用于促进骨组织再生的导电生物材料的研究进展
Research Progress on Conductive Biomaterials for Promoting Bone Tissue Regeneration
摘要: 骨缺损问题因创伤、感染、肿瘤和衰老等因素引发,严重影响患者的生活质量。内源性电场作为一种重要的生物物理信号,在维持骨稳态与促进再生方面具有重要作用,因此电刺激(ES)被认为是加速骨愈合的有效外部干预手段。导电生物材料通过产生电信号或在电刺激下调节其理化性质,既可作为细胞附着和结构支撑的支架材料,又能调控细胞行为及组织功能,因而在骨再生领域受到广泛关注。本文概述了骨组织中内源性电场的存在,探讨了导电生物材料(如碳基材料、金属材料和导电聚合物)的特性及其在介导电刺激上的优势,以及导电生物材料在调控骨组织修复中的潜在作用和最新进展,最后总结并讨论了导电生物材料在骨组织工程应用中面临的挑战与未来发展方向。
Abstract: The problem of bone defects is caused by factors such as trauma, infection, tumors, and aging, which seriously affect the quality of life of patients. Endogenous electric fields, as an important biophysical signal, play a crucial role in maintaining bone homeostasis and promoting regeneration. Therefore, electrical stimulation (ES) is considered an effective external intervention to accelerate bone healing. Conductive biomaterials can serve as scaffold materials for cell adhesion and structural support, as well as regulate cell behavior and tissue function, by generating electrical signals or regulating their physicochemical properties under electrical stimulation. Therefore, they have received widespread attention in the field of bone regeneration. This article provides an overview of the existence of endogenous electric fields in bone tissue, explores the characteristics of conductive biomaterials (such as carbon-based materials, metal materials, and conductive polymers) and their advantages in mediating stimuli, as well as the potential role and latest progress of conductive biomaterials in regulating bone tissue repair. Finally, the challenges and future development directions of conductive biomaterials in bone tissue engineering applications are summarized and discussed.
文章引用:曾睿, 戴红卫. 用于促进骨组织再生的导电生物材料的研究进展[J]. 临床医学进展, 2024, 14(12): 375-381. https://doi.org/10.12677/acm.2024.14123091

1. 骨组织中的内源性电场

骨骼作为一种复杂的活体组织,不仅为人体提供机械支撑、结构和灵活性,还在矿物质储存、血液pH调节等生理功能中发挥作用。随着人口老龄化、肥胖率上升以及运动不足等因素的增多,骨疾病的发病率持续增加,包括骨折、骨质疏松、骨感染和肿瘤等,其中因先天性畸形、严重创伤及恶性肿瘤引起的骨缺损尤为显著。对于超过临界大小的骨缺损,其自然愈合困难,恢复周期长且预后较差,严重地影响了患者生活质量,因此需要有效的临床干预。尽管自体移植是治疗严重骨缺损的一项黄金标准,但供体部位的继发损伤和感染风险会增加患者的痛苦[1]

为应对这一问题,骨组织工程(BTE)作为一种替代疗法展现了广阔前景[2]。通过合理设计生物材料支架的结构和组成,补充多种生化和生物物理信号以模拟天然组织微环境,可有效调控细胞行为,从而促进骨缺损修复[3]-[5]

内源性电场是胚胎发育、生理活动、伤口愈合和组织重塑等过程中不可或缺的生理信号,对维持细胞稳态至关重要。作为细胞外基质的生理线索,内源性电场在神经、骨骼、皮肤、肌肉和心脏等组织和器官的再生中展现了应用潜力[6] [7],因而备受组织工程领域关注。

研究表明,骨组织中存在特定的生理电位,在静息与受力状态下有所不同[8];骨损伤时,损伤部位电位下降形成负电位,随后在愈合过程中逐步恢复[9],骨膜样组织的生成有助于局部电生理微环境的快速恢复,但过程较长,大缺损会延缓微环境恢复,从而减慢愈合速度[10]。对于超过临界尺寸的缺损,自愈能力减弱,此时外源性电刺激可协助重建电生理环境并增强局部功能[11],外源性电刺激会影响细胞膜电位、膜受体、离子通道、间隙连接等,可能涉及几种途径:细胞内钙离子和钙信号传导、膜受体改变、三磷酸腺苷(ATP)的合成与消耗、ROS生成、间隙连接的改变、ECM成分的改变等[12]。在此背景下,导电生物材料应运而生,这类材料能够直接或间接地对细胞或组织施加电刺激。

