中药调控Wnt/β-Catenin信号通路治疗骨质疏松症的研究进展
Research Progress on the Modulation of Wnt/β-Catenin Signaling Pathway by Traditional Chinese Medicine in the Treatment of Osteoporosis
DOI: 10.12677/jcpm.2024.34236, PDF, HTML, XML,   
作者: 李丰杉:黑龙江中医药大学第一临床医学院,黑龙江 哈尔滨;高 曦*:黑龙江中医药大学附属第一医院骨四科,黑龙江 哈尔滨
关键词: 中药骨质疏松症Wnt/β-Catenin信号通路Chinese Medicine Osteoporosis Wnt/β-Catenin Signaling Pathway
摘要: 骨质疏松症(Osteoporosis, OP)是一种可引起机体骨密度降低,骨微结构改变,骨强度降低,使机体易于骨折的骨代谢疾病。现代医学曾对OP的致病机理进行过多方面的研究和探索,但至今仍未彻底研究。近年来,Wnt/β-catenin信号通路在骨代谢中的重要性逐渐被认识,它在调节成骨细胞分化和功能以及破骨细胞中扮演着关键角色。由于中药来源广泛、靶点多、副作用小,逐渐成为治疗骨质疏松症的新方向。本文综述近年来中药及其复方通过调控Wnt/β-catenin信号通路治疗骨质疏松症的研究进展,探讨其机理及临床应用前景,为中医药防治OP提供相关依据。
Abstract: Osteoporosis (OP) is a progressive, metabolic bone disease that can cause a decrease in the body's bone mineral density (BMD), change the bone microstructure, affect the bone strength, and make the body prone to fracture. Modern medicine has studied and explored the pathogenesis of OP in various aspects, but it has not been thoroughly investigated so far. In recent years, the importance of Wnt/β-catenin signaling pathway in bone metabolism has been gradually recognized, and it plays a key role in regulating osteoblast differentiation and function as well as osteoclasts. Because of their wide sources, multiple targets, and low side effects, Chinese herbal medicines are gradually becoming a new direction in the treatment of osteoporosis. In this paper, we review the research progress in recent years on the treatment of osteoporosis by Chinese medicines and their combinations through regulating the Wnt/β-catenin signaling pathway, and discuss the mechanism and clinical application prospect, so as to provide relevant basis for the prevention and treatment of OP by Chinese medicines.
文章引用:李丰杉, 高曦. 中药调控Wnt/β-Catenin信号通路治疗骨质疏松症的研究进展[J]. 临床个性化医学, 2024, 3(4): 1645-1650. https://doi.org/10.12677/jcpm.2024.34236

1. 引言

骨质疏松症(Osteoporosis, OP)是一种进行性、代谢性骨病,可导致机体骨密度(BMD)降低,骨微结构改变,骨强度降低,使机体在易骨折的同时易并发其他疾病,易发生于妇女及绝经后的老年男性[1] [2],其发病机理是多因素的。然而,骨量丢失的主要生物学机制是骨形成和骨吸收的平衡被打破[3]。流行病学研究表明,我国40岁以上人群骨质疏松症(OP)患病率达25.6%,而65岁以上人群患病率高达32.0% [4]。在人口老龄化问题日益突出、骨质疏松问题日益严重的当下,我国中老年人的健康面临着严峻的威胁[5]。近年来,Wnt/β-catenin通路被发现可促进成骨细胞的增殖、分化和功能活性,对骨骼发育和骨组织稳态维持起着关键作用[6] [7]。OP的传统治疗手段如双膦酸盐、维生素D、钙剂、雌激素和甲状旁腺激素等[8] [9],其中双膦酸盐类药物,如阿仑膦酸钠长期使用可引起胃肠道反应、癌症风险增加、关节或肌肉酸痛等不良反应[10],雌激素长期应用亦可增加罹患乳腺癌、冠心病等疾病的风险[11]。与之相比,Wnt/β-catenin通道作为骨代谢的核心调控网络,既能促进成骨细胞的增殖和分化,还可抑制破骨细胞的活性,是治疗OP的新兴策略[12]

