急性肾损伤的生物学标记物的研究进展
Research Progress of Biological Markers of Acute Kidney Injury
DOI: 10.12677/jcpm.2024.34228, PDF, HTML, XML,   
作者: 闫鹏程:济宁医学院临床医学院,济宁 山东;谢颖光*:济宁市第一人民医院重症医学科,济宁 山东
关键词: 急性肾损伤重症监护病房生物学标记物早期诊断Acute Kidney Injury Intensive Care Unit Biological Markers Early Diagnosis
摘要: 急性肾损伤(acute kidney injury, AKI)在重症监护病房(intensive care unit, ICU)中是一种常见的疾病,大多患者预后不良。早期的诊断和及时治疗对于患者来说非常重要。近期有大量的研究已经表明,相对于传统的实验室指标如尿量的减少以及血肌酐值的上升来说,有很多的生物学标记物对于AKI的早期诊断具有一定的意义,本文将对这些生物学标记物的研究进展进行一篇综述,旨在对AKI的早期诊断和护理有一定的作用。
Abstract: Acute kidney injury (AKI) is a common disease in the intensive care unit (ICU), and most patients have a poor prognosis. Early diagnosis and timely treatment are very important for patients. A large number of recent studies have shown that compared with traditional laboratory indicators such as reduced urine volume and increased serum creatinine value, there are many biological markers that have certain significance for the early diagnosis of AKI. This article will review the research progress of these biological markers, aiming to have a certain role in the early diagnosis and care of AKI.
文章引用:闫鹏程, 谢颖光. 急性肾损伤的生物学标记物的研究进展[J]. 临床个性化医学, 2024, 3(4): 1591-1596. https://doi.org/10.12677/jcpm.2024.34228

1. 引言

急性肾损伤(acute kidney injury, AKI)在重症监护病房(intensive care unit, ICU)中是一种常见的疾病,大多患者预后不良[1]。早期的诊断和及时治疗对于患者来说非常重要。2012年改善全球肾脏病预后组织(Kidney Disease: Improving Global Outcomes, KIDGO)指南[2]推荐使用尿量和血肌酐来诊断并对AKI进行分级。但是研究表明尿量和血肌酐的变化会受到很多因素的干扰,并不能完全反映肾小球滤过率和肾脏损伤的程度[3] [4],而且尿量和血肌酐的变化总是滞后于病情的变化,不能及时地识别AKI。

因此寻找可以早期预测AKI和持续性肾脏损坏的生物学标记物对于临床工作的开展和对疾病的预防和治疗来说非常重要。目前有些生物学标记物已经可以在早期AKI患者和持续性肾脏损坏的患者的尿液和血液中被发现,其中包括:中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL),胱抑素C (cystatin C),肾损伤分子-1 (kidney injury moleculer-1, KIM-1),肝脂肪酸结合蛋白(liver-type fatty acid binding protein, L-FABP),胰岛素样生长因子结合蛋白-7 (insulin-like growth factor binding protein-7, IGFBP-7),金属蛋白酶抑制剂2 (matrix metalloproteinase inhibitor-2, TIMP-2),尿C-C基质趋化因子配体14 (urinary c-c motif chemokine ligand 14, CCL14)等。本文将对这些生物学标记物的研究进展做一综述。

2. NGAL

中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL)是脂脂素家族的一种分子量为25 KDa的一种蛋白质[5]。它最初在人中性粒细胞中纯化,以单体和异质二聚体形式存在,后者作为与人中性粒细胞明胶酶的二聚体[6]。在正常的情况下,NGAL可以在人体的几个组织中低度的表达,包括肾脏,肺,和胃肠道[7]。在手术后的相关肾损伤和肾小管上皮细胞损伤的过程中,肾小管上皮细胞中的NGAL mRNA表达上调,大量的NGAL的分泌,导致血,尿中的NGAL的浓度升高,从而可以去早期预测AKI和反应AKI的严重情况[8]。在近期的一些关于NGAL的研究中,研究者发现在心脏手术后AKI、脓毒症AKI和肝硬化失代偿期AKI时,NGAL对于早期预测AKI都有高度的敏感性[9]-[11]。尤其是在肝硬化失代偿期的AKI中,NAGL不仅可以区分肝硬化引起的AKI的类型,而且可能改善对死亡率的预测。因此它有可能优化肝硬化引起AKI的管理[12]

