[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[2]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/s0140-6736(19)32989-7
|
[3]
|
Reinhart, K., Daniels, R., Kissoon, N., Machado, F.R., Schachter, R.D. and Finfer, S. (2017) Recognizing Sepsis as a Global Health Priority—A WHO Resolution. New England Journal of Medicine, 377, 414-417. https://doi.org/10.1056/nejmp1707170
|
[4]
|
Shao, J., Feng, J., Li, J., Liang, S., Li, W. and Wang, C. (2023) Novel Tools for Early Diagnosis and Precision Treatment Based on Artificial Intelligence. Chinese Medical Journal Pulmonary and Critical Care Medicine, 1, 148-160. https://doi.org/10.1016/j.pccm.2023.05.001
|
[5]
|
Gallo, E. (2024) The Rise of Big Data: Deep Sequencing-Driven Computational Methods Are Transforming the Landscape of Synthetic Antibody Design. Journal of Biomedical Science, 31, Article No. 29. https://doi.org/10.1186/s12929-024-01018-5
|
[6]
|
Zhang, Y., Zhou, Y., Yang, Y. and Pappas, D. (2021) Microfluidics for Sepsis Early Diagnosis and Prognosis: A Review of Recent Methods. The Analyst, 146, 2110-2125. https://doi.org/10.1039/d0an02374d
|
[7]
|
Li, C. and Wang, Y. (2022) Progress in the Application of Metagenomic Next-Generation Sequencing in Pediatric Infectious Diseases. Pediatrics & Neonatology, 63, 445-451. https://doi.org/10.1016/j.pedneo.2022.03.014
|
[8]
|
Qiu, X., Lei, Y. and Zhou, R. (2023) SIRS, SOFA, qSOFA, and NEWS in the Diagnosis of Sepsis and Prediction of Adverse Outcomes: A Systematic Review and Meta-Analysis. Expert Review of Anti-Infective Therapy, 21, 891-900. https://doi.org/10.1080/14787210.2023.2237192
|
[9]
|
Pierrakos, C., Velissaris, D., Bisdorff, M., Marshall, J.C. and Vincent, J. (2020) Biomarkers of Sepsis: Time for a Reappraisal. Critical Care, 24, Article No. 287. https://doi.org/10.1186/s13054-020-02993-5
|
[10]
|
Sheikh, H., Prins, C. and Schrijvers, E. (2023) Artificial Intelligence: Definition and Background. In: Research for Policy, Springer, 15-41. https://doi.org/10.1007/978-3-031-21448-6_2
|
[11]
|
Masic, I. (2018) The Most Influential Scientists in the Development of Medical Informatics (20): Robert S. Ledley (1926-2012). Acta Informatica Medica, 26, 71-72. https://doi.org/10.5455/aim.2018.26.71-72
|
[12]
|
O'Reilly, D., McGrath, J. and Martin-Loeches, I. (2024) Optimizing Artificial Intelligence in Sepsis Management: Opportunities in the Present and Looking Closely to the Future. Journal of Intensive Medicine, 4, 34-45. https://doi.org/10.1016/j.jointm.2023.10.001
|
[13]
|
Desautels, T., Calvert, J., Hoffman, J., Jay, M., Kerem, Y., Shieh, L., et al. (2016) Prediction of Sepsis in the Intensive Care Unit with Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Medical Informatics, 4, e28. https://doi.org/10.2196/medinform.5909
|
[14]
|
Chen, X., Wang, X., Zhang, K., Fung, K., Thai, T.C., Moore, K., et al. (2022) Recent Advances and Clinical Applications of Deep Learning in Medical Image Analysis. Medical Image Analysis, 79, Article 102444. https://doi.org/10.1016/j.media.2022.102444
|
[15]
|
Toma, A., Diller, G. and Lawler, P.R. (2022) Deep Learning in Medicine. JACC: Advances, 1, Article 100017. https://doi.org/10.1016/j.jacadv.2022.100017
|
[16]
|
van Hilten, A., Katz, S., Saccenti, E., Niessen, W.J. and Roshchupkin, G.V. (2024) Designing Interpretable Deep Learning Applications for Functional Genomics: A Quantitative Analysis. Briefings in Bioinformatics, 25, bbae449. https://doi.org/10.1093/bib/bbae449
