[1]
|
Huang, L., He, Q., Wang, R., Wei, X., Xie, G. and Luo, J. (2022) The Developments and Applications of Functional Ultrasound Imaging. Journal of Biomedical Engineering, 39, 1015-1021.
|
[2]
|
Macé, É., Montaldo, G., Trenholm, S., Cowan, C., Brignall, A., Urban, A., et al. (2018) Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration. Neuron, 100, 1241-1251.e7. https://doi.org/10.1016/j.neuron.2018.11.031
|
[3]
|
Tournier, N., Comtat, C., Lebon, V. and Gennisson, J. (2021) Challenges and Perspectives of the Hybridization of PET with Functional MRI or Ultrasound for Neuroimaging. Neuroscience, 474, 80-93. https://doi.org/10.1016/j.neuroscience.2020.10.015
|
[4]
|
Macé, E., Montaldo, G., Cohen, I., Baulac, M., Fink, M. and Tanter, M. (2011) Functional Ultrasound Imaging of the Brain. Nature Methods, 8, 662-664. https://doi.org/10.1038/nmeth.1641
|
[5]
|
Tanter, M. and Fink, M. (2014) Ultrafast imaging in Biomedical Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 102-119. https://doi.org/10.1109/tuffc.2014.2882
|
[6]
|
Ji, X., Ferreira, T., Friedman, B., Liu, R., Liechty, H., Bas, E., et al. (2021) Brain Microvasculature Has a Common Topology with Local Differences in Geometry That Match Metabolic Load. Neuron, 109, 1168-1187.e13. https://doi.org/10.1016/j.neuron.2021.02.006
|
[7]
|
Rungta, R.L., Chaigneau, E., Osmanski, B. and Charpak, S. (2018) Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia. Neuron, 99, 362-375.e4. https://doi.org/10.1016/j.neuron.2018.06.012
|
[8]
|
Hirano, Y., Stefanovic, B. and Silva, A.C. (2011) Spatiotemporal Evolution of the Functional Magnetic Resonance Imaging Response to Ultrashort Stimuli. The Journal of Neuroscience, 31, 1440-1447. https://doi.org/10.1523/jneurosci.3986-10.2011
|
[9]
|
Hillman, E.M.C. (2014) Coupling Mechanism and Significance of the BOLD Signal: A Status Report. Annual Review of Neuroscience, 37, 161-181. https://doi.org/10.1146/annurev-neuro-071013-014111
|
[10]
|
Hage, B.D., Truemper, E.J. and Bashford, G.R. (2021) Functional Transcranial Doppler Ultrasound for Monitoring Cerebral Blood Flow. Journal of Visualized Experiments. https://doi.org/10.3791/62048
|
[11]
|
Mace, E., Montaldo, G., Osmanski, B., Cohen, I., Fink, M. and Tanter, M. (2013) Functional Ultrasound Imaging of the Brain: Theory and Basic Principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 60, 492-506. https://doi.org/10.1109/tuffc.2013.2592
|
[12]
|
Heiles, B., Terwiel, D. and Maresca, D. (2021) The Advent of Biomolecular Ultrasound Imaging. Neuroscience, 474, 122-133. https://doi.org/10.1016/j.neuroscience.2021.03.011
|
[13]
|
Rabut, C., Yoo, S., Hurt, R.C., Jin, Z., Li, H., Guo, H., et al. (2020) Ultrasound Technologies for Imaging and Modulating Neural Activity. Neuron, 108, 93-110. https://doi.org/10.1016/j.neuron.2020.09.003
|
[14]
|
van Raaij, M.E., Lindvere, L., Dorr, A., He, J., Sahota, B., Foster, F.S., et al. (2011) Functional Micro-Ultrasound Imaging of Rodent Cerebral Hemodynamics. NeuroImage, 58, 100-108. https://doi.org/10.1016/j.neuroimage.2011.05.088
|
[15]
|
Ferraioli, G. and Meloni, M.F. (2018) Contrast-Enhanced Ultrasonography of the Liver Using Sonovue. Ultrasonography, 37, 25-35. https://doi.org/10.14366/usg.17037
|
[16]
|
Deffieux, T., Demené, C. and Tanter, M. (2021) Functional Ultrasound Imaging: A New Imaging Modality for Neuroscience. Neuroscience, 474, 110-121. https://doi.org/10.1016/j.neuroscience.2021.03.005
|
[17]
|
Blons, M., Deffieux, T., Osmanski, B., Tanter, M. and Berthon, B. (2023) PerceptFlow: Real-Time Ultrafast Doppler Image Enhancement Using Deep Convolutional Neural Network and Perceptual Loss. Ultrasound in Medicine & Biology, 49, 225-236. https://doi.org/10.1016/j.ultrasmedbio.2022.08.016
|
[18]
|
