[1]
|
Liu, L.P., Li, Z.X., Zhou, H.Y., et al. (2023) Chinese Stroke Association Guidelines for Clinical Management of Ischaemic Cerebrovascular Diseases: Executive Summary and 2023 Update. Stroke and Vascular Neurology, 8, e3.
|
[2]
|
Jiang, Y., Zhao, Q., Li, A., Wu, Z., Liu, L., Lin, F., et al. (2024) Advanced Machine Learning Models for Predicting Post-Thrombolysis Hemorrhagic Transformation in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis. Clinical and Applied Thrombosis/Hemostasis, 30. https://doi.org/10.1177/10760296241279800
|
[3]
|
李光硕, 赵性泉. 《中国急性缺血性卒中诊治指南2023》解读[J]. 中国卒中杂志, 2024, 19(8): 956-961.
|
[4]
|
刘鸣. 中国急性脑梗死后出血转化诊治共识2019[J].中华神经科杂志, 2019, 52(4): 252-265.
|
[5]
|
Ciacciarelli, A., Tessitore, A., Fiume, G., Currò, C.T., Coglitore, A., Gardin, A., et al. (2023) Factors Associated with Hemorrhagic Transformation after Endovascular Treatment Despite Early Recanalization. Journal of the Neurological Sciences, 453, Article ID: 120778. https://doi.org/10.1016/j.jns.2023.120778
|
[6]
|
Hong, J.M., Kim, D.S. and Kim, M. (2021) Hemorrhagic Transformation after Ischemic Stroke: Mechanisms and Management. Frontiers in Neurology, 12, Article 703258. https://doi.org/10.3389/fneur.2021.703258
|
[7]
|
王亚东. 多模式CT在急性缺血性脑卒中患者静脉溶栓后出血转化中的预测价值研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.
|
[8]
|
National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue Plasminogen Activator for Acute Ischemic Stroke. The New England Journal of Medicine, 333, 1581-1587.
|
[9]
|
Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., et al. (1998) Randomised Double-Blind Placebo-Controlled Trial of Thrombolytic Therapy with Intravenous Alteplase in Acute Ischaemic Stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. The Lancet, 352, 1245-1251. https://doi.org/10.1016/s0140-6736(98)08020-9
|
[10]
|
Wahlgren, N., Ahmed, N., Eriksson, N., Aichner, F., Bluhmki, E., Dávalos, A., et al. (2008) Multivariable Analysis of Outcome Predictors and Adjustment of Main Outcome Results to Baseline Data Profile in Randomized Controlled Trials: Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST). Stroke, 39, 3316-3322. https://doi.org/10.1161/strokeaha.107.510768
|
[11]
|
Larrue, V., von Kummer, R., Müller, A. and Bluhmki, E. (2001) Risk Factors for Severe Hemorrhagic Transformation in Ischemic Stroke Patients Treated with Recombinant Tissue Plasminogen Activator: A Secondary Analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke, 32, 438-441. https://doi.org/10.1161/01.str.32.2.438
|
[12]
|
Neuberger, U., Möhlenbruch, M.A., Herweh, C., Ulfert, C., Bendszus, M. and Pfaff, J. (2017) Classification of Bleeding Events: Comparison of ECASS III (European Cooperative Acute Stroke Study) and the New Heidelberg Bleeding Classification. Stroke, 48, 1983-1985. https://doi.org/10.1161/strokeaha.117.016735
|
[13]
|
Guo, Y., Yang, Y., Zhou, M. and He, L. (2018) Risk Factors of Haemorrhagic Transformation for Acute Ischaemic Stroke in Chinese Patients Receiving Intravenous Recombinant Tissue Plasminogen Activator: A Systematic Review and Meta-Analysis. Stroke and Vascular Neurology, 3, 203-208. https://doi.org/10.1136/svn-2018-000141
|
[14]
|
卜瑶瑶. 急性缺血性脑卒中静脉溶栓后发生出血转化的危险因素研究及预测模型的构建[D]: [硕士学位论文]. 郑州: 河南大学, 2023.
