[1]
|
Zhang, X., Koo, S., Kim, J.H., Huang, X., Kong, N., Zhang, L., et al. (2021) Nanoscale Materials-Based Platforms for the Treatment of Bone-Related Diseases. Matter, 4, 2727-2764. https://doi.org/10.1016/j.matt.2021.05.019
|
[2]
|
Koons, G.L., Diba, M. and Mikos, A.G. (2020) Materials Design for Bone-Tissue Engineering. Nature Reviews Materials, 5, 584-603. https://doi.org/10.1038/s41578-020-0204-2
|
[3]
|
Moroni, L., Burdick, J.A., Highley, C., Lee, S.J., Morimoto, Y., Takeuchi, S., et al. (2018) Biofabrication Strategies for 3D in vitro Models and Regenerative Medicine. Nature Reviews Materials, 3, 21-37. https://doi.org/10.1038/s41578-018-0006-y
|
[4]
|
Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., et al. (2017) Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 117, 12764-12850. https://doi.org/10.1021/acs.chemrev.7b00094
|
[5]
|
Li, Y., Xiao, Y. and Liu, C. (2017) The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 117, 4376-4421. https://doi.org/10.1021/acs.chemrev.6b00654
|
[6]
|
Katz, B. and Miledi, R. (1965) Release of Acetylcholine from a Nerve Terminal by Electric Pulses of Variable Strength and Duration. Nature, 207, 1097-1098. https://doi.org/10.1038/2071097a0
|
[7]
|
Kang, Y.G., Wei, J., Shin, J.W., Wu, Y.R., Su, J., Park, Y.S., et al. (2018) Enhanced Biocompatibility and Osteogenic Potential of Mesoporous Magnesium Silicate/Polycaprolactone/Wheat Protein Composite Scaffolds. International Journal of Nanomedicine, 13, 1107-1117. https://doi.org/10.2147/ijn.s157921
|
[8]
|
Minary-Jolandan, M. and Yu, M. (2009) Uncovering Nanoscale Electromechanical Heterogeneity in the Subfibrillar Structure of Collagen Fibrils Responsible for the Piezoelectricity of Bone. ACS Nano, 3, 1859-1863. https://doi.org/10.1021/nn900472n
|
[9]
|
Kong, L. and Chen, W. (2013) Carbon Nanotube and Graphene‐Based Bioinspired Electrochemical Actuators. Advanced Materials, 26, 1025-1043. https://doi.org/10.1002/adma.201303432
|
[10]
|
Thrivikraman, G., Lee, P.S., Hess, R., Haenchen, V., Basu, B. and Scharnweber, D. (2015) Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in vitro. ACS Applied Materials & Interfaces, 7, 23015-23028. https://doi.org/10.1021/acsami.5b06390
|
[11]
|
Nauth, A., Schemitsch, E., Norris, B., Nollin, Z. and Watson, J.T. (2018) Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? Journal of Orthopaedic Trauma, 32, S7-S11. https://doi.org/10.1097/bot.0000000000001115
|
[12]
|
Liu, Z., Wan, X., Wang, Z.L. and Li, L. (2021) Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 33, Article 2007429. https://doi.org/10.1002/adma.202007429
|
[13]
|
Marino, A.A., Becker, R.O. and Soderholm, S.C. (1971) Origin of the Piezoelectric Effect in Bone. Calcified Tissue Research, 8, 177-180. https://doi.org/10.1007/bf02010135
|
[14]
|
Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018) Composites with Carbon Nanotubes and Graphene: An Outlook. Science, 362, 547-553. https://doi.org/10.1126/science.aat7439
|
[15]
|
Dutta, R.C., Dey, M., Dutta, A.K. and Basu, B. (2017) Competent Processing Techniques for Scaffolds in Tissue Engineering. Biotechnology Advances, 35, 240-250. https://doi.org/10.1016/j.biotechadv.2017.01.001
|
[16]
|