3. Cystatin C

胱抑素C (Cystatin C)是一种非糖基化蛋白,属于半胱氨酸蛋白抑制剂,胱抑素超家族[13]。Cystatin C是所有有核细胞中“管家基因”所表达的产物,并且这种产物会以一种恒定速率产生。由于其体积小,且在正常的PH值下带正电荷,所以能够很好地被肾小球自由过滤。Cystatin C不在肾小管上皮细胞分泌,但是会被肾小管上皮细胞重新吸收,并且分解吸收,不会再次进入循环[14]-[17]。研究证实,在早期预测和诊断AKI时,Cystatin C的敏感性要比血清肌酐高。在最近的研究中,研究人员发现在肝硬化失代偿期引起的AKI中,Cystatin C可以准确地预测这些患者的AKI的发生率和死亡率[18]-[20]。在Priti Vijay的研究中,他们发现血清胱抑素C是诊断小儿肝硬化AKI最佳的生物学标记物,以血清Cystatin C为基础的公式计算的估计肾小球滤过率(Estimated glomerular filtration rate, eGFR)要比以血清肌酐为基础的公式计算的eGFR要准确得多[21]

4. KIM-1

肾损伤分子(kidney injury moleculer-1, KIM-1)是一种38.7 KDa的I型跨膜糖蛋白,胞外免疫球蛋白样结构域位于长黏蛋白样结构域之上,其在正常的肾脏组织和其他器官中的表达水平较低,但在肾脏受到损伤后尤其是在缺血–再灌注损伤后,在肾脏的近端小管处显著上调表达[22]。在肾损伤的早期,由于KIM-1介导小管的吞噬作用,所以它的表达对于AKI来说是抗炎的。在早期对大鼠以及人的研究中表明,KIM-1相对于血清尿素氮和血清肌酐来说是更敏感和特异的标记物[23]。根据近期的研究,研究者发现KIM-1是脓毒症相关的急性肾损伤、成人急性肾损伤和手术引起的医院获得性急性肾损伤良好的预测性指标,并且有着相对较高的敏感性和特异性[24]-[26]。但是KIM-1能否运用于临床诊断,仍然需要大量的临床研究[25]

5. L-FABP

肝脂肪酸结合蛋白(liver-type fatty acid binding protein, L-FABP)是脂肪酸结合蛋白(Fatty acid-binding proteins, FABPs)中的一员。FABPs是一组分子量为14 KDa的低分子量的蛋白质家族,它们可以协调细胞内脂质反应,与细胞的代谢和炎症的途径密切相关。FABPs具有组织特异性,在肾脏的近端小管上皮细胞表达着L-FABP的mRNA,实验表明在受到了如肾小管缺血、毒素、盐敏型高血压等物理和化学的刺激下,L-FABP的表达会上调并且排入尿液中,导致肾脏疾病的发展[27]-[30]。在肾小管损伤的早期,微量白蛋白尿未被检测出时,由于L-FABP的组织学特性,尿液中的L-FABP就已经升高[31]。在最新的研究中发现儿科患者的心脏手术后导致的AKI中,尿L-FABP的排泄在4小时内升高,相比而言血清肌酐在24~48小时内才升高,并且uL-FABP的敏感性与特异性均高[32]。在一项受试者工作特征(ROC)分析中,L-FABP在成人先天性心脏病导致心力衰竭的患者在治疗中进展为AKI中,最大曲线下面积(AUC)为0.769 (p < 0.001),具有良好的预测作用[33]。接受顺铂治疗的过程中通常会导致患者发生AKI,在发生AKI的患者中,尿L-FABP的排泄增加相比于血清肌酐值的升高提前了2天,并且肾功能稳定的患者并未发现尿L-FABP的升高,对于使用顺铂治疗的患者早期监测尿L-FABP能更好地预测AKI的发生[34]

