[1]
|
Huang, T., Yu, Z., Yu, Q., Wang, Y., Jiang, Z., Wang, H., et al. (2020) Inhibition of Osteogenic and Adipogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells under Osteoporosis. Biochemical and Biophysical Research Communications, 525, 902-908. https://doi.org/10.1016/j.bbrc.2020.03.035
|
[2]
|
Fardellone, P., Salawati, E., Le Monnier, L. and Goëb, V. (2020) Bone Loss, Osteoporosis, and Fractures in Patients with Rheumatoid Arthritis: A Review. Journal of Clinical Medicine, 9, Article 3361. https://doi.org/10.3390/jcm9103361
|
[3]
|
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022) [J]. 中国全科医学, 2023, 26(14): 1671-1691.
|
[4]
|
Wang, L., Yu, W., Yin, X., Cui, L., Tang, S., Jiang, N., et al. (2021) Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Network Open, 4, e2121106. https://doi.org/10.1001/jamanetworkopen.2021.21106
|
[5]
|
Luo, K., Jiang, G., Zhu, J., Lu, B., Lu, J., Zhang, K., et al. (2020) Poly (Methyl Methacrylate) Bone Cement Composited with Mineralized Collagen for Osteoporotic Vertebral Compression Fractures in Extremely Old Patients. Regenerative Biomaterials, 7, 29-34. https://doi.org/10.1093/rb/rbz045
|
[6]
|
Chen, S., Feng, J., Bao, Q., Li, A., Zhang, B., Shen, Y., et al. (2015) Adverse Effects of Osteocytic Constitutive Activation of β-Catenin on Bone Strength and Bone Growth. Journal of Bone and Mineral Research, 30, 1184-1194. https://doi.org/10.1002/jbmr.2453
|
[7]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6
|
[8]
|
Johnston, C.B. and Dagar, M. (2020) Osteoporosis in Older Adults. Medical Clinics of North America, 104, 873-884. https://doi.org/10.1016/j.mcna.2020.06.004
|
[9]
|
Ferrari, S.L., Abrahamsen, B., Napoli, N., Akesson, K., Chandran, M., Eastell, R., et al. (2018) Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporosis International, 29, 2585-2596. https://doi.org/10.1007/s00198-018-4650-2
|
[10]
|
焦颖华, 包凯然, 宋洁琼, 等. 仙灵骨葆胶囊干预糖尿病模型大鼠的骨代谢[J]. 中国组织工程研究, 2022, 26(32): 5173-5178.
|
[11]
|
Almeida, M., Laurent, M.R., Dubois, V., Claessens, F., O'Brien, C.A., Bouillon, R., et al. (2017) Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 97, 135-187. https://doi.org/10.1152/physrev.00033.2015
|
[12]
|
Huybrechts, Y., Mortier, G., Boudin, E. and Van Hul, W. (2020) WNT Signaling and Bone: Lessons from Skeletal Dysplasias and Disorders. Frontiers in Endocrinology, 11, Article 165. https://doi.org/10.3389/fendo.2020.00165
|
[13]
|
Cui, Y., Hu, X., Zhang, C. and Wang, K. (2021) The Genetic Polymorphisms of Key Genes in WNT Pathway (LRP5 and AXIN1) Was Associated with Osteoporosis Susceptibility in Chinese Han Population. Endocrine, 75, 560-574. https://doi.org/10.1007/s12020-021-02866-z
|
[14]
|
Wang, F., Tarkkonen, K., Nieminen-Pihala, V., Nagano, K., Majidi, R.A., Puolakkainen, T., et al. (2019) Mesenchymal Cell-Derived Juxtacrine Wnt1 Signaling Regulates Osteoblast Activity and Osteoclast Differentiation. Journal of Bone and Mineral Research, 34, 1129-1142. https://doi.org/10.1002/jbmr.3680
|
[15]
|
