[1]
|
Rao, J., Ye, P., Lu, J., Chen, B., Li, N., Zhang, H., et al. (2022) Prevalence and Related Factors of Hyperuricaemia in Chinese Children and Adolescents: A Pooled Analysis of 11 Population-Based Studies. Annals of Medicine, 54, 1608-1615. https://doi.org/10.1080/07853890.2022.2083670
|
[2]
|
Reunanen, A., Takkunen, H., Knekt, P. and Aromaa, A. (1982) Hyperuricemia as a Risk Factor for Cardiovascular Mortality. Acta Medica Scandinavica, 212, 49-59. https://doi.org/10.1111/j.0954-6820.1982.tb08521.x
|
[3]
|
刘程程, 谢苗荣. 高尿酸血症和降尿酸治疗对慢性病影响的研究进展[J]. 中国全科医学, 2018, 21(5): 501-507.
|
[4]
|
MacIsaac, R.L., Salatzki, J., Higgins, P., Walters, M.R., Padmanabhan, S., Dominiczak, A.F., et al. (2016) Allopurinol and Cardiovascular Outcomes in Adults with Hypertension. Hypertension, 67, 535-540. https://doi.org/10.1161/hypertensionaha.115.06344
|
[5]
|
方宁远, 吕力为, 吕晓希, 等. 中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版) [J]. 中国实用内科杂志, 2023, 43(6): 461-480.
|
[6]
|
罗昭康, 崔晓慧, 张晓燕. 肾脏尿酸转运体的研究进展[J]. 生理科学进展, 2019, 50(3): 231-235.
|
[7]
|
张玄娥, 曲伸. 高尿酸血症的现代进化与多重性作用: 8 [J]. 中华内分泌代谢杂志, 2019, 35(8): 718-722.
|
[8]
|
Sugihara, S., Hisatome, I., Kuwabara, M., Niwa, K., Maharani, N., Kato, M., et al. (2015) Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia. Circulation Journal, 79, 1125-1132. https://doi.org/10.1253/circj.cj-14-1267
|
[9]
|
Yu, Z., Zhang, S., Wang, D., Fan, M., Gao, F., Sun, W., et al. (2017) The Significance of Uric Acid in the Diagnosis and Treatment of Parkinson Disease: An Up-Dated Systemic Review. Medicine, 96, e8502. https://doi.org/10.1097/md.0000000000008502
|
[10]
|
Tana, C., Ticinesi, A., Prati, B., Nouvenne, A. and Meschi, T. (2018) Uric Acid and Cognitive Function in Older Individuals. Nutrients, 10, Article 975. https://doi.org/10.3390/nu10080975
|
[11]
|
中国医师协会中西医结合分会心血管专业委员会, 中华中医药学会心血管病分会. 动脉粥样硬化中西医防治专家共识(2021年) [J]. 中国中西医结合杂志, 2022, 42(3): 287-293.
|
[12]
|
Li, B., Chen, L., Hu, X., Tan, T., Yang, J., Bao, W., et al. (2022) Association of Serum Uric Acid with All-Cause and Cardiovascular Mortality in Diabetes. Diabetes Care, 46, 425-433. https://doi.org/10.2337/dc22-1339
|
[13]
|
Tian, X., Wang, A., Wu, S., Zuo, Y., Chen, S., Zhang, L., et al. (2021) Cumulative Serum Uric Acid and Its Time Course Are Associated with Risk of Myocardial Infarction and All‐cause Mortality. Journal of the American Heart Association, 10, e020180. https://doi.org/10.1161/jaha.120.020180
|
[14]
|
Unger, T., Borghi, C., Charchar, F., Khan, N.A., Poulter, N.R., Prabhakaran, D., et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Journal of Hypertension, 38, 982-1004. https://doi.org/10.1097/hjh.0000000000002453
|
[15]
|
骆莹莹, 姚树桐, 王大新, 等. 氧化应激在动脉粥样硬化发生发展中作用的研究新进展[J]. 中国介入心脏病学杂志, 2013, 21(1): 46-50.
|
[16]
|
郑建普, 高月红, 朱春赟, 等. 黄嘌呤氧化酶对血管内皮功能障碍的影响[J]. 中华高血压杂志, 2007, 15(1): 61-65.
|
[17]
|
Sautin, Y.Y., Nakagawa, T., Zharikov, S. and Johnson, R.J. (2007) Adverse Effects of the Classic Antioxidant Uric Acid in Adipocytes: NADPH Oxidase-Mediated Oxidative/Nitrosative Stress. American Journal of Physiology-Cell Physiology, 293, C584-C596. https://doi.org/10.1152/ajpcell.00600.2006
|
[18]
|
Joosten, L.A.B., Crişan, T.O., Bjornstad, P. and Johnson, R.J. (2019) Asymptomatic Hyperuricaemia: A Silent Activator of the Innate Immune System. Nature Reviews Rheumatology, 16, 75-86. https://doi.org/10.1038/s41584-019-0334-3
|
[19]
|
Kimura, Y., Yanagida, T., Onda, A., Tsukui, D., Hosoyamada, M. and Kono, H. (2020) Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMP-Activated Protein Kinase)-Mediated Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 570-582. https://doi.org/10.1161/atvbaha.119.313224
|
[20]
|
Yu, M., Sánchez-Lozada, L.G., Johnson, R.J. and Kang, D. (2010) Oxidative Stress with an Activation of the Renin-Angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242. https://doi.org/10.1097/hjh.0b013e328337da1d
|
[21]
|
Zhou, Y., Zhao, M., Pu, Z., Xu, G. and Li, X. (2018) Relationship between Oxidative Stress and Inflammation in Hyperuricemia: Analysis Based on Asymptomatic Young Patients with Primary Hyperuricemia. Medicine, 97, e13108. https://doi.org/10.1097/md.0000000000013108
|
[22]
|
Park, J., Jin, Y.M., Hwang, S., Cho, D., Kang, D. and Jo, I. (2013) Uric Acid Attenuates Nitric Oxide Production by Decreasing the Interaction between Endothelial Nitric Oxide Synthase and Calmodulin in Human Umbilical Vein Endothelial Cells: A Mechanism for Uric Acid-Induced Cardiovascular Disease Development. Nitric Oxide, 32, 36-42. https://doi.org/10.1016/j.niox.2013.04.003
|
[23]
|
Riaz, M., Al Kury, L.T., Atzaz, N., Alattar, A., Alshaman, R., Shah, F.A., et al. (2022) Carvacrol Alleviates Hyperuricemia-Induced Oxidative Stress and Inflammation by Modulating the NLRP3/NF-κB Pathwayt. Drug Design, Development and Therapy, 16, 1159-1170. https://doi.org/10.2147/dddt.s343978
|
[24]
|
Yang, X., Gu, J., Lv, H., Li, H., Cheng, Y., Liu, Y., et al. (2019) Uric Acid Induced Inflammatory Responses in Endothelial Cells via Up-Regulating(pro)renin Receptor. Biomedicine & Pharmacotherapy, 109, 1163-1170. https://doi.org/10.1016/j.biopha.2018.10.129
|
[25]
|
Yu, M., Sánchez-Lozada, L.G., Johnson, R.J. and Kang, D. (2010) Oxidative Stress with an Activation of the Renin–angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242. https://doi.org/10.1097/hjh.0b013e328337da1d
|