6. TIMP-2 & IGFBP-7

金属蛋白酶抑制剂2 (matrix metalloproteinase inhibitor-2, TIMP-2)分子质量约为24 KDa,胰岛素样生长因子结合蛋白7 (insulin-like growth factor binding protein 7, IGFBP7)分子质量约为29 KDa,其中TIMP-2优先在肾小管的远端小管起源的细胞表达分泌,IGFBP7可以在不同类型肾小管中表达和分泌,但优先在近端小管起源的细胞表达分泌[35] [36]。他们是在肾小管细胞在受到应激或损伤期间所表达的细胞周期阻滞蛋白[37]。TIMP-2可以刺激p27的表达,IGFBP7可以直接增加p53和p21的表达。这些作用可以通过TIMP-2和IGFBP7的受体以自分泌和旁分泌的形式进行。这些p53、p27、p21可以阻断周期依赖性蛋白激酶复合物(CyID-CDK4和CycIE-CDK2)从而导致G1细胞周期停滞,这可能是为了避免细胞分裂可能造成的损伤,直至损伤修复[38]。研究表明,在接受心脏手术后发生AKI的患者中,基于血清肌酐或者少尿来诊断需最少等到术后3天,而[TIMP-2]*[IGFBP7]在术后4小时就有了升高[39]。在预测重大非心脏手术后的AKI中,[TIMP-2]*[IGFBP7]同样有着良好表现[40]。有研究者在近期对儿童肝移植后急性肾损伤和造影剂诱导的儿童急性肾损伤的研究中发现,[TIMP-2]*[IGFBP7]同样有着优于其他生物学标记物的预测能力[41] [42]

7. CCL14

尿C-C基质趋化因子配体14 (urinary c-c motif chemokine ligand 14, CCL14)是小分子趋化因子家族中的一员,最初是被认为在白细胞的趋化作用中起作用。CCL14可以被单核/巨噬细胞系统招募,巨噬细胞的招募和极化是被认为在肾细胞的损伤和持续性肾功能障碍的发展中发挥着重要作用,但是由于CCL14不在大鼠和小鼠中表达,所以它介导持续性严重AKI的机制尚不完全清楚,但是RUBY实验得出趋化因子信号通路和巨噬细胞转用似乎在肾脏的修复和恢复中起重要作用[22]。在近期关于CCL14与急性肾损伤的研究中,CCL14展现出来极好地预测危重症患者持续严重AKI的能力[22] [43] [44]。CCL14的发现和应用,可能对AKI的治疗和护理带来新的方向和思路[45]

8. 小结

由于AKI在临床上的发病率仍然高居不下,早期发现,早期治疗对于患者来说非常重要,传统的生物学标记物并不能早期且准确地诊断AKI,合理探索并且应用AKI的生物学标记物非常必要。目前探索出的各种AKI生物学标记物,各有长处和缺点,对于该如何将各种生物学标记物灵活地应用于各种临床场景,仍然需要进行大量的临床研究。

