) Serum Cystatin C Concentration as a Marker of Acute Renal Dysfunction in Critically Ill Patients. Critical Care, 9, R139-R143. https://doi.org/10.1186/cc3044
|
[15]
|
Grubb, A. (1992) Diagnostic Value of Analysis of Cystatin C and Protein HC in Biological Fluids. Clinical Nephrology, 38, S20-S27.
|
[16]
|
Tenstad, O., Roald, A.B., Grubb, A. and Aukland, K. (1996) Renal Handling of Radiolabelled Human Cystatin C in the Rat. Scandinavian Journal of Clinical and Laboratory Investigation, 56, 409-414. https://doi.org/10.3109/00365519609088795
|
[17]
|
Kiessling, A., Dietz, J., Reyher, C., Stock, U.A., Beiras-Fernandez, A. and Moritz, A. (2014) Early Postoperative Serum Cystatin C Predicts Severe Acute Kidney Injury Following Cardiac Surgery: A Post-Hoc Analysis of a Randomized Controlled Trial. Journal of Cardiothoracic Surgery, 9, Article No. 10. https://doi.org/10.1186/1749-8090-9-10
|
[18]
|
Aumpan, N., Limprukkasem, T., Pornthisarn, B., Vilaichone, R., Chonprasertsuk, S., Bhanthumkomol, P., et al. (2021) Plasma Cystatin C Level Is a Prognostic Marker of Morbidity and Mortality in Hospitalized Decompensated Cirrhotic Patients. The Journal of Medical Investigation, 68, 302-308. https://doi.org/10.2152/jmi.68.302
|
[19]
|
Maiwall, R., Kumar, A., Bhardwaj, A., Kumar, G., Bhadoria, A.S. and Sarin, S.K. (2017) Cystatin C Predicts Acute Kidney Injury and Mortality in Cirrhotics: A Prospective Cohort Study. Liver International, 38, 654-664. https://doi.org/10.1111/liv.13600
|
[20]
|
Abd El Wahab, A.M., Awadeen, A., Mansour, M.M. and Shemies, R. (2022) The Diagnostic and Prognostic Utility of Serum Cystatin C and Angiopoietin 2 in Patients with Liver Cirrhosis Complicated by Acute Kidney Injury. Therapeutic Apheresis and Dialysis, 27, 419-427. https://doi.org/10.1111/1744-9987.13936
|
[21]
|
Vijay, P., Lal, B.B., Sood, V., Khanna, R. and Alam, S. (2021) Cystatin C: Best Biomarker for Acute Kidney Injury and Estimation of Glomerular Filtration Rate in Childhood Cirrhosis. European Journal of Pediatrics, 180, 3287-3295. https://doi.org/10.1007/s00431-021-04076-1
|
[22]
|
Yang, L., Brooks, C.R., Xiao, S., Sabbisetti, V., Yeung, M.Y., Hsiao, L., et al. (2015) Kim-1-Mediated Phagocytosis Reduces Acute Injury to the Kidney. Journal of Clinical Investigation, 125, 1620-1636. https://doi.org/10.1172/jci75417
|
[23]
|
Bonventre, J.V. (2008) Kidney Injury Molecule‐1 (KIM‐1): A Specific and Sensitive Biomarker of Kidney Injury. Scandinavian Journal of Clinical and Laboratory Investigation, 68, 78-83. https://doi.org/10.1080/00365510802145059
|
[24]
|
Xie, Y., Huang, P., Zhang, J., Tian, R., Jin, W., Xie, H., et al. (2021) Biomarkers for the Diagnosis of Sepsis-Associated Acute Kidney Injury: Systematic Review and Meta-analysis. Annals of Palliative Medicine, 10, 4159-4173. https://doi.org/10.21037/apm-20-1855
|
[25]
|
Geng, J., Qiu, Y., Qin, Z. and Su, B. (2021) The Value of Kidney Injury Molecule 1 in Predicting Acute Kidney Injury in Adult Patients: A Systematic Review and Bayesian Meta-Analysis. Journal of Translational Medicine, 19, Article No. 105. https://doi.org/10.1186/s12967-021-02776-8
|
[26]
|
Pan, H., Yang, S., Chiou, T.T., Shiao, C., Wu, C., Huang, C., et al. (2022) Comparative Accuracy of Biomarkers for the Prediction of Hospital-Acquired Acute Kidney Injury: A Systematic Review and Meta-Analysis. Critical Care, 26, Article No. 349. https://doi.org/10.1186/s13054-022-04223-6