因此,骨损伤部位电微环境的变化为外源性电刺激的应用与对缺损的修复作用提供了理论支持,也为导电生物材料在骨再生治疗方面的应用奠定了基础[13]

2. 导电生物材料

近年来,导电生物材料的研究目前主要集中在以下几个方面:

碳基材料[12],三维石墨、二维石墨烯以及一维碳纳米管,均由碳元素构成,并在同素异形体形式、尺寸、机械性能和表面化学特性上各具特色,因此表现出多样化的性能。特别是石墨烯和碳纳米管,凭借其卓越的机械性能、化学稳定性、高比表面积和优异的导电性能,在组织工程中得到了广泛应用。碳基材料通常作为增强剂,提升聚合物基质的机械强度和导电性[14]

钛、镁和不锈钢等传统金属材料凭借其高机械强度、抗疲劳能力和导电特性,已被广泛应用于骨修复植入物[15]

近些年,微纳米结构金属材料的发展带来了新选择,例如金纳米材料(AuNMs) [16],这些材料具有良好的生物相容性,且通过调整其浓度可以有效改善组织工程支架的导电性和刚度[17]。并且具备高表面积和可表面改性优势,便于载药。除Au纳米结构外,其他金属或金属氧化物(如Ag、Zn、Ti、Mg、Cu的纳米结构)也广泛应用于骨再生方面[18]

相比于碳基材料和金属材料,导电聚合物不仅具备导电性,还具有常规聚合物所具备的低刚度和柔韧性,其电导率通常位于107至103 S/cm范围内。这种导电性能来源于聚合物基质内的共轭双键。常见的生物医学导电聚合物包括聚噻吩(PTh)、聚苯胺(PANi)、聚吡咯(PPy)和聚(3,4-乙烯二氧噻吩) (PEDOT)等。导电聚合物的电导率和功能特性会受到其尺寸、官能团种类及电荷掺杂剂分布的显著影响。

此外,在现有的二维纳米材料中,蓬勃发展的过渡金属碳化物、氮化物或碳氮化物(MXenes)系列因其金属导电性、溶液加工性、高纵横比和广泛可调特性的独特组合而脱颖而出[19]

复合导电生物材料可通过融合多种材料的优势调节电导率以适应目标组织,并调整材料的刚度以模仿特定组织或器官的细胞外基质(ECM)特性[20]

尽管导电生物材料正在不断发展,但其生物相容性和导电微环境仍面临挑战。无机导电添加剂(如CNT、rGO和AuNM)在低浓度下即表现出优异导电性,但其在聚合物基质中的分散性差,降低了材料的均匀性并限制了大规模生产。此外,无机添加剂与聚合物基质间的机械性能差异会影响复合材料的柔韧性,从而影响其导电性。

理想的导电生物材料应具备良好生物相容性[21],同时确保长期生物安全性和良好生物分布。据报道,碳基材料的毒性与其尺寸、浓度和表面氧含量有关[22]。体内实验显示,碳纳米管可通过活性氧(ROS)诱导炎症、肉芽肿及纤维化,导致肺功能受损[23]。碳基材料可能在多个器官中积累,并对神经系统和循环系统产生影响[24];也有研究表明部分碳基材料可通过肾脏迅速排出体外[25]

对于金属植入物,尽管研究表明释放的金属离子可能有助于骨形成[26],但其潜在毒性依然是一个关键问题。金属离子可能生成过氧化氢自由基,从而引发细胞毒性。金纳米结构具有较高的化学稳定性和良好的生物相容性,但因缺乏生物降解性,其在体内的长期代谢情况仍需进一步评估。

导电聚合物的生物毒性则主要源于合成过程中的低分子量杂质和降解产物,可能引发氧化应激,影响细胞线粒体膜电位(MMP) [27]

因此,仍需深入研究导电生物材料在不同给药途径中的生物相容性、细胞毒性和生物代谢,以确保其生物安全性。

总之,导电生物材料在骨再生领域展现出良好应用前景。其不仅能响应骨修复过程中的生物电信号,还具备生物降解性、高机械强度和良好的骨整合性,为材料制备和生物学应用提供了广阔的研究空间。