Baranger, J., Mertens, L. and Villemain, O. (2020) Blood Flow Imaging with Ultrafast Doppler. Journal of Visualized Experiments. https://doi.org/10.3791/61838-v
|
[19]
|
Boido, D., Rungta, R.L., Osmanski, B., Roche, M., Tsurugizawa, T., Le Bihan, D., et al. (2019) Mesoscopic and Microscopic Imaging of Sensory Responses in the Same Animal. Nature Communications, 10, Article No. 1110. https://doi.org/10.1038/s41467-019-09082-4
|
[20]
|
Forster, J., Harriss-Phillips, W., Douglass, M. and Bezak, E. (2017) A Review of the Development of Tumor Vasculature and Its Effects on the Tumor Microenvironment. Hypoxia, 5, 21-32. https://doi.org/10.2147/hp.s133231
|
[21]
|
Soloukey, S., Vincent, A.J.P.E., Satoer, D.D., Mastik, F., Smits, M., Dirven, C.M.F., et al. (2020) Functional Ultrasound (fUS) during Awake Brain Surgery: The Clinical Potential of Intra-Operative Functional and Vascular Brain Mapping. Frontiers in Neuroscience, 13, Article 1384. https://doi.org/10.3389/fnins.2019.01384
|
[22]
|
Imbault, M., Chauvet, D., Gennisson, J., Capelle, L. and Tanter, M. (2017) Intraoperative Functional Ultrasound Imaging of Human Brain Activity. Scientific Reports, 7, Article No. 7304. https://doi.org/10.1038/s41598-017-06474-8
|
[23]
|
Brunner, C., Korostelev, M., Raja, S., Montaldo, G., Urban, A. and Baron, J. (2018) Evidence from Functional Ultrasound Imaging of Enhanced Contralesional Microvascular Response to Somatosensory Stimulation in Acute Middle Cerebral Artery Occlusion/Reperfusion in Rats: A Marker of Ultra-Early Network Reorganization? Journal of Cerebral Blood Flow & Metabolism, 38, 1690-1700. https://doi.org/10.1177/0271678x18786359
|
[24]
|
Hingot, V., Brodin, C., Lebrun, F., Heiles, B., Chagnot, A., Yetim, M., et al. (2020) Early Ultrafast Ultrasound Imaging of Cerebral Perfusion Correlates with Ischemic Stroke Outcomes and Responses to Treatment in Mice. Theranostics, 10, 7480-7491. https://doi.org/10.7150/thno.44233
|
[25]
|
Hwang, M., Tierradentro-García, L.O., Hussaini, S.H., Cajigas-Loyola, S.C., Kaplan, S.L., Otero, H.J., et al. (2021) Ultrasound Imaging of Preterm Brain Injury: Fundamentals and Updates. Pediatric Radiology, 52, 817-836. https://doi.org/10.1007/s00247-021-05191-9
|
[26]
|
Demene, C., Baranger, J., Bernal, M., Delanoe, C., Auvin, S., Biran, V., et al. (2017) Functional Ultrasound Imaging of Brain Activity in Human Newborns. Science Translational Medicine, 9, eaah6756. https://doi.org/10.1126/scitranslmed.aah6756
|
[27]
|
Baranger, J., Demene, C., Frerot, A., Faure, F., Delanoë, C., Serroune, H., et al. (2021) Bedside Functional Monitoring of the Dynamic Brain Connectivity in Human Neonates. Nature Communications, 12, Article No. 1080. https://doi.org/10.1038/s41467-021-21387-x
|
[28]
|
Mairesse, J., Zinni, M., Pansiot, J., Hassan‐Abdi, R., Demene, C., Colella, M., et al. (2018) Oxytocin Receptor Agonist Reduces Perinatal Brain Damage by Targeting Microglia. Glia, 67, 345-359. https://doi.org/10.1002/glia.23546
|
[29]
|
Ferrier, J., Tiran, E., Deffieux, T., Tanter, M. and Lenkei, Z. (2020) Functional Imaging Evidence for Task-Induced Deactivation and Disconnection of a Major Default Mode Network Hub in the Mouse Brain. Proceedings of the National Academy of Sciences, 117, 15270-15280. https://doi.org/10.1073/pnas.1920475117
|
[30]
|
Rahal, L., Thibaut, M., Rivals, I., Claron, J., Lenkei, Z., Sitt, J.D., et al. (2020) Ultrafast Ultrasound Imaging Pattern Analysis Reveals Distinctive Dynamic Brain States and Potent Sub-Network Alterations in Arthritic Animals. Scientific Reports, 10, Article No. 10485. https://doi.org/10.1038/s41598-020-66967-x
|
[31]
|
Rabut, C., Ferrier, J., Bertolo, A., Osmanski, B., Mousset, X., Pezet, S., et al. (2020) Pharmaco-fUS: Quantification of Pharmacologically-Induced Dynamic Changes in Brain Perfusion and Connectivity by Functional Ultrasound Imaging in Awake Mice. NeuroImage, 222, Article 117231. https://doi.org/10.1016/j.neuroimage.2020.117231