Chen, J., Fan, T., Xie, Z., Zeng, Q., Xue, P., Zheng, T., et al. (2020) Advances in Nanomaterials for Photodynamic Therapy Applications: Status and Challenges. Biomaterials, 237, Article 119827. https://doi.org/10.1016/j.biomaterials.2020.119827
|
[17]
|
Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H. and Aghdami, N. (2016) Electrically Conductive Gold Nanoparticle-Chitosan Thermosensitive Hydrogels for Cardiac Tissue Engineering. Materials Science and Engineering: C, 63, 131-141. https://doi.org/10.1016/j.msec.2016.02.056
|
[18]
|
Pan, S., Liu, W., Tang, J., Yang, Y., Feng, H., Qian, Z., et al. (2018) Hydrophobicity-Guided Self-Assembled Particles of Silver Nanoclusters with Aggregation-Induced Emission and Their Use in Sensing and Bioimaging. Journal of Materials Chemistry B, 6, 3927-3933. https://doi.org/10.1039/c8tb00463c
|
[19]
|
Zhang, Y., Wang, Y., Jiang, Q., El‐Demellawi, J.K., Kim, H. and Alshareef, H.N. (2020) MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 32, Article 1908486. https://doi.org/10.1002/adma.201908486
|
[20]
|
Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H., Speicher, D.W., et al. (2008) Embryonic Cardiomyocytes Beat Best on a Matrix with Heart-Like Elasticity: Scar-Like Rigidity Inhibits Beating. Journal of Cell Science, 121, 3794-3802. https://doi.org/10.1242/jcs.029678
|
[21]
|
Tang, C., Zhou, J., Qian, Z., Ma, Y., Huang, Y. and Feng, H. (2017) A Universal Fluorometric Assay Strategy for Glycosidases Based on Functional Carbon Quantum Dots: β-Galactosidase Activity Detection in Vitro and in Living Cells. Journal of Materials Chemistry B, 5, 1971-1979. https://doi.org/10.1039/c6tb03361j
|
[22]
|
Han, Y., Zhang, F., Zhang, J., Shao, D., Wang, Y., Li, S., et al. (2019) Bioactive Carbon Dots Direct the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Colloids and Surfaces B: Biointerfaces, 179, 1-8. https://doi.org/10.1016/j.colsurfb.2019.03.035
|
[23]
|
Lam, C., James, J.T., McCluskey, R., Arepalli, S. and Hunter, R.L. (2006) A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks. Critical Reviews in Toxicology, 36, 189-217. https://doi.org/10.1080/10408440600570233
|
[24]
|
Wang, H., Su, W. and Tan, M. (2020) Endogenous Fluorescence Carbon Dots Derived from Food Items. The Innovation, 1, Article 100009. https://doi.org/10.1016/j.xinn.2020.04.009
|
[25]
|
Peng, Z., Miyanji, E.H., Zhou, Y., Pardo, J., Hettiarachchi, S.D., Li, S., et al. (2017) Carbon Dots: Promising Biomaterials for Bone-Specific Imaging and Drug Delivery. Nanoscale, 9, 17533-17543. https://doi.org/10.1039/c7nr05731h
|
[26]
|
Glenske, K., Donkiewicz, P., Köwitsch, A., Milosevic-Oljaca, N., Rider, P., Rofall, S., et al. (2018) Applications of Metals for Bone Regeneration. International Journal of Molecular Sciences, 19, Article 826. https://doi.org/10.3390/ijms19030826
|
[27]
|
Li, Y., Chen, B., Li, X., Zhang, W.K. and Tang, H. (2014) Cytotoxicity of Polyaniline Nanomaterial on Rat Celiac Macrophages in Vitro. PLOS ONE, 9, e107361. https://doi.org/10.1371/journal.pone.0107361
|
[28]
|
Murillo, G., Blanquer, A., Vargas‐Estevez, C., Barrios, L., Ibáñez, E., Nogués, C., et al. (2017) Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity. Advanced Materials, 29, Article 1605048. https://doi.org/10.1002/adma.201605048
|
[29]
|