3. 基于导电生物材料的电刺激

传统上,外源性电刺激直接应用于细胞培养基或特定组织,但其存在选择性和空间分辨率不足的问题,并且施加的电压在培养基或周边组织中会逐渐衰减,导致对目标细胞或组织的效果降低[28]。导电生物材料的微/纳米结构能够在生理需求下提供额外电刺激,同时作为细胞贴附的支架,减少了电压因介质造成的损耗[29],在形态、化学特性和机械性能上合理设计的导电材料,可协同作用以调节细胞的附着、增殖和分化。因此,基于导电生物材料的电刺激成为操控细胞行为的有效选择。

电电刺激既可以通过直流(DC)电流,也可以通过交流(AC)电流传递至细胞或组织。研究显示,强直流电场(10~15 V/cm)和弱直流电场(≤5 V/cm)均可触发细胞内钙浓度的增加,促进细胞的伸展和成骨细胞样细胞的迁移[30]。交流电刺激同样能够显著增强成骨分化[31]。虽然大多数研究中采用的是固定电压或电场,但电流的大小同样关键,超出阈值的电流可能引起细胞死亡[32]

电刺激在体外和体内的实验中均已证明对调控细胞活性具有重要作用,但 电诱导的生化反应机制尚不完全清楚[28]。有研究指出,外部电刺激信号会转化为生化信号,细胞通过内部信号级联机制进行响应,对细胞行为的调节(如谱系定型)起到关键作用,丝裂原活化蛋白激酶(Mitogen activated protein kinase, MAPK)级联反应的激活是一种主要的信号传导途径,可在外部刺激下调控特异性mRNA的转录,进而可激活细胞外信号调节激酶ERK1,2和5、JNK和p38MAPK,这些激酶进一步干预重要的细胞行为,例如增殖、分化、凋亡[33]

4. 骨组织再生应用

在生物材料的设计中,除了材料的形态和力学性能需与组织微环境相匹配外,模拟组织的电生理环境也至关重要。例如在骨组织中,骨缺损壁的内源性生物电位范围在−52至−87 mV [34]。对于组织再生而言,了解自然组织修复中的有利变化、构建与微环境相匹配的仿生结构以及提供适宜的生化和生理信号,对于实现长期的组织再生至关重要。

在骨再生中,电信号被认为是促进干细胞骨分化、骨细胞增殖的重要信号[35]。因此,导电性骨移植物在促进骨再生方面表现出较大的应用潜力,生物可降解性、高机械强度以及良好的骨整合性对骨移植材料尤为重要[36]

研究表明,含石墨烯的微/纳米结构支架,包括薄膜、三维泡沫和水凝胶,都是能够明显促进成骨分化以及骨形成的。尤其是石墨烯与磷酸钙(如HAp和β-磷酸三钙)的复合物,结合了石墨烯的良好导电性和磷酸钙的骨传导性[37]

然而,碳纳米管在骨再生中的应用结果存在争议。在一项研究中表明,碳纳米管在体内能够促进间充质干细胞的成骨分化和骨形成[38]。但另有研究表明,羧基化碳纳米管对人间充质干细胞的脂肪生成、成骨和软骨生成没有显著影响[39],但也有研究显示其抑制了小鼠MSCs的增殖、成骨和成脂分化[40]。推测这些差异可能与碳纳米管的大小、浓度、表面氧含量及干细胞来源的不同有关。

导电聚合物因其对电信号的敏感性,在骨再生领域展现出巨大的潜力[41]。多项研究表明,导电聚合物(如多孔PEDOT、PEDOT/PCL和PANi/PLA纳米纤维支架)在外部电刺激条件下能够诱导干细胞的成骨分化,促进骨的形成即骨再生,但术后1至2周内的高ROS水平可能导致炎症反应[42],不仅对细胞有害,还可能抑制成骨。因此,导电聚合物在早期炎症过程中控制和清除ROS的能力,有助于促进骨再生。

5. 总结与展望

导电生物材料及其在再生医学中的应用已展现出广阔前景。通过模拟内源性电场并提供外源性电刺激,这类材料能够调控细胞行为,促进成骨细胞增殖和干细胞分化,为骨组织再生提供了全新的途径。当前的研究不仅揭示了碳基材料、金属材料和导电聚合物的潜在应用,还提出了将这些材料与微/纳米结构支架相结合,以优化电信号传递的策略。