|
[15]
|
Shi, K., Zou, M., Jia, D., Shi, S., Yang, X., Liu, Q., et al. (2021) TPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circulation Research, 128, 62-75. https://doi.org/10.1161/circresaha.120.317596
|
[16]
|
Ma, G., Pan, Z., Kong, L. and Du, G. (2021) Neuroinflammation in Hemorrhagic Transformation after Tissue Plasminogen Activator Thrombolysis: Potential Mechanisms, Targets, Therapeutic Drugs and Biomarkers. International Immunopharmacology, 90, Article ID: 107216. https://doi.org/10.1016/j.intimp.2020.107216
|
[17]
|
Qiu, Y., Zhang, C., Chen, A., Wang, H., Zhou, Y., Li, Y., et al. (2021) Immune Cells in the BBB Disruption after Acute Ischemic Stroke: Targets for Immune Therapy? Frontiers in Immunology, 12, Article 678744. https://doi.org/10.3389/fimmu.2021.678744
|
[18]
|
Devanney, N.A., Stewart, A.N. and Gensel, J.C. (2020) Microglia and Macrophage Metabolism in CNS Injury and Disease: The Role of Immunometabolism in Neurodegeneration and Neurotrauma. Experimental Neurology, 329, Article ID: 113310. https://doi.org/10.1016/j.expneurol.2020.113310
|
[19]
|
Sanmarco, L.M., Polonio, C.M., Wheeler, M.A. and Quintana, F.J. (2021) Functional Immune Cell-Astrocyte Interactions. Journal of Experimental Medicine, 218, e20202715. https://doi.org/10.1084/jem.20202715
|
[20]
|
邓璐璐, 毛建文. 转化生长因子β介导腹膜粘连形成的分子机制研究进展[J]. 医学综述, 2015, 21(5): 786-789.
|
[21]
|
Yeung, Y.T., Aziz, F., Guerrero-Castilla, A. and Arguelles, S. (2018) Signaling Pathways in Inflammation and Anti-Inflammatory Therapies. Current Pharmaceutical Design, 24, 1449-1484. https://doi.org/10.2174/1381612824666180327165604
|
[22]
|
Armstead, W.M., Hekierski, H., Pastor, P., Yarovoi, S., Higazi, A.A. and Cines, D.B. (2018) RETRACTED ARTICLE: Release of IL-6 after Stroke Contributes to Impaired Cerebral Autoregulation and Hippocampal Neuronal Necrosis through NMDA Receptor Activation and Upregulation of ET-1 and JNK. Translational Stroke Research, 10, 104-111. https://doi.org/10.1007/s12975-018-0617-z
|
[23]
|
Sivandzade, F., Prasad, S., Bhalerao, A. and Cucullo, L. (2019) NRF2 and NF-κB Interplay in Cerebrovascular and Neurodegenerative Disorders: Molecular Mechanisms and Possible Therapeutic Approaches. Redox Biology, 21, Article ID: 101059. https://doi.org/10.1016/j.redox.2018.11.017
|
[24]
|
Turner, R.J. and Sharp, F.R. (2016) Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke. Frontiers in Cellular Neuroscience, 10, Article 56. https://doi.org/10.3389/fncel.2016.00056
|
[25]
|
Dusanovic Pjevic, M., Jekic, B., Beslac Bumbasirevic, L., Vojvodic, L., Damnjanovic, T., Grk, M., et al. (2021) TT Genotype of the MMP‐9‐1562C/T Polymorphism May Be a Risk Factor for Thrombolytic Therapy‐Induced Hemorrhagic Complications after Acute Ischemic Stroke. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 41, 562-571. https://doi.org/10.1002/phar.2532
|
[26]
|
Wang, Y., Shen, Y., Yu, X., Gu, J., Zhang, X., Zhou, B., et al. (2021) Role of NADPH Oxidase-Induced Hypoxia-Induced Factor-1α Increase in Blood-Brain Barrier Disruption after 2-Hour Focal Ischemic Stroke in Rat. Neural Plasticity, 2021, Article ID: 9928232. https://doi.org/10.1155/2021/9928232
|
[27]
|
Arkelius, K., Wendt, T.S., Andersson, H., Arnou, A., Gottschalk, M., Gonzales, R.J., et al. (2024) LOX-1 and MMP-9 Inhibition Attenuates the Detrimental Effects of Delayed rt-PA Therapy and Improves Outcomes after Acute Ischemic Stroke. Circulation Research, 134, 954-969. https://doi.org/10.1161/circresaha.123.323371
|
[28]
|
李士尊. 血清镁及基质金属蛋白酶-9与急性脑梗死出血转化的相关性研究[D]: [硕士学位论文]. 芜湖: 皖南医学院, 2020.