NOTES

*通讯作者。

参考文献

[1] Bagshaw, S.M. (2008) Short-and Long-Term Survival after Acute Kidney Injury. Nephrology Dialysis Transplantation, 23, 2126-2128.
https://doi.org/10.1093/ndt/gfn300
[2] Kellum, J.A. and Lameire, N. (2013) Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1). Critical Care, 17, Article No. 204.
https://doi.org/10.1186/cc11454
[3] Moledina, D.G. and Parikh, C.R. (2018) Phenotyping of Acute Kidney Injury: Beyond Serum Creatinine. Seminars in Nephrology, 38, 3-11.
https://doi.org/10.1016/j.semnephrol.2017.09.002
[4] Prowle, J.R., Liu, Y., Licari, E., Bagshaw, S.M., Egi, M., Haase, M., et al. (2011) Oliguria as Predictive Biomarker of Acute Kidney Injury in Critically Ill Patients. Critical Care, 15, R172.
https://doi.org/10.1186/cc10318
[5] Soni, S.S., Cruz, D., Bobek, I., Chionh, C.Y., Nalesso, F., Lentini, P., et al. (2009) NGAL: A Biomarker of Acute Kidney Injury and Other Systemic Conditions. International Urology and Nephrology, 42, 141-150.
https://doi.org/10.1007/s11255-009-9608-z
[6] Kjeldsen, L., Cowland, J.B. and Borregaard, N. (2000) Human Neutrophil Gelatinase-Associated Lipocalin and Homologous Proteins in Rat and Mouse. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 1482, 272-283.
https://doi.org/10.1016/s0167-4838(00)00152-7
[7] Wheeler, D.S., Devarajan, P., Ma, Q., Harmon, K., Monaco, M., Cvijanovich, N., et al. (2008) Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Marker of Acute Kidney Injury in Critically Ill Children with Septic Shock. Critical Care Medicine, 36, 1297-1303.
https://doi.org/10.1097/ccm.0b013e318169245a
[8] Shang, W. and Wang, Z. (2017) The Update of NGAL in Acute Kidney Injury. Current Protein & Peptide Science, 18, 1211-1217.
https://doi.org/10.2174/1389203717666160909125004
[9] Elitok, S., Devarajan, P., Bellomo, R., Isermann, B., Haase, M. and Haase-Fielitz, A. (2021) NGAL/Hepcidin-25 Ratio and AKI Subtypes in Patients Following Cardiac Surgery: A Prospective Observational Study. Journal of Nephrology, 35, 597-605.
https://doi.org/10.1007/s40620-021-01063-5
[10] Si Nga, H., Medeiros, P., Menezes, P., Bridi, R., Balbi, A. and Ponce, D. (2015) Sepsis and AKI in Clinical Emergency Room Patients: The Role of Urinary NGAL. BioMed Research International, 2015, Article ID: 413751.
https://doi.org/10.1155/2015/413751
[11] Allegretti, A.S., Solà, E. and Ginès, P. (2020) Clinical Application of Kidney Biomarkers in Cirrhosis. American Journal of Kidney Diseases, 76, 710-719.
https://doi.org/10.1053/j.ajkd.2020.03.016
[12] Allegretti, A.S., Parada, X.V., Endres, P., et al. (2021) Urinary NGAL as a Diagnostic and Prognostic Marker for Acute Kidney Injury in Cirrhosis: A Prospective Study. Clinical and Translational Gastroenterology, 12, e359.
[13] Perrone, R.D., Madias, N.E. and Levey, A.S. (1992) Serum Creatinine as an Index of Renal Function: New Insights into Old Concepts. Clinical Chemistry, 38, 1933-1953.
https://doi.org/10.1093/clinchem/38.10.1933
[14] Villa, P., Jiménez, M., Soriano, M., Manzanares, J. and Casasnovas, P. (2005) Serum Cystatin C Concentration as a Marker of Acute Renal Dysfunction in Critically Ill Patients. Critical Care, 9, R139-R143.
https://doi.org/10.1186/cc3044
[15] Grubb, A. (1992) Diagnostic Value of Analysis of Cystatin C and Protein HC in Biological Fluids. Clinical Nephrology, 38, S20-S27.
[16] Tenstad, O., Roald, A.B., Grubb, A. and Aukland, K. (1996) Renal Handling of Radiolabelled Human Cystatin C in the Rat. Scandinavian Journal of Clinical and Laboratory Investigation, 56, 409-414.
https://doi.org/10.3109/00365519609088795
[17] Kiessling, A., Dietz, J., Reyher, C., Stock, U.A., Beiras-Fernandez, A. and Moritz, A. (2014) Early Postoperative Serum Cystatin C Predicts Severe Acute Kidney Injury Following Cardiac Surgery: A Post-Hoc Analysis of a Randomized Controlled Trial. Journal of Cardiothoracic Surgery, 9, Article No. 10.