|
[27]
|
Sun, T., Qu, S., Huang, T., Ping, Y., Lin, Q., Cao, Y., et al. (2021) Rapid and Sensitive Detection of L‐FABP for Prediction and Diagnosis of Acute Kidney Injury in Critically Ill Patients by Chemiluminescent Immunoassay. Journal of Clinical Laboratory Analysis, 35, e24051. https://doi.org/10.1002/jcla.24051
|
[28]
|
Akbal, E., Köklü, S., Koçak, E., Çakal, B., Güneş, F., Başar, Ö., et al. (2013) Liver Fatty Acid-Binding Protein Is a Diagnostic Marker to Detect Liver Injury Due to Chronic Hepatitis C Infection. Archives of Medical Research, 44, 34-38. https://doi.org/10.1016/j.arcmed.2012.11.007
|
[29]
|
Ishimitsu, T., Ohta, S., Saito, M., Teranishi, M., Inada, H., Yoshii, M., et al. (2005) Urinary Excretion of Liver Fatty Acid-Binding Protein in Health-Check Participants. Clinical and Experimental Nephrology, 9, 34-39. https://doi.org/10.1007/s10157-004-0331-x
|
[30]
|
Kamijo-Ikemori, A., Sugaya, T., Obama, A., Hiroi, J., Miura, H., Watanabe, M., et al. (2006) Liver-Type Fatty Acid-Binding Protein Attenuates Renal Injury Induced by Unilateral Ureteral Obstruction. The American Journal of Pathology, 169, 1107-1117. https://doi.org/10.2353/ajpath.2006.060131
|
[31]
|
Nielsen, S.E., Sugaya, T., Hovind, P., Baba, T., Parving, H. and Rossing, P. (2010) Urinary Liver-Type Fatty Acid-Binding Protein Predicts Progression to Nephropathy in Type 1 Diabetic Patients. Diabetes Care, 33, 1320-1324. https://doi.org/10.2337/dc09-2242
|
[32]
|
Basharat Khan, M., Naseem, T., Wazir, H.d., Ayyub, A., Bin saad, A. and Irshad, R. (2022) Association of Liver Fatty Acid Binding Protein with Acute Kidney Injury in Paediatric Patients after Cardiac Surgery. Journal of Ayub Medical College Abbottabad, 34, S602-S607. https://doi.org/10.55519/jamc-03-s1-9023
|
[33]
|
Wakisaka, Y., Inai, K., Sato, M., Harada, G., Asagai, S. and Shimada, E. (2022) Utility of Urinary Liver-Type Fatty Acid-Binding Protein as a Prognostic Marker in Adult Congenital Heart Patients Hospitalized for Acute Heart Failure. Heart and Vessels, 38, 371-380. https://doi.org/10.1007/s00380-022-02174-0
|
[34]
|
Yanishi, M. and Kinoshita, H. (2022) Urinary L-Type Fatty Acid-Binding Protein Is a Predictor of Cisplatin-Induced Acute Kidney Injury. BMC Nephrology, 23, Article No. 125. https://doi.org/10.1186/s12882-022-02760-4
|
[35]
|
Fan, W., Ankawi, G., Zhang, J., Digvijay, K., Giavarina, D., Yin, Y., et al. (2019) Current Understanding and Future Directions in the Application of TIMP-2 and IGFBP7 in AKI Clinical Practice. Clinical Chemistry and Laboratory Medicine (CCLM), 57, 567-576. https://doi.org/10.1515/cclm-2018-0776
|
[36]
|
Emlet, D.R., Pastor-Soler, N., Marciszyn, A., Wen, X., Gomez, H., Humphries, W.H., et al. (2017) Insulin-Like Growth Factor Binding Protein 7 and Tissue Inhibitor of Metalloproteinases-2: Differential Expression and Secretion in Human Kidney Tubule Cells. American Journal of Physiology-Renal Physiology, 312, F284-F296. https://doi.org/10.1152/ajprenal.00271.2016
|
[37]
|
Costelloe, C.M., Amini, B. and Madewell, J.E. (2020) Withdrawn: Risks and Benefits of Gadolinium-Based Contrast Enhanced MRI. Seminars in Ultrasound, CT and MRI, 41, 260-274. https://doi.org/10.1053/j.sult.2020.03.001
|
[38]
|
Kashani, K., Al-Khafaji, A., Ardiles, T., et al. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, R25.