2. Wnt/β-Catenin信号通路与骨质疏松

健康成人的骨骼需要不断地经历重塑的过程,这需要破骨细胞的骨吸收与成骨细胞的骨形成之间保持动态平衡。在一项针对中国人群的研究中发现,Wnt通路关键基因的遗传多态性与中国人群骨质疏松易感性有关,而Wnt/β-catenin信号通路表达异常也可诱发骨质疏松[13]。Wnt1、Wnt3A、Wnt4、Wnt5a/b、Wnt7a/b、Wnt9a、Wnt10a/b、Wnt16蛋白在人体已识别的19种Wnt蛋白中,可通过调控成骨细胞中的经典和非经典Wnt信号通路,维持出生后的骨稳态[14]。Wnt/β-catenin信号通路,又称Wnt经典信号通路,已被广泛证明与骨发育和骨量的维持密切相关[15] [16]。该通道通过细胞表面LRP5/6和FZD共受体与成骨细胞分泌的Wnt配体结合来激活信号传导,调节细胞内β-catenin的稳定性并使其积累[17],从而促进与成骨细胞分化相关的基因表达,如:ALP,OSX等[18] [19],进而促进骨的形成,在骨发育和骨重建中起着重要的作用[20]。骨与脂肪之间的生成不平衡也被认为在骨质疏松的发生和进展过程中扮演着重要角色[21]。非OP人群中,骨髓间充质干细胞(BMSCs)可以被招募到特定的部位分化成维持骨量的成骨细胞,但在年龄较大的OP患者中,这种分化受Wnt信号通路的影响,使BMSCs更易分化为脂肪细胞,从而导致骨量的减少[22]。经典Wnt通路的激活,不仅可以上调BMSCs中与成骨细胞特异性转录因子Osterix和成骨相关的基因Runx2的表达,还能抑制BMSCs向脂肪细胞分化,展现出促成骨和抗成脂的双重活性[23] [24],这种调控机制对维持骨量、促进成骨分化以及骨代谢的平衡至关重要[25]。这说明,经典Wnt通路在成骨过程中起着重要的调节作用,它的功能紊乱可引起骨代谢障碍,从而促使OP的发生和发展[26]

3. 中药对Wnt/β-Catenin信号通路的调控

中药凭借其来源广泛、作用靶点多样、副作用较小等优势,已逐渐成为现代医学研究的热点,吸引了越来越多科学家的关注。尤其在骨质疏松等骨骼相关疾病的防治中,中医药展现出了独特的疗效。中医认为,骨的健康与肾的功能密切联系,骨质疏松在中医治疗中常遵循“肾主骨”的观念,这种“以肾为主”的独特见解,带来了治疗骨质疏松症的全新理念与方略。

骨碎补以骨碎补总黄酮为关键活性成分[27],是临床上常见的治疗骨质疏松症、有助固肾强骨的中药材。张莉丽[28]等曾通过动物试验,研究了骨碎补总黄酮对Wnt/β-catenin信号路径基因表达的作用,研究发现Wnt3α、LRP-5和β-catenin的基因表达在骨质疏松症模型大鼠中有明显的下降,而骨碎补总黄酮干预能显著提高Wnt1、LRP5及β-catenin蛋白表达,提示其可能通过调节Wnt/β-catenin通路,增强通路关键蛋白表达,从而发挥抗骨质疏松作用。骨碎补的另一成分葡萄柚皮苷也能促进成骨细胞的增殖和分化[29] [30]。有学者研究发现,人参皂苷单体可调节Wnt/β-catenin信号通路,改善骨形成的微环境,刺激成骨细胞的生成和分化,从而起到治疗作用[31]。王雷[32]等人在细胞试验中观察到不同浓度的柚皮苷能激活Wnt/β-catenin信号途径,促进骨髓间充质干细胞的增殖及其成骨分化。淫羊藿是一味补肾壮骨的中药,有关研究表明,淫羊藿黄酮单体或总黄酮都具有抗骨质疏松症的功效[33]。李智奎[34]等人在研究不同浓度的淫羊藿苷对MSCs成骨和成脂双向分化的影响时发现淫羊藿苷在浓度为10 ng/ml时对MSCs的脂肪生成和分化有抑制作用,对骨骼分化有促进作用,浓度为40 ng/ml时则抑制了成骨分化,促进了成脂分化。淫羊藿苷可通过激活Wnt/β-catenin信号通路,抑制GSK-3β表达,提高其活化蛋白Wnt7和β-catenin的表达[34]