|
[17]
|
Niehues, S.M., Adams, L.C., Gaudin, R.A., Erxleben, C., Keller, S., Makowski, M.R., et al. (2021) Deep-Learning-Based Diagnosis of Bedside Chest X-Ray in Intensive Care and Emergency Medicine. Investigative Radiology, 56, 525-534. https://doi.org/10.1097/rli.0000000000000771
|
[18]
|
Li, J., Jiang, P., An, Q., Wang, G. and Kong, H. (2024) Medical Image Identification Methods: A Review. Computers in Biology and Medicine, 169, Article 107777. https://doi.org/10.1016/j.compbiomed.2023.107777
|
[19]
|
Trabelsi, A., Chaabane, M. and Ben-Hur, A. (2019) Comprehensive Evaluation of Deep Learning Architectures for Prediction of DNA/RNA Sequence Binding Specificities. Bioinformatics, 35, i269-i277. https://doi.org/10.1093/bioinformatics/btz339
|
[20]
|
Kalafi, E.Y., Nor, N.A.M., Taib, N.A., Ganggayah, M.D., Town, C. and Dhillon, S.K. (2019) Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data. Folia Biologica, 65, 212-220. https://doi.org/10.14712/fb2019065050212
|
[21]
|
Egger, J., Gsaxner, C., Pepe, A., Pomykala, K.L., Jonske, F., Kurz, M., et al. (2022) Medical Deep Learning—A Systematic Meta-Review. Computer Methods and Programs in Biomedicine, 221, Article 106874. https://doi.org/10.1016/j.cmpb.2022.106874
|
[22]
|
中国卫生信息与健康医疗大数据学会重症医学分会, 北京肿瘤学会重症医学专业委员会. 重症大数据应用中国专家共识(2022) [J]. 中华医学杂志, 2023(6): 404-424.
|
[23]
|
Duan, Y., Huo, J., Chen, M., Hou, F., Yan, G., Li, S., et al. (2023) Early Prediction of Sepsis Using Double Fusion of Deep Features and Handcrafted Features. Applied Intelligence, 53, 17903-17919. https://doi.org/10.1007/s10489-022-04425-z
|
[24]
|
Kallonen, A., Juutinen, M., Värri, A., Carrault, G., Pladys, P. and Beuchée, A. (2024) Early Detection of Late-Onset Neonatal Sepsis from Noninvasive Biosignals Using Deep Learning: A Multicenter Prospective Development and Validation Study. International Journal of Medical Informatics, 184, Article 105366. https://doi.org/10.1016/j.ijmedinf.2024.105366
|
[25]
|
Moor, M., Bennett, N., Plečko, D., Horn, M., Rieck, B., Meinshausen, N., et al. (2023) Predicting Sepsis Using Deep Learning across International Sites: A Retrospective Development and Validation Study. E Clinical Medicine, 62, Article 102124. https://doi.org/10.1016/j.eclinm.2023.102124
|
[26]
|
Kam, H.J. and Kim, H.Y. (2017) Learning Representations for the Early Detection of Sepsis with Deep Neural Networks. Computers in Biology and Medicine, 89, 248-255. https://doi.org/10.1016/j.compbiomed.2017.08.015
|
[27]
|
Kwon, J., Lee, Y.R., Jung, M., Lee, Y., Jo, Y., Kang, D., et al. (2021) Deep-Learning Model for Screening Sepsis Using Electrocardiography. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 29, Article No. 145. https://doi.org/10.1186/s13049-021-00953-8
|
[28]
|
Aşuroğlu, T. and Oğul, H. (2021) A Deep Learning Approach for Sepsis Monitoring via Severity Score Estimation. Computer Methods and Programs in Biomedicine, 198, Article 105816. https://doi.org/10.1016/j.cmpb.2020.105816
|
[29]
|
Zhang, D., Yin, C., Hunold, K.M., Jiang, X., Caterino, J.M. and Zhang, P. (2021) An Interpretable Deep-Learning Model for Early Prediction of Sepsis in the Emergency Department. Patterns, 2, Article 100196. https://doi.org/10.1016/j.patter.2020.100196
|