Bao, Q., Chen, S., Qin, H., Feng, J., Liu, H., Liu, D., et al. (2017) Constitutive β-Catenin Activation in Osteoblasts Impairs Terminal Osteoblast Differentiation and Bone Quality. Experimental Cell Research, 350, 123-131. https://doi.org/10.1016/j.yexcr.2016.11.013
|
[16]
|
Bao, Q., Chen, S., Qin, H., Feng, J., Liu, H., Liu, D., et al. (2017) An Appropriate Wnt/β-Catenin Expression Level during the Remodeling Phase Is Required for Improved Bone Fracture Healing in Mice. Scientific Reports, 7, Article No. 2695. https://doi.org/10.1038/s41598-017-02705-0
|
[17]
|
Appelman-Dijkstra, N.M. and Papapoulos, S.E. (2018) Clinical Advantages and Disadvantages of Anabolic Bone Therapies Targeting the WNT Pathway. Nature Reviews Endocrinology, 14, 605-623. https://doi.org/10.1038/s41574-018-0087-0
|
[18]
|
Biswas, S., Li, P., Wu, H., Shafiquzzaman, M., Murakami, S., Schneider, M.D., et al. (2018) BMPRIA Is Required for Osteogenic Differentiation and RANKL Expression in Adult Bone Marrow Mesenchymal Stromal Cells. Scientific Reports, 8, Article No. 8475. https://doi.org/10.1038/s41598-018-26820-8
|
[19]
|
Ma, S., Wang, D., Ma, C. and Zhang, Y. (2019) MicroRNA‐96 Promotes Osteoblast Differentiation and Bone Formation in Ankylosing Spondylitis Mice through Activating the Wnt Signaling Pathway by Binding to Sost. Journal of Cellular Biochemistry, 120, 15429-15442. https://doi.org/10.1002/jcb.28810
|
[20]
|
Ciubean, A.D., Ungur, R.A., Irsay, L., Ciortea, V.M., Borda, I.M., Dogaru, G.B., et al. (2019) Polymorphisms of FDPS, LRP5, SOST and VKORC1 Genes and Their Relation with Osteoporosis in Postmenopausal Romanian Women. PLOS ONE, 14, e0225776. https://doi.org/10.1371/journal.pone.0225776
|
[21]
|
Zhang, Y., Liu, L., Peymanfar, Y., Anderson, P. and Xian, C.J. (2021) Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. International Journal of Molecular Sciences, 22, Article 7210. https://doi.org/10.3390/ijms22137210
|
[22]
|
Li, K., Chang, Y., Hsu, M., Lo, S., Li, W. and Hu, Y. (2017) Baculovirus-Mediated miR-214 Knockdown Shifts Osteoporotic ASCs Differentiation and Improves Osteoporotic Bone Defects Repair. Scientific Reports, 7, Article No. 16225. https://doi.org/10.1038/s41598-017-16547-3
|
[23]
|
Hou, Z., Wang, Z., Tao, Y., Bai, J., Yu, B., Shen, J., et al. (2019) KLF2 Regulates Osteoblast Differentiation by Targeting of Runx2. Laboratory Investigation, 99, 271-280. https://doi.org/10.1038/s41374-018-0149-x
|
[24]
|
Takada, I., Kouzmenko, A.P. and Kato, S. (2010) PPAR-γ Signaling Crosstalk in Mesenchymal Stem Cells. PPAR Research, 2010, Article 341671. https://doi.org/10.1155/2010/341671
|
[25]
|
Shen, G., Ren, H., Shang, Q., Zhao, W., Zhang, Z., Yu, X., et al. (2020) Foxf1 Knockdown Promotes BMSC Osteogenesis in Part by Activating the Wnt/β-Catenin Signalling Pathway and Prevents Ovariectomy-Induced Bone Loss. EBioMedicine, 52, Article 102626. https://doi.org/10.1016/j.ebiom.2020.102626
|
[26]
|
Glass, D.A. and Karsenty, G. (2007) In Vivo Analysis of Wnt Signaling in Bone. Endocrinology, 148, 2630-2634. https://doi.org/10.1210/en.2006-1372
|
[27]
|
舒晓春, 刘君静, 朱丹华, 等. 不同浓度的骨碎补总黄酮对大鼠骨髓间充质干细胞向成骨细胞分化的影响[J]. 中国病理生理杂志, 2010, 26(7): 1261-1264.