4. 中药复方对Wnt/β-Catenin信号通路的调控

骨质疏松症可以归属于中医“骨痿”、“骨枯”、“骨痹”范畴。近年来,越来越多的研究表明,中药复方在防治OP的过程中显示出较好的临床疗效。陈世洲[35]等使用加味二仙汤治疗阳虚体质OP患者6周后发现治疗组肢体活动状况评分,L1~L4及股骨颈骨密度,血清钙、磷水平高于对照组(P < 0.05),证实其可以通过提高骨密度值、改善骨的代谢等途径对OP起到治疗作用。闫坤等发现益骨汤可有效改善老年性骨质疏松症患者的VAS评分、骨密度、骨代谢指标[36],其机制可能与益骨汤激活Wnt/β-catenin及BMP信号通路,促进成骨有关[37]。因此,开展中药复方调控Wnt/β-catenin信号通路,治疗OP的研究是近年来的中医药研究热点。

齐雅茜[38]等使用不同浓度的固本增骨颗粒药液对OP模型大鼠连续灌胃90天后,取出大鼠股骨,经HE染色、切片免疫组化染色、RT-PCR检测、WB检测后分析数据发现固本增骨颗粒可通过调节Wnt/β-catenin信号通路,下调GSK-3β基因的表达减少骨吸收的发生,上调Wnt7b和TCF3的表达来促进骨的形成。杜仲健骨方[39]可调节Wnt5a/β-catenin信号通路,使该通路的蛋白质和mRNA表达水平明显提高,骨质疏松大鼠的骨密度增加,股骨生物力学参数水平提高,皮质骨面积百分比增加,平均骨小梁厚度、面积、体积均增加。王大伟[40]等用补肾益气活血方对骨质疏松模型大鼠灌胃12周后,使用双能X线检测骨密度,通过ELISA方法检测血清碱性磷酸酶、抗酒石酸酸性磷酸酶和Wnt3a蛋白在骨和肾组织中的表达,发现骨质疏松症与Wnt3a蛋白表达减少有关,补肾益气活血方通过调节Wnt3a/β-catenin通路,促进成骨,抑制骨细胞破坏,从而有效防治骨质疏松。香砂六君子汤[41]可促进骨的形成,改善骨结构,提高骨密度,调节骨代谢,恢复骨质疏松大鼠股骨的骨小梁连续性和稳定性,可能与激活经典Wnt信号通路,改善成骨相关的基因Runx2表达有关。六味地黄丸[42]通过调控Wnt/β-catenin通路,下调KDM7A的表达改善DOP大鼠模型的骨密度。以上研究表明,中药复方能够通过调控Wnt/β-catenin信号通路,改善骨的代谢,促进骨形成并抑制骨破坏,从而发挥抗骨质疏松的作用。这些研究还为中药治疗OP的分子机制探索提供了基础。

5. 总结与展望

中药及其复方调控Wnt/β-catenin信号通路在OP防治中表现出良好的前景,不但能通过单体成分调控Wnt/β-catenin信号通路达到治疗作用,还可借助多靶点、多途径的协同效应,发挥更为复杂和全面的调控效果。尽管目前的研究成果令人鼓舞,但仍需更多的临床试验与基础研究,以阐明其具体机制和临床应用价值。此外,中医疗法还能与现代西药疗法相结合,共同作用于Wnt/β-catenin信号通路,提高治疗效果。未来,随着中医药治疗OP机制研究的深入,其应用潜力将进一步拓展,为OP的防治提供更加安全、高效的治疗策略。