Murphy, W.L., McDevitt, T.C. and Engler, A.J. (2014) Materials as Stem Cell Regulators. Nature Materials, 13, 547-557. https://doi.org/10.1038/nmat3937
|
[30]
|
Özkucur, N., Monsees, T.K., Perike, S., Do, H.Q. and Funk, R.H.W. (2009) Local Calcium Elevation and Cell Elongation Initiate Guided Motility in Electrically Stimulated Osteoblast-Like Cells. PLOS ONE, 4, e6131. https://doi.org/10.1371/journal.pone.0006131
|
[31]
|
Clark, C.C., Wang, W. and Brighton, C.T. (2014) Up‐Regulation of Expression of Selected Genes in Human Bone Cells with Specific Capacitively Coupled Electric Fields. Journal of Orthopaedic Research, 32, 894-903. https://doi.org/10.1002/jor.22595
|
[32]
|
Ercan, B. and Webster, T.J. (2010) The Effect of Biphasic Electrical Stimulation on Osteoblast Function at Anodized Nanotubular Titanium Surfaces. Biomaterials, 31, 3684-3693. https://doi.org/10.1016/j.biomaterials.2010.01.078
|
[33]
|
Thrivikraman, G., Boda, S.K. and Basu, B. (2018) Unraveling the Mechanistic Effects of Electric Field Stimulation Towards Directing Stem Cell Fate and Function: A Tissue Engineering Perspective. Biomaterials, 150, 60-86. https://doi.org/10.1016/j.biomaterials.2017.10.003
|
[34]
|
Liu, Y., Zhang, X., Cao, C., Zhang, Y., Wei, J., Li, Y.J., et al. (2017) Built‐In Electric Fields Dramatically Induce Enhancement of Osseointegration. Advanced Functional Materials, 27, Article 1703771. https://doi.org/10.1002/adfm.201703771
|
[35]
|
Creecy, C.M., O’Neill, C.F., Arulanandam, B.P., Sylvia, V.L., Navara, C.S. and Bizios, R. (2013) Mesenchymal Stem Cell Osteodifferentiation in Response to Alternating Electric Current. Tissue Engineering Part A, 19, 467-474. https://doi.org/10.1089/ten.tea.2012.0091
|
[36]
|
Pina, S., Oliveira, J.M. and Reis, R.L. (2015) Natural‐Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 27, 1143-1169. https://doi.org/10.1002/adma.201403354
|
[37]
|
Tatavarty, R., Ding, H., Lu, G., Taylor, R.J. and Bi, X. (2014) Synergistic Acceleration in the Osteogenesis of Human Mesenchymal Stem Cells by Graphene Oxide-Calcium Phosphate Nanocomposites. Chemical Communications, 50, 8484-8487. https://doi.org/10.1039/c4cc02442g
|
[38]
|
Kumar, A., Nune, K.C. and Misra, R.D.K. (2016) Electric Field-Mediated Growth of Osteoblasts—The Significant Impact of Dynamic Flow of Medium. Biomaterials Science, 4, 136-144. https://doi.org/10.1039/c5bm00350d
|
[39]
|
Mooney, E., Dockery, P., Greiser, U., Murphy, M. and Barron, V. (2008) Carbon Nanotubes and Mesenchymal Stem Cells: Biocompatibility, Proliferation and Differentiation. Nano Letters, 8, 2137-2143. https://doi.org/10.1021/nl073300o
|
[40]
|
Liu, D., Yi, C., Zhang, D., Zhang, J. and Yang, M. (2010) Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano, 4, 2185-2195. https://doi.org/10.1021/nn901479w
|
[41]
|
Chen, J., Ning, C., Zhou, Z., Yu, P., Zhu, Y., Tan, G., et al. (2019) Nanomaterials as Photothermal Therapeutic Agents. Progress in Materials Science, 99, 1-26. https://doi.org/10.1016/j.pmatsci.2018.07.005
|
[42]
|
Sun, M., Deng, Z., Shi, F., Zhou, Z., Jiang, C., Xu, Z., et al. (2020) Rebamipide-Loaded Chitosan Nanoparticles Accelerate Prostatic Wound Healing by Inhibiting M1 Macrophage-Mediated Inflammation via the NF-κB Signaling Pathway. Biomaterials Science, 8, 912-925. https://doi.org/10.1039/c9bm01512d
|