尽管如此,导电生物材料在骨再生中的实际应用仍面临诸多挑战。一方面,如何根据组织微环境的复杂性设计智能生物材料,使其能在不依赖外部刺激的情况下响应内源性生理信号并调整自身性能,仍需进一步探索;另一方面,导电材料的生物相容性、长期生物安全性及降解产物的代谢路径对临床应用至关重要。

未来的研究方向应侧重于以下几个方面:首先,探索基于组织修复过程中不同阶段的电信号动态变化,开发能够响应这些变化的仿生导电材料。其次,进一步明确细胞/组织与导电材料之间的相互作用机制,从分子和遗传水平深入揭示电活性生物材料对细胞行为的调控机制。最后,为了实现更好的骨整合和组织修复效果,亟需开发具有高效ROS清除能力的材料,以减轻炎症反应对再生过程的负面影响。

总之,导电生物材料在骨组织工程中展现出巨大的应用潜力,其在骨再生中的作用机制将随着生物材料、组织工程和电生理学的不断发展而逐步揭示。

NOTES

*通讯作者。

参考文献

[1] Zhang, X., Koo, S., Kim, J.H., Huang, X., Kong, N., Zhang, L., et al. (2021) Nanoscale Materials-Based Platforms for the Treatment of Bone-Related Diseases. Matter, 4, 2727-2764.
https://doi.org/10.1016/j.matt.2021.05.019
[2] Koons, G.L., Diba, M. and Mikos, A.G. (2020) Materials Design for Bone-Tissue Engineering. Nature Reviews Materials, 5, 584-603.
https://doi.org/10.1038/s41578-020-0204-2
[3] Moroni, L., Burdick, J.A., Highley, C., Lee, S.J., Morimoto, Y., Takeuchi, S., et al. (2018) Biofabrication Strategies for 3D in vitro Models and Regenerative Medicine. Nature Reviews Materials, 3, 21-37.
https://doi.org/10.1038/s41578-018-0006-y
[4] Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., et al. (2017) Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 117, 12764-12850.
https://doi.org/10.1021/acs.chemrev.7b00094
[5] Li, Y., Xiao, Y. and Liu, C. (2017) The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 117, 4376-4421.
https://doi.org/10.1021/acs.chemrev.6b00654
[6] Katz, B. and Miledi, R. (1965) Release of Acetylcholine from a Nerve Terminal by Electric Pulses of Variable Strength and Duration. Nature, 207, 1097-1098.
https://doi.org/10.1038/2071097a0
[7] Kang, Y.G., Wei, J., Shin, J.W., Wu, Y.R., Su, J., Park, Y.S., et al. (2018) Enhanced Biocompatibility and Osteogenic Potential of Mesoporous Magnesium Silicate/Polycaprolactone/Wheat Protein Composite Scaffolds. International Journal of Nanomedicine, 13, 1107-1117.
https://doi.org/10.2147/ijn.s157921
[8] Minary-Jolandan, M. and Yu, M. (2009) Uncovering Nanoscale Electromechanical Heterogeneity in the Subfibrillar Structure of Collagen Fibrils Responsible for the Piezoelectricity of Bone. ACS Nano, 3, 1859-1863.
https://doi.org/10.1021/nn900472n
[9] Kong, L. and Chen, W. (2013) Carbon Nanotube and Graphene‐Based Bioinspired Electrochemical Actuators. Advanced Materials, 26, 1025-1043.
https://doi.org/10.1002/adma.201303432
[10] Thrivikraman, G., Lee, P.S., Hess, R., Haenchen, V., Basu, B. and Scharnweber, D. (2015) Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in vitro. ACS Applied Materials & Interfaces, 7, 23015-23028.
https://doi.org/10.1021/acsami.5b06390
[11] Nauth, A., Schemitsch, E., Norris, B., Nollin, Z. and Watson, J.T. (2018) Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? Journal of Orthopaedic Trauma, 32, S7-S11.
https://doi.org/10.1097/bot.0000000000001115
[12] Liu, Z., Wan, X., Wang, Z.L. and Li, L. (2021) Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 33, Article 2007429.
https://doi.org/10.1002/adma.202007429
[13] Marino, A.A., Becker, R.O. and Soderholm, S.C. (1971) Origin of the Piezoelectric Effect in Bone. Calcified Tissue Research, 8, 177-180.
https://doi.org/10.1007/bf02010135
[14] Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018) Composites with Carbon Nanotubes and Graphene: An Outlook. Science, 362, 547-553.
https://doi.org/10.1126/science.aat7439