NOTES

*通讯作者。

参考文献

[1] Huang, T., Yu, Z., Yu, Q., Wang, Y., Jiang, Z., Wang, H., et al. (2020) Inhibition of Osteogenic and Adipogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells under Osteoporosis. Biochemical and Biophysical Research Communications, 525, 902-908.
https://doi.org/10.1016/j.bbrc.2020.03.035
[2] Fardellone, P., Salawati, E., Le Monnier, L. and Goëb, V. (2020) Bone Loss, Osteoporosis, and Fractures in Patients with Rheumatoid Arthritis: A Review. Journal of Clinical Medicine, 9, Article 3361.
https://doi.org/10.3390/jcm9103361
[3] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022) [J]. 中国全科医学, 2023, 26(14): 1671-1691.
[4] Wang, L., Yu, W., Yin, X., Cui, L., Tang, S., Jiang, N., et al. (2021) Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Network Open, 4, e2121106.
https://doi.org/10.1001/jamanetworkopen.2021.21106
[5] Luo, K., Jiang, G., Zhu, J., Lu, B., Lu, J., Zhang, K., et al. (2020) Poly (Methyl Methacrylate) Bone Cement Composited with Mineralized Collagen for Osteoporotic Vertebral Compression Fractures in Extremely Old Patients. Regenerative Biomaterials, 7, 29-34.
https://doi.org/10.1093/rb/rbz045
[6] Chen, S., Feng, J., Bao, Q., Li, A., Zhang, B., Shen, Y., et al. (2015) Adverse Effects of Osteocytic Constitutive Activation of β-Catenin on Bone Strength and Bone Growth. Journal of Bone and Mineral Research, 30, 1184-1194.
https://doi.org/10.1002/jbmr.2453
[7] Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3.
https://doi.org/10.1038/s41392-021-00762-6
[8] Johnston, C.B. and Dagar, M. (2020) Osteoporosis in Older Adults. Medical Clinics of North America, 104, 873-884.
https://doi.org/10.1016/j.mcna.2020.06.004
[9] Ferrari, S.L., Abrahamsen, B., Napoli, N., Akesson, K., Chandran, M., Eastell, R., et al. (2018) Diagnosis and Management of Bone Fragility in Diabetes: An Emerging Challenge. Osteoporosis International, 29, 2585-2596.
https://doi.org/10.1007/s00198-018-4650-2
[10] 焦颖华, 包凯然, 宋洁琼, 等. 仙灵骨葆胶囊干预糖尿病模型大鼠的骨代谢[J]. 中国组织工程研究, 2022, 26(32): 5173-5178.
[11] Almeida, M., Laurent, M.R., Dubois, V., Claessens, F., O'Brien, C.A., Bouillon, R., et al. (2017) Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 97, 135-187.
https://doi.org/10.1152/physrev.00033.2015
[12] Huybrechts, Y., Mortier, G., Boudin, E. and Van Hul, W. (2020) WNT Signaling and Bone: Lessons from Skeletal Dysplasias and Disorders. Frontiers in Endocrinology, 11, Article 165.
https://doi.org/10.3389/fendo.2020.00165
[13] Cui, Y., Hu, X., Zhang, C. and Wang, K. (2021) The Genetic Polymorphisms of Key Genes in WNT Pathway (LRP5 and AXIN1) Was Associated with Osteoporosis Susceptibility in Chinese Han Population. Endocrine, 75, 560-574.
https://doi.org/10.1007/s12020-021-02866-z