|
[39]
|
Meersch, M., Schmidt, C., Van Aken, H., Martens, S., Rossaint, J., Singbartl, K., et al. (2014) Urinary TIMP-2 and IGFBP7 as Early Biomarkers of Acute Kidney Injury and Renal Recovery Following Cardiac Surgery. PLOS ONE, 9, e93460. https://doi.org/10.1371/journal.pone.0093460
|
[40]
|
Gocze, I., Koch, M., Renner, P., Zeman, F., Graf, B.M., Dahlke, M.H., et al. (2015) Urinary Biomarkers TIMP-2 and IGFBP7 Early Predict Acute Kidney Injury after Major Surgery. PLOS ONE, 10, e0120863. https://doi.org/10.1371/journal.pone.0120863
|
[41]
|
Sun, Q., Kang, Z., Li, Z. and Xun, M. (2022) Urinary NGAL, IGFBP-7, and TIMP-2: Novel Biomarkers to Predict Contrast Medium-Induced Acute Kidney Injury in Children. Renal Failure, 44, 1202-1207. https://doi.org/10.1080/0886022x.2022.2075277
|
[42]
|
Fuhrman, D.Y., Kellum, J.A., Joyce, E.L., Miyashita, Y., Mazariegos, G.V., Ganoza, A., et al. (2019) The Use of Urinary Biomarkers to Predict Acute Kidney Injury in Children after Liver Transplant. Pediatric Transplantation, 24, e13608. https://doi.org/10.1111/petr.13608
|
[43]
|
Bagshaw, S.M., Al-Khafaji, A., Artigas, A., Davison, D., Haase, M., Lissauer, M., et al. (2021) External Validation of Urinary C-C Motif Chemokine Ligand 14 (CCL14) for Prediction of Persistent Acute Kidney Injury. Critical Care, 25, Article No. 185. https://doi.org/10.1186/s13054-021-03618-1
|
[44]
|
Massoth, C., Küllmar, M., Enders, D., Kellum, J.A., Forni, L.G., Meersch, M., et al. (2023) Comparison of C-C Motif Chemokine Ligand 14 with Other Biomarkers for Adverse Kidney Events after Cardiac Surgery. The Journal of Thoracic and Cardiovascular Surgery, 165, 199-207.e2. https://doi.org/10.1016/j.jtcvs.2021.03.016
|
[45]
|
Koyner, J.L., Chawla, L.S., Bihorac, A., Gunnerson, K.J., Schroeder, R., Demirjian, S., et al. (2022) Performance of a Standardized Clinical Assay for Urinary C-C Motif Chemokine Ligand 14 (CCL14) for Persistent Severe Acute Kidney Injury. Kidney360, 3, 1158-1168. https://doi.org/10.34067/kid.0008002021
|