[15] Dutta, R.C., Dey, M., Dutta, A.K. and Basu, B. (2017) Competent Processing Techniques for Scaffolds in Tissue Engineering. Biotechnology Advances, 35, 240-250.
https://doi.org/10.1016/j.biotechadv.2017.01.001
[16] Chen, J., Fan, T., Xie, Z., Zeng, Q., Xue, P., Zheng, T., et al. (2020) Advances in Nanomaterials for Photodynamic Therapy Applications: Status and Challenges. Biomaterials, 237, Article 119827.
https://doi.org/10.1016/j.biomaterials.2020.119827
[17] Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H. and Aghdami, N. (2016) Electrically Conductive Gold Nanoparticle-Chitosan Thermosensitive Hydrogels for Cardiac Tissue Engineering. Materials Science and Engineering: C, 63, 131-141.
https://doi.org/10.1016/j.msec.2016.02.056
[18] Pan, S., Liu, W., Tang, J., Yang, Y., Feng, H., Qian, Z., et al. (2018) Hydrophobicity-Guided Self-Assembled Particles of Silver Nanoclusters with Aggregation-Induced Emission and Their Use in Sensing and Bioimaging. Journal of Materials Chemistry B, 6, 3927-3933.
https://doi.org/10.1039/c8tb00463c
[19] Zhang, Y., Wang, Y., Jiang, Q., El‐Demellawi, J.K., Kim, H. and Alshareef, H.N. (2020) MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 32, Article 1908486.
https://doi.org/10.1002/adma.201908486
[20] Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H., Speicher, D.W., et al. (2008) Embryonic Cardiomyocytes Beat Best on a Matrix with Heart-Like Elasticity: Scar-Like Rigidity Inhibits Beating. Journal of Cell Science, 121, 3794-3802.
https://doi.org/10.1242/jcs.029678
[21] Tang, C., Zhou, J., Qian, Z., Ma, Y., Huang, Y. and Feng, H. (2017) A Universal Fluorometric Assay Strategy for Glycosidases Based on Functional Carbon Quantum Dots: β-Galactosidase Activity Detection in Vitro and in Living Cells. Journal of Materials Chemistry B, 5, 1971-1979.
https://doi.org/10.1039/c6tb03361j
[22] Han, Y., Zhang, F., Zhang, J., Shao, D., Wang, Y., Li, S., et al. (2019) Bioactive Carbon Dots Direct the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces, 179, 1-8.
https://doi.org/10.1016/j.colsurfb.2019.03.035
[23] Lam, C., James, J.T., McCluskey, R., Arepalli, S. and Hunter, R.L. (2006) A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks. Critical Reviews in Toxicology, 36, 189-217.
https://doi.org/10.1080/10408440600570233
[24] Wang, H., Su, W. and Tan, M. (2020) Endogenous Fluorescence Carbon Dots Derived from Food Items. The Innovation, 1, Article 100009.
https://doi.org/10.1016/j.xinn.2020.04.009
[25] Peng, Z., Miyanji, E.H., Zhou, Y., Pardo, J., Hettiarachchi, S.D., Li, S., et al. (2017) Carbon Dots: Promising Biomaterials for Bone-Specific Imaging and Drug Delivery. Nanoscale, 9, 17533-17543.
https://doi.org/10.1039/c7nr05731h
[26] Glenske, K., Donkiewicz, P., Köwitsch, A., Milosevic-Oljaca, N., Rider, P., Rofall, S., et al. (2018) Applications of Metals for Bone Regeneration. International Journal of Molecular Sciences, 19, Article 826.
https://doi.org/10.3390/ijms19030826
[27] Li, Y., Chen, B., Li, X., Zhang, W.K. and Tang, H. (2014) Cytotoxicity of Polyaniline Nanomaterial on Rat Celiac Macrophages in Vitro. PLOS ONE, 9, e107361.
https://doi.org/10.1371/journal.pone.0107361
[28] Murillo, G., Blanquer, A., Vargas‐Estevez, C., Barrios, L., Ibáñez, E., Nogués, C., et al. (2017) Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity. Advanced Materials, 29, Article 1605048.