[14] Wang, F., Tarkkonen, K., Nieminen-Pihala, V., Nagano, K., Majidi, R.A., Puolakkainen, T., et al. (2019) Mesenchymal Cell-Derived Juxtacrine Wnt1 Signaling Regulates Osteoblast Activity and Osteoclast Differentiation. Journal of Bone and Mineral Research, 34, 1129-1142.
https://doi.org/10.1002/jbmr.3680
[15] Bao, Q., Chen, S., Qin, H., Feng, J., Liu, H., Liu, D., et al. (2017) Constitutive β-Catenin Activation in Osteoblasts Impairs Terminal Osteoblast Differentiation and Bone Quality. Experimental Cell Research, 350, 123-131.
https://doi.org/10.1016/j.yexcr.2016.11.013
[16] Bao, Q., Chen, S., Qin, H., Feng, J., Liu, H., Liu, D., et al. (2017) An Appropriate Wnt/β-Catenin Expression Level during the Remodeling Phase Is Required for Improved Bone Fracture Healing in Mice. Scientific Reports, 7, Article No. 2695.
https://doi.org/10.1038/s41598-017-02705-0
[17] Appelman-Dijkstra, N.M. and Papapoulos, S.E. (2018) Clinical Advantages and Disadvantages of Anabolic Bone Therapies Targeting the WNT Pathway. Nature Reviews Endocrinology, 14, 605-623.
https://doi.org/10.1038/s41574-018-0087-0
[18] Biswas, S., Li, P., Wu, H., Shafiquzzaman, M., Murakami, S., Schneider, M.D., et al. (2018) BMPRIA Is Required for Osteogenic Differentiation and RANKL Expression in Adult Bone Marrow Mesenchymal Stromal Cells. Scientific Reports, 8, Article No. 8475.
https://doi.org/10.1038/s41598-018-26820-8
[19] Ma, S., Wang, D., Ma, C. and Zhang, Y. (2019) MicroRNA‐96 Promotes Osteoblast Differentiation and Bone Formation in Ankylosing Spondylitis Mice through Activating the Wnt Signaling Pathway by Binding to Sost. Journal of Cellular Biochemistry, 120, 15429-15442.
https://doi.org/10.1002/jcb.28810
[20] Ciubean, A.D., Ungur, R.A., Irsay, L., Ciortea, V.M., Borda, I.M., Dogaru, G.B., et al. (2019) Polymorphisms of FDPS, LRP5, SOST and VKORC1 Genes and Their Relation with Osteoporosis in Postmenopausal Romanian Women. PLOS ONE, 14, e0225776.
https://doi.org/10.1371/journal.pone.0225776
[21] Zhang, Y., Liu, L., Peymanfar, Y., Anderson, P. and Xian, C.J. (2021) Roles of MicroRNAs in Osteogenesis or Adipogenesis Differentiation of Bone Marrow Stromal Progenitor Cells. International Journal of Molecular Sciences, 22, Article 7210.
https://doi.org/10.3390/ijms22137210
[22] Li, K., Chang, Y., Hsu, M., Lo, S., Li, W. and Hu, Y. (2017) Baculovirus-Mediated miR-214 Knockdown Shifts Osteoporotic ASCs Differentiation and Improves Osteoporotic Bone Defects Repair. Scientific Reports, 7, Article No. 16225.
https://doi.org/10.1038/s41598-017-16547-3
[23] Hou, Z., Wang, Z., Tao, Y., Bai, J., Yu, B., Shen, J., et al. (2019) KLF2 Regulates Osteoblast Differentiation by Targeting of Runx2. Laboratory Investigation, 99, 271-280.
https://doi.org/10.1038/s41374-018-0149-x