|
[28]
|
张莉丽, 张布衣, 余阳. 骨碎补总黄酮上调骨质疏松症模型大鼠Wnt/LRP-5/β-catenin通路表达的研究[J]. 中国骨质疏松杂志, 2023, 29(6): 807-811.
|
[29]
|
Akamo, A.J., Rotimi, S.O., Akinloye, D.I., Ugbaja, R.N., Adeleye, O.O., Dosumu, O.A., et al. (2021) Naringin Prevents Cyclophosphamide-Induced Hepatotoxicity in Rats by Attenuating Oxidative Stress, Fibrosis, and Inflammation. Food and Chemical Toxicology, 153, Article 112266. https://doi.org/10.1016/j.fct.2021.112266
|
[30]
|
王婷婷, 张健, 张再媛, 等. 柚皮苷抑制大鼠心肌缺血/再灌注损伤诱导的细胞焦亡[J]. 中国病理生理杂志, 2021, 37(6): 1019-1026.
|
[31]
|
Li, Z., Li, Y., Liu, C., Gu, Y. and Han, G. (2024) Research Progress of the Mechanisms and Applications of Ginsenosides in Promoting Bone Formation. Phytomedicine, 129, Article 155604. https://doi.org/10.1016/j.phymed.2024.155604
|
[32]
|
王雷, 李文, 余德涛. 柚皮苷通过Wnt/β-catenin信号通路促进大鼠骨髓间充质干细胞成骨分化[J/OL]. 解剖科学进展: 1-6. http://kns.cnki.net/kcms/detail/21.1347.Q.20240111.1622.045.html, 2024-10-03.
|
[33]
|
徐忠坤, 殷洪梅, 李芳, 等. 淫羊藿总黄酮胶囊中黄酮类成分含量测定及抗骨质疏松活性研究[J]. 中国中药杂志, 2018, 43(15): 3140-3144.
|
[34]
|
李智奎, 孔俊博, 赵王林. 淫羊藿苷调控Wnt/β-catenin信号通路干预大鼠MSCs成脂成骨双向分化实验研究[J]. 中国免疫学杂志, 2019, 35(24): 2985-2990.
|
[35]
|
陈世洲, 毛国庆, 孙玉明, 等. 加味二仙汤治疗阳虚质骨质疏松症临床疗效及机制[J]. 中国实验方剂学杂志, 2020, 26(7): 104-108.
|
[36]
|
闫坤, 张瑞坤, 吴雨伦, 等. 益骨汤治疗老年性骨质疏松症的临床疗效评价[J]. 中国骨质疏松杂志, 2022, 28(5): 675-679.
|
[37]
|
何帮剑, 朱胤晟, 应建伟, 等. 益骨汤含药血清通过经典Wnt信号通路促进成骨细胞增殖分化的研究[J]. 新中医, 2017, 49(3): 10-13.
|
[38]
|
齐雅茜, 宁浩驰, 潘静, 等. 固本增骨颗粒对骨质疏松大鼠模型Wnt/β-catenin信号通路的研究[J]. 中国骨质疏松杂志, 2024, 30(1): 37-43.
|
[39]
|
刘嵬, 王文志, 李志永, 等. 基于Wnt 5a/β-catenin信号通路探讨杜仲健骨方对骨质疏松症大鼠的治疗作用[J]. 辽宁中医杂志, 2024, 51(1): 201-205.
|
[40]
|
王大伟, 郑洪新. 基于Wnt信号通路探讨补肾益气活血中药复方对去卵巢大鼠骨质疏松症的作用机制[J]. 中国骨质疏松杂志, 2019, 25(5): 595-599.
|
[41]
|
于冬冬, 李昊然, 李泽, 等. 香砂六君子汤激活Wnt/β-catenin信号通路促进成骨分化防治PMOP的机制研究[J]. 中国骨质疏松杂志, 2023, 29(6): 786-791.
|
[42]
|
Liu, M.M., Dong, R., Hua, Z., Lv, N.N., Ma, Y., Huang, G.C., et al. (2020) Therapeutic Potential of Liuwei Dihuang Pill against KDM7A and Wnt/β-Catenin Signaling Pathway in Diabetic Nephropathy-Related Osteoporosis. Bioscience Reports, 40, BSR20201778. https://doi.org/10.1042/bsr20201778
|