|
[29]
|
李斌, 纪茹英, 陆艳卉, 等. 急性脑梗死患者血清中高迁移率族蛋白、脂联素和氧化低密度脂蛋白的表达水平及其与颈动脉粥样硬化的相关性[J]. 临床和实验医学杂志, 2024, 23(14): 1468-1471.
|
[30]
|
Chen, S., Pan, J., Gong, Z., Wu, M., Zhang, X., Chen, H., et al. (2024) Hypochlorous Acid Derived from Microglial Myeloperoxidase Could Mediate High-Mobility Group Box 1 Release from Neurons to Amplify Brain Damage in Cerebral Ischemia-Reperfusion Injury. Journal of Neuroinflammation, 21, Article No. 70. https://doi.org/10.1186/s12974-023-02991-8
|
[31]
|
Li, J., Wang, Z., Li, J., Zhao, H. and Ma, Q. (2024) HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Translational Stroke Research. https://doi.org/10.1007/s12975-024-01258-5
|
[32]
|
Chen, S., Shao, L. and Ma, L. (2021) Cerebral Edema Formation after Stroke: Emphasis on Blood-Brain Barrier and the Lymphatic Drainage System of the Brain. Frontiers in Cellular Neuroscience, 15, Article 716825. https://doi.org/10.3389/fncel.2021.716825
|
[33]
|
Abdullahi, W., Tripathi, D. and Ronaldson, P.T. (2018) Blood-Brain Barrier Dysfunction in Ischemic Stroke: Targeting Tight Junctions and Transporters for Vascular Protection. American Journal of Physiology-Cell Physiology, 315, C343-C356. https://doi.org/10.1152/ajpcell.00095.2018
|
[34]
|
Vazana, U., Veksler, R., Pell, G.S., Prager, O., Fassler, M., Chassidim, Y., et al. (2016) Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. Journal of Neuroscience, 36, 7727-7739. https://doi.org/10.1523/jneurosci.0587-16.2016
|
[35]
|
Pokharel, S., Gliyazova, N., Dandepally, S., Williams, A. and Ibeanu, G. (2021) Neuroprotective Effects of an in Vitro BBB Permeable Phenoxythiophene Sulfonamide Small Molecule in Glutamateinduced Oxidative Injury. Experimental and Therapeutic Medicine, 23, Article No. 79. https://doi.org/10.3892/etm.2021.11002
|
[36]
|
Sun, M., Jin, H., Sun, X., Huang, S., Zhang, F., Guo, Z., et al. (2018) Free Radical Damage in Ischemia‐Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 3804979. https://doi.org/10.1155/2018/3804979
|
[37]
|
Pandit, R., Chen, L. and Götz, J. (2020) The Blood-Brain Barrier: Physiology and Strategies for Drug Delivery. Advanced Drug Delivery Reviews, 165, 1-14. https://doi.org/10.1016/j.addr.2019.11.009
|
[38]
|
Han, L. and Jiang, C. (2021) Evolution of Blood-Brain Barrier in Brain Diseases and Related Systemic Nanoscale Brain-Targeting Drug Delivery Strategies. Acta Pharmaceutica Sinica B, 11, 2306-2325. https://doi.org/10.1016/j.apsb.2020.11.023
|
[39]
|
Bernardo-Castro, S., Sousa, J.A., Brás, A., Cecília, C., Rodrigues, B., Almendra, L., et al. (2020) Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Frontiers in Neurology, 11, Article 594672. https://doi.org/10.3389/fneur.2020.594672
|
[40]
|
Spitzer, D., Guérit, S., Puetz, T., Khel, M.I., Armbrust, M., Dunst, M., et al. (2022) Profiling the Neurovascular Unit Unveils Detrimental Effects of Osteopontin on the Blood-Brain Barrier in Acute Ischemic Stroke. Acta Neuropathologica, 144, 305-337. https://doi.org/10.1007/s00401-022-02452-1
|
[41]
|
Pande, S.D., Win, M.M., Khine, A.A., Zaw, E.M., Manoharraj, N., Lolong, L., et al. (2020) Haemorrhagic Transformation Following Ischaemic Stroke: A Retrospective Study. Scientific Reports, 10, Article No. 5319. https://doi.org/10.1038/s41598-020-62230-5
|
[42]
|
Yaghi, S., Willey, J.Z., Cucchiara, B., 等. 急性缺血性卒中静脉阿替普酶溶栓后出血转化的治疗和结局:美国心脏协会/美国卒中协会科学声明[J]. 中国脑血管病杂志, 2018, 15(7): 386-392.
|