[24] Takada, I., Kouzmenko, A.P. and Kato, S. (2010) PPAR-γ Signaling Crosstalk in Mesenchymal Stem Cells. PPAR Research, 2010, Article 341671.
https://doi.org/10.1155/2010/341671
[25] Shen, G., Ren, H., Shang, Q., Zhao, W., Zhang, Z., Yu, X., et al. (2020) Foxf1 Knockdown Promotes BMSC Osteogenesis in Part by Activating the Wnt/β-Catenin Signalling Pathway and Prevents Ovariectomy-Induced Bone Loss. EBioMedicine, 52, Article 102626.
https://doi.org/10.1016/j.ebiom.2020.102626
[26] Glass, D.A. and Karsenty, G. (2007) In Vivo Analysis of Wnt Signaling in Bone. Endocrinology, 148, 2630-2634.
https://doi.org/10.1210/en.2006-1372
[27] 舒晓春, 刘君静, 朱丹华, 等. 不同浓度的骨碎补总黄酮对大鼠骨髓间充质干细胞向成骨细胞分化的影响[J]. 中国病理生理杂志, 2010, 26(7): 1261-1264.
[28] 张莉丽, 张布衣, 余阳. 骨碎补总黄酮上调骨质疏松症模型大鼠Wnt/LRP-5/β-catenin通路表达的研究[J]. 中国骨质疏松杂志, 2023, 29(6): 807-811.
[29] Akamo, A.J., Rotimi, S.O., Akinloye, D.I., Ugbaja, R.N., Adeleye, O.O., Dosumu, O.A., et al. (2021) Naringin Prevents Cyclophosphamide-Induced Hepatotoxicity in Rats by Attenuating Oxidative Stress, Fibrosis, and Inflammation. Food and Chemical Toxicology, 153, Article 112266.
https://doi.org/10.1016/j.fct.2021.112266
[30] 王婷婷, 张健, 张再媛, 等. 柚皮苷抑制大鼠心肌缺血/再灌注损伤诱导的细胞焦亡[J]. 中国病理生理杂志, 2021, 37(6): 1019-1026.
[31] Li, Z., Li, Y., Liu, C., Gu, Y. and Han, G. (2024) Research Progress of the Mechanisms and Applications of Ginsenosides in Promoting Bone Formation. Phytomedicine, 129, Article 155604.
https://doi.org/10.1016/j.phymed.2024.155604
[32] 王雷, 李文, 余德涛. 柚皮苷通过Wnt/β-catenin信号通路促进大鼠骨髓间充质干细胞成骨分化[J/OL]. 解剖科学进展: 1-6.
http://kns.cnki.net/kcms/detail/21.1347.Q.20240111.1622.045.html, 2024-10-03.
[33] 徐忠坤, 殷洪梅, 李芳, 等. 淫羊藿总黄酮胶囊中黄酮类成分含量测定及抗骨质疏松活性研究[J]. 中国中药杂志, 2018, 43(15): 3140-3144.
[34] 李智奎, 孔俊博, 赵王林. 淫羊藿苷调控Wnt/β-catenin信号通路干预大鼠MSCs成脂成骨双向分化实验研究[J]. 中国免疫学杂志, 2019, 35(24): 2985-2990.
[35] 陈世洲, 毛国庆, 孙玉明, 等. 加味二仙汤治疗阳虚质骨质疏松症临床疗效及机制[J]. 中国实验方剂学杂志, 2020, 26(7): 104-108.
[36] 闫坤, 张瑞坤, 吴雨伦, 等. 益骨汤治疗老年性骨质疏松症的临床疗效评价[J]. 中国骨质疏松杂志, 2022, 28(5): 675-679.
[37] 何帮剑, 朱胤晟, 应建伟, 等. 益骨汤含药血清通过经典Wnt信号通路促进成骨细胞增殖分化的研究[J]. 新中医, 2017, 49(3): 10-13.
[38] 齐雅茜, 宁浩驰, 潘静, 等. 固本增骨颗粒对骨质疏松大鼠模型Wnt/β-catenin信号通路的研究[J]. 中国骨质疏松杂志, 2024, 30(1): 37-43.
[39] 刘嵬, 王文志, 李志永, 等. 基于Wnt 5a/β-catenin信号通路探讨杜仲健骨方对骨质疏松症大鼠的治疗作用[J]. 辽宁中医杂志, 2024, 51(1): 201-205.
[40] 王大伟, 郑洪新. 基于Wnt信号通路探讨补肾益气活血中药复方对去卵巢大鼠骨质疏松症的作用机制[J]. 中国骨质疏松杂志, 2019, 25(5): 595-599.
[41] 于冬冬, 李昊然, 李泽, 等. 香砂六君子汤激活Wnt/β-catenin信号通路促进成骨分化防治PMOP的机制研究[J]. 中国骨质疏松杂志, 2023, 29(6): 786-791.
[42] Liu, M.M., Dong, R., Hua, Z., Lv, N.N., Ma, Y., Huang, G.C., et al. (2020) Therapeutic Potential of Liuwei Dihuang Pill against KDM7A and Wnt/β-Catenin Signaling Pathway in Diabetic Nephropathy-Related Osteoporosis. Bioscience Reports, 40, BSR20201778.
https://doi.org/10.1042/bsr20201778