https://doi.org/10.1186/1749-8090-9-10
[18] Aumpan, N., Limprukkasem, T., Pornthisarn, B., Vilaichone, R., Chonprasertsuk, S., Bhanthumkomol, P., et al. (2021) Plasma Cystatin C Level Is a Prognostic Marker of Morbidity and Mortality in Hospitalized Decompensated Cirrhotic Patients. The Journal of Medical Investigation, 68, 302-308.
https://doi.org/10.2152/jmi.68.302
[19] Maiwall, R., Kumar, A., Bhardwaj, A., Kumar, G., Bhadoria, A.S. and Sarin, S.K. (2017) Cystatin C Predicts Acute Kidney Injury and Mortality in Cirrhotics: A Prospective Cohort Study. Liver International, 38, 654-664.
https://doi.org/10.1111/liv.13600
[20] Abd El Wahab, A.M., Awadeen, A., Mansour, M.M. and Shemies, R. (2022) The Diagnostic and Prognostic Utility of Serum Cystatin C and Angiopoietin 2 in Patients with Liver Cirrhosis Complicated by Acute Kidney Injury. Therapeutic Apheresis and Dialysis, 27, 419-427.
https://doi.org/10.1111/1744-9987.13936
[21] Vijay, P., Lal, B.B., Sood, V., Khanna, R. and Alam, S. (2021) Cystatin C: Best Biomarker for Acute Kidney Injury and Estimation of Glomerular Filtration Rate in Childhood Cirrhosis. European Journal of Pediatrics, 180, 3287-3295.
https://doi.org/10.1007/s00431-021-04076-1
[22] Yang, L., Brooks, C.R., Xiao, S., Sabbisetti, V., Yeung, M.Y., Hsiao, L., et al. (2015) Kim-1-Mediated Phagocytosis Reduces Acute Injury to the Kidney. Journal of Clinical Investigation, 125, 1620-1636.
https://doi.org/10.1172/jci75417
[23] Bonventre, J.V. (2008) Kidney Injury Molecule‐1 (KIM‐1): A Specific and Sensitive Biomarker of Kidney Injury. Scandinavian Journal of Clinical and Laboratory Investigation, 68, 78-83.
https://doi.org/10.1080/00365510802145059
[24] Xie, Y., Huang, P., Zhang, J., Tian, R., Jin, W., Xie, H., et al. (2021) Biomarkers for the Diagnosis of Sepsis-Associated Acute Kidney Injury: Systematic Review and Meta-analysis. Annals of Palliative Medicine, 10, 4159-4173.
https://doi.org/10.21037/apm-20-1855
[25] Geng, J., Qiu, Y., Qin, Z. and Su, B. (2021) The Value of Kidney Injury Molecule 1 in Predicting Acute Kidney Injury in Adult Patients: A Systematic Review and Bayesian Meta-Analysis. Journal of Translational Medicine, 19, Article No. 105.
https://doi.org/10.1186/s12967-021-02776-8
[26] Pan, H., Yang, S., Chiou, T.T., Shiao, C., Wu, C., Huang, C., et al. (2022) Comparative Accuracy of Biomarkers for the Prediction of Hospital-Acquired Acute Kidney Injury: A Systematic Review and Meta-Analysis. Critical Care, 26, Article No. 349.
https://doi.org/10.1186/s13054-022-04223-6
[27] Sun, T., Qu, S., Huang, T., Ping, Y., Lin, Q., Cao, Y., et al. (2021) Rapid and Sensitive Detection of L‐FABP for Prediction and Diagnosis of Acute Kidney Injury in Critically Ill Patients by Chemiluminescent Immunoassay. Journal of Clinical Laboratory Analysis, 35, e24051.
https://doi.org/10.1002/jcla.24051
[28] Akbal, E., Köklü, S., Koçak, E., Çakal, B., Güneş, F., Başar, Ö., et al. (2013) Liver Fatty Acid-Binding Protein Is a Diagnostic Marker to Detect Liver Injury Due to Chronic Hepatitis C Infection. Archives of Medical Research, 44, 34-38.
https://doi.org/10.1016/j.arcmed.2012.11.007
[29] Ishimitsu, T., Ohta, S., Saito, M., Teranishi, M., Inada, H., Yoshii, M., et al. (2005) Urinary Excretion of Liver Fatty Acid-Binding Protein in Health-Check Participants. Clinical and Experimental Nephrology, 9, 34-39.
https://doi.org/10.1007/s10157-004-0331-x
[30] Kamijo-Ikemori, A., Sugaya, T., Obama, A., Hiroi, J., Miura, H., Watanabe, M., et al. (2006) Liver-Type Fatty Acid-Binding Protein Attenuates Renal Injury Induced by Unilateral Ureteral Obstruction. The American Journal of Pathology, 169, 1107-1117.
https://doi.org/10.2353/ajpath.2006.060131
[31] Nielsen, S.E., Sugaya, T., Hovind, P., Baba, T., Parving, H. and Rossing, P. (2010) Urinary Liver-Type Fatty Acid-Binding Protein Predicts Progression to Nephropathy in Type 1 Diabetic Patients. Diabetes Care, 33, 1320-1324.