https://doi.org/10.1002/adma.201605048
[29] Murphy, W.L., McDevitt, T.C. and Engler, A.J. (2014) Materials as Stem Cell Regulators. Nature Materials, 13, 547-557.
https://doi.org/10.1038/nmat3937
[30] Özkucur, N., Monsees, T.K., Perike, S., Do, H.Q. and Funk, R.H.W. (2009) Local Calcium Elevation and Cell Elongation Initiate Guided Motility in Electrically Stimulated Osteoblast-Like Cells. PLOS ONE, 4, e6131.
https://doi.org/10.1371/journal.pone.0006131
[31] Clark, C.C., Wang, W. and Brighton, C.T. (2014) Up‐Regulation of Expression of Selected Genes in Human Bone Cells with Specific Capacitively Coupled Electric Fields. Journal of Orthopaedic Research, 32, 894-903.
https://doi.org/10.1002/jor.22595
[32] Ercan, B. and Webster, T.J. (2010) The Effect of Biphasic Electrical Stimulation on Osteoblast Function at Anodized Nanotubular Titanium Surfaces. Biomaterials, 31, 3684-3693.
https://doi.org/10.1016/j.biomaterials.2010.01.078
[33] Thrivikraman, G., Boda, S.K. and Basu, B. (2018) Unraveling the Mechanistic Effects of Electric Field Stimulation Towards Directing Stem Cell Fate and Function: A Tissue Engineering Perspective. Biomaterials, 150, 60-86.
https://doi.org/10.1016/j.biomaterials.2017.10.003
[34] Liu, Y., Zhang, X., Cao, C., Zhang, Y., Wei, J., Li, Y.J., et al. (2017) Built‐In Electric Fields Dramatically Induce Enhancement of Osseointegration. Advanced Functional Materials, 27, Article 1703771.
https://doi.org/10.1002/adfm.201703771
[35] Creecy, C.M., O’Neill, C.F., Arulanandam, B.P., Sylvia, V.L., Navara, C.S. and Bizios, R. (2013) Mesenchymal Stem Cell Osteodifferentiation in Response to Alternating Electric Current. Tissue Engineering Part A, 19, 467-474.
https://doi.org/10.1089/ten.tea.2012.0091
[36] Pina, S., Oliveira, J.M. and Reis, R.L. (2015) Natural‐Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 27, 1143-1169.
https://doi.org/10.1002/adma.201403354
[37] Tatavarty, R., Ding, H., Lu, G., Taylor, R.J. and Bi, X. (2014) Synergistic Acceleration in the Osteogenesis of Human Mesenchymal Stem Cells by Graphene Oxide-Calcium Phosphate Nanocomposites. Chemical Communications, 50, 8484-8487.
https://doi.org/10.1039/c4cc02442g
[38] Kumar, A., Nune, K.C. and Misra, R.D.K. (2016) Electric Field-Mediated Growth of Osteoblasts—The Significant Impact of Dynamic Flow of Medium. Biomaterials Science, 4, 136-144.
https://doi.org/10.1039/c5bm00350d
[39] Mooney, E., Dockery, P., Greiser, U., Murphy, M. and Barron, V. (2008) Carbon Nanotubes and Mesenchymal Stem Cells: Biocompatibility, Proliferation and Differentiation. Nano Letters, 8, 2137-2143.
https://doi.org/10.1021/nl073300o
[40] Liu, D., Yi, C., Zhang, D., Zhang, J. and Yang, M. (2010) Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano, 4, 2185-2195.
https://doi.org/10.1021/nn901479w
[41] Chen, J., Ning, C., Zhou, Z., Yu, P., Zhu, Y., Tan, G., et al. (2019) Nanomaterials as Photothermal Therapeutic Agents. Progress in Materials Science, 99, 1-26.
https://doi.org/10.1016/j.pmatsci.2018.07.005
[42] Sun, M., Deng, Z., Shi, F., Zhou, Z., Jiang, C., Xu, Z., et al. (2020) Rebamipide-Loaded Chitosan Nanoparticles Accelerate Prostatic Wound Healing by Inhibiting M1 Macrophage-Mediated Inflammation via the NF-κB Signaling Pathway. Biomaterials Science, 8, 912-925.
https://doi.org/10.1039/c9bm01512d