|
[32]
|
Vidal, B., Droguerre, M., Venet, L., Zimmer, L., Valdebenito, M., Mouthon, F., et al. (2020) Functional Ultrasound Imaging to Study Brain Dynamics: Application of Pharmaco-fUS to Atomoxetine. Neuropharmacology, 179, Article 108273. https://doi.org/10.1016/j.neuropharm.2020.108273
|
[33]
|
Vidal, B., Droguerre, M., Valdebenito, M., Zimmer, L., Hamon, M., Mouthon, F., et al. (2020) Pharmaco-fUS for Characterizing Drugs for Alzheimer’s Disease—The Case of THN201, a Drug Combination of Donepezil Plus Mefloquine. Frontiers in Neuroscience, 14, Article 835. https://doi.org/10.3389/fnins.2020.00835
|
[34]
|
Vidal, B., Pereira, M., Valdebenito, M., Vidal, L., Mouthon, F., Zimmer, L., et al. (2022) Pharmaco-fUS in Cognitive Impairment: Lessons from a Preclinical Model. Journal of Psychopharmacology, 36, 1273-1279. https://doi.org/10.1177/02698811221128963
|
[35]
|
Norman, S.L., Maresca, D., Christopoulos, V.N., Griggs, W.S., Demene, C., Tanter, M., et al. (2021) Single-Trial Decoding of Movement Intentions Using Functional Ultrasound Neuroimaging. Neuron, 109, 1554-1566.e4. https://doi.org/10.1016/j.neuron.2021.03.003
|
[36]
|
Brunner, C., Grillet, M., Sans-Dublanc, A., Farrow, K., Lambert, T., Macé, E., et al. (2020) A Platform for Brain-Wide Volumetric Functional Ultrasound Imaging and Analysis of Circuit Dynamics in Awake Mice. Neuron, 108, 861-875.e7. https://doi.org/10.1016/j.neuron.2020.09.020
|
[37]
|
Blaize, K., Arcizet, F., Gesnik, M., Ahnine, H., Ferrari, U., Deffieux, T., et al. (2020) Functional Ultrasound Imaging of Deep Visual Cortex in Awake Nonhuman Primates. Proceedings of the National Academy of Sciences, 117, 14453-14463. https://doi.org/10.1073/pnas.1916787117
|
[38]
|
Sans-Dublanc, A., Chrzanowska, A., Reinhard, K., Lemmon, D., Nuttin, B., Lambert, T., et al. (2021) Optogenetic fUSI for Brain-Wide Mapping of Neural Activity Mediating Collicular-Dependent Behaviors. Neuron, 109, 1888-1905.e10. https://doi.org/10.1016/j.neuron.2021.04.008
|
[39]
|
Nayak, R., Lee, J., Chantigian, S., Fatemi, M., Chang, S. and Alizad, A. (2021) Imaging the Response to Deep Brain Stimulation in Rodent Using Functional Ultrasound. Physics in Medicine & Biology, 66, 05LT01. https://doi.org/10.1088/1361-6560/abdee5
|
[40]
|
Réaux-Le-Goazigo, A., Beliard, B., Delay, L., Rahal, L., Claron, J., Renaudin, N., et al. (2022) Ultrasound Localization Microscopy and Functional Ultrasound Imaging Reveal Atypical Features of the Trigeminal Ganglion Vasculature. Communications Biology, 5, Article No. 330. https://doi.org/10.1038/s42003-022-03273-4
|
[41]
|
Hu, W., Zhu, S., Briggs, F. and Doyley, M.M. (2023) Functional Ultrasound Imaging Reveals 3D Structure of Orientation Domains in Ferret Primary Visual Cortex. NeuroImage, 268, Article 119889. https://doi.org/10.1016/j.neuroimage.2023.119889
|
[42]
|
Nunez-Elizalde, A.O., Krumin, M., Reddy, C.B., Montaldo, G., Urban, A., Harris, K.D., et al. (2022) Neural Correlates of Blood Flow Measured by Ultrasound. Neuron, 110, 1631-1640.e4. https://doi.org/10.1016/j.neuron.2022.02.012
|
[43]
|
Edelman, B.J., Ielacqua, G.D., Chan, R.W., Asaad, M., Choy, M. and Lee, J.H. (2021) High-Sensitivity Detection of Optogenetically-Induced Neural Activity with Functional Ultrasound Imaging. NeuroImage, 242, Article 118434. https://doi.org/10.1016/j.neuroimage.2021.118434
|
[44]
|
Qiu, W., Bouakaz, A., Konofagou, E.E. and Zheng, H. (2021) Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 6-20. https://doi.org/10.1109/tuffc.2020.3019932
|
[45]
|
Zheng, Y., Yang, Y., Zhang, Q., Jiang, D., Tu, J., Zhang, D., et al. (2022) Ultrasonic Methods for Brain Imaging: Techniques and Implications. IEEE Transactions on Biomedical Engineering, 69, 3526-3537. https://doi.org/10.1109/tbme.2022.3173035
|