https://doi.org/10.2337/dc09-2242
[32] Basharat Khan, M., Naseem, T., Wazir, H.d., Ayyub, A., Bin saad, A. and Irshad, R. (2022) Association of Liver Fatty Acid Binding Protein with Acute Kidney Injury in Paediatric Patients after Cardiac Surgery. Journal of Ayub Medical College Abbottabad, 34, S602-S607.
https://doi.org/10.55519/jamc-03-s1-9023
[33] Wakisaka, Y., Inai, K., Sato, M., Harada, G., Asagai, S. and Shimada, E. (2022) Utility of Urinary Liver-Type Fatty Acid-Binding Protein as a Prognostic Marker in Adult Congenital Heart Patients Hospitalized for Acute Heart Failure. Heart and Vessels, 38, 371-380.
https://doi.org/10.1007/s00380-022-02174-0
[34] Yanishi, M. and Kinoshita, H. (2022) Urinary L-Type Fatty Acid-Binding Protein Is a Predictor of Cisplatin-Induced Acute Kidney Injury. BMC Nephrology, 23, Article No. 125.
https://doi.org/10.1186/s12882-022-02760-4
[35] Fan, W., Ankawi, G., Zhang, J., Digvijay, K., Giavarina, D., Yin, Y., et al. (2019) Current Understanding and Future Directions in the Application of TIMP-2 and IGFBP7 in AKI Clinical Practice. Clinical Chemistry and Laboratory Medicine (CCLM), 57, 567-576.
https://doi.org/10.1515/cclm-2018-0776
[36] Emlet, D.R., Pastor-Soler, N., Marciszyn, A., Wen, X., Gomez, H., Humphries, W.H., et al. (2017) Insulin-Like Growth Factor Binding Protein 7 and Tissue Inhibitor of Metalloproteinases-2: Differential Expression and Secretion in Human Kidney Tubule Cells. American Journal of Physiology-Renal Physiology, 312, F284-F296.
https://doi.org/10.1152/ajprenal.00271.2016
[37] Costelloe, C.M., Amini, B. and Madewell, J.E. (2020) Withdrawn: Risks and Benefits of Gadolinium-Based Contrast Enhanced MRI. Seminars in Ultrasound, CT and MRI, 41, 260-274.
https://doi.org/10.1053/j.sult.2020.03.001
[38] Kashani, K., Al-Khafaji, A., Ardiles, T., et al. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, R25.
[39] Meersch, M., Schmidt, C., Van Aken, H., Martens, S., Rossaint, J., Singbartl, K., et al. (2014) Urinary TIMP-2 and IGFBP7 as Early Biomarkers of Acute Kidney Injury and Renal Recovery Following Cardiac Surgery. PLOS ONE, 9, e93460.
https://doi.org/10.1371/journal.pone.0093460
[40] Gocze, I., Koch, M., Renner, P., Zeman, F., Graf, B.M., Dahlke, M.H., et al. (2015) Urinary Biomarkers TIMP-2 and IGFBP7 Early Predict Acute Kidney Injury after Major Surgery. PLOS ONE, 10, e0120863.
https://doi.org/10.1371/journal.pone.0120863
[41] Sun, Q., Kang, Z., Li, Z. and Xun, M. (2022) Urinary NGAL, IGFBP-7, and TIMP-2: Novel Biomarkers to Predict Contrast Medium-Induced Acute Kidney Injury in Children. Renal Failure, 44, 1202-1207.
https://doi.org/10.1080/0886022x.2022.2075277
[42] Fuhrman, D.Y., Kellum, J.A., Joyce, E.L., Miyashita, Y., Mazariegos, G.V., Ganoza, A., et al. (2019) The Use of Urinary Biomarkers to Predict Acute Kidney Injury in Children after Liver Transplant. Pediatric Transplantation, 24, e13608.
https://doi.org/10.1111/petr.13608
[43] Bagshaw, S.M., Al-Khafaji, A., Artigas, A., Davison, D., Haase, M., Lissauer, M., et al. (2021) External Validation of Urinary C-C Motif Chemokine Ligand 14 (CCL14) for Prediction of Persistent Acute Kidney Injury. Critical Care, 25, Article No. 185.
https://doi.org/10.1186/s13054-021-03618-1
[44] Massoth, C., Küllmar, M., Enders, D., Kellum, J.A., Forni, L.G., Meersch, M., et al. (2023) Comparison of C-C Motif Chemokine Ligand 14 with Other Biomarkers for Adverse Kidney Events after Cardiac Surgery. The Journal of Thoracic and Cardiovascular Surgery, 165, 199-207.e2.
https://doi.org/10.1016/j.jtcvs.2021.03.016
[45] Koyner, J.L., Chawla, L.S., Bihorac, A., Gunnerson, K.J., Schroeder, R., Demirjian, S., et al. (2022) Performance of a Standardized Clinical Assay for Urinary C-C Motif Chemokine Ligand 14 (CCL14) for Persistent Severe Acute Kidney Injury. Kidney360, 3, 1158-1168.
https://doi.org/10.34067/kid.0008002021