经皮椎体成形术后骨水泥剂量对手术椎体及邻近椎体再发骨折的影响
Effect of Bone Cement Dose after Percutaneous Vertebroplasty on Recurrent Fractures of the Surgically Treated Vertebrae and Adjacent Vertebrae
摘要: 背景:单侧入路经皮椎体成形术后新发相邻椎体骨折的危险因素是多方面的,但这方面的相关研究较少。目的:探讨经皮椎体成形术(PVP)在治疗骨质疏松性胸腰椎椎体压缩性骨折(OVCF)中注入不同聚甲基丙烯酸甲酯骨水泥剂量后对手术椎体及邻近椎体再发骨折的影响。方法:连续性选择新疆医科大学第六附属医院微创脊柱外科2019年01月至2022年12月进行PVP的患者122例,分为骨折组(n = 15)和未骨折组(n = 107)。回顾两组患者以下变量:患者年龄、性别、手术时间、体重指数(BMI)、骨密度T值、PVP节段、既往史、术前腰痛评分、骨水泥渗漏和骨水泥剂量等,并进行统计分析。结果:本研究共纳入122例患者,比较骨折组和未骨折组之间的参数。骨折组15例(年龄72.72 ± 9.93),未骨折组107例(年龄72.14 ± 8.13)。① 单因素分析显示,经皮椎体成形术后,椎体再发骨折与右侧股骨骨密度T值(P = 0.012)、骨水泥量(P = 0.015)等因素相关,差异具有统计学意义(P < 0.05)。② 二元Logistic回归分析显示,骨水泥剂量(P = 0.010)是PVP术后手术椎体及邻近椎体再发骨折的危险因素;与2.1~4.0 mL、4.1~5.0 mL、5.1~6.0 mL和8.1~10.0 mL相比,骨水泥剂量6.1~8.0 mL的再发骨折风险较高(OR = 1, P = 0.047)。结论:骨水泥剂量是椎体再发骨折的独立危险因素。当骨水泥剂量达到6.1~8.0 ml时,最容易发生手术椎体及邻近椎体再发骨折,因此需要根据患者情况制定相关治疗方案。
Abstract: Background: The risk factors for new adjacent vertebral fractures after unilateral approach percutaneous vertebroplasty may differ, but there are few studies in this area. Objective: This paper aims to investigate the effects of percutaneous vertebroplasty (PVP) on recurrent fractures of the surgically treated vertebrae and adjacent vertebrae after injection of different doses of polymethyl methacrylate bone cement in the treatment of osteoporotic thoracolumbar vertebral compression fractures (OVCF). Methods: According to the inclusion criteria, 122 patients who underwent unilateral approach PVP surgery in the Sixth Affiliated Hospital of Xinjiang Medical University from January 2019 to December 2022 were retrospectively and continuously screened. According to whether repeated compression fractures were observed during the follow-up period, the patients were divided into two groups: fracture group (n = 15) and non-fracture group (n = 107). Both groups of patients were reviewed for the following variables: The patient’s age, gender, body mass index (BMI), operation time, bone mineral density T value, PVP segment, previous history, preoperative low back pain score, bone cement dose and intervertebral disc cement leakage were analyzed by univariate analysis. Results: A total of 122 patients were included in the study and parameters were compared between the fracture group and the non-fracture group. There were 15 patients in fracture group (age 72.72 ± 9.93) and 107 patients in non-fracture group (age 72.14 ± 8.13). ① Univariate analysis showed that recurrent vertebral fractures after percutaneous vertebroplasty were correlated with bone mineral density T (P = 0.012) and bone cement volume (P = 0.015), and the differences were statistically significant (P < 0.05). ② Binary Logistic regression analysis showed that the dose of bone cement (P = 0.010) was a risk factor for recurrent fracture of the surgically treated vertebrae and adjacent vertebrae after percutaneous vertebroplasty. Compared with bone cement doses of 2.1~4.0 mL, 4.1~5.0 mL, 5.1~6.0 mL, and 8.1~10.0 mL, patients with bone cement doses of 6.1~8.0mL had a higher risk of recurrent fracture in the operative and adjacent vertebra (OR = 1, P = 0.047).Conclusion: Bone cement dose was an independent risk factor for recurrent vertebral fractures. When the dosage of bone cement was 6.1~8.0 ml, recurrent fractures of the surgically treated vertebrae and adjacent vertebrae were most likely to occur. Therefore, it is necessary to develop relevant treatment plans based on the patient’s condition.
文章引用:艾奔·卡依尔汗, 林航, 阿卜杜吾普尔·海比尔, 吐尔洪江·阿布都热西提. 经皮椎体成形术后骨水泥剂量对手术椎体及邻近椎体再发骨折的影响[J]. 临床个性化医学, 2024, 3(4): 1707-1717. https://doi.org/10.12677/jcpm.2024.34245

1. 引言

骨质疏松性胸腰椎椎体压缩性骨折作为脊柱骨折中较多见的一种损伤类型,多为创伤性因素和老年骨质疏松所导致[1]。据一项研究统计,在所有的脊柱骨折中90%为胸腰椎骨折,其中胸腰椎的压缩性骨折更是占据了50% [2]。长期的腰部疼痛和脊柱后凸等并发症不仅会导致患者生活质量降低,还会增加一定的死亡风险[3]。单侧入路经皮椎体成形术(percutaneous vertebroplasty, PVP)作为目前最广泛用于骨质疏松性胸腰椎椎体压缩性骨折的手术方式[4],通过给目标椎体注射骨水泥来加强椎体强度和稳定性,从而达到骨折固定的效果[5]。聚甲基丙烯酸甲酯骨水泥(polymethylmethacrylate, PMMA)是临床上最常用的骨水泥[6],由与具有较好的注射性和力学性能,在治疗骨质疏松性胸腰椎椎体压缩性骨折中安全性和临床效果取得普遍认可。然而随着对骨水泥研究的愈发深入,发现由于其骨水泥本身的化学性质,不同体积的聚甲基丙烯酸甲酯骨水泥有着不同的治疗效果[7] [8]。使用最合适体积的聚甲基丙烯酸甲酯骨水泥不仅可以有效恢复椎体的高度,减轻椎体的压缩状态,还可以缓解患者的疼痛感,提高生活质量[9] [10]。如果注入的骨水泥超过或者没达到合适的量,就可能会引起骨水泥渗漏或增加再次骨折的发生概率,从而影响治疗效果[11] [12]。由于压缩性骨折的严重程度不同,其可能需要的骨水泥量也有差异,因此在临床上通常需要医生根据患者具体情况来决定骨水泥的用量[13]。本研究通过分析PVP术中不同体积的PMMA对骨质疏松性胸腰椎椎体压缩性骨折的疗效影响,为PVP术中选择最适PMMA量提供参考数据和临床建议。

2. 研究方案

2.1. 基础资料

连续性选择新疆医科大学第六附属医院微创脊柱外科2019年01月至2022年12月进行PVP的患者122例,分为骨折组(n = 15)和未骨折组(n = 107)。

2.2. 设计

该试验为回顾性试验。

2.3. 纳入标准

① 连续性选择新疆医科大学第六附属医院微创脊柱外科2019年01月至2022年12月进行PVP的122例患者。② 影像学检查和骨密度检查确诊为新鲜骨折和患有骨质疏松,骨密度T值 < −2.5 SD。③ 骨折椎体数小于3个。④ 随访时间至少为6个月且资料完整的患者。

2.4. 排除标准

① 术前有神经根损伤症状。② 严重神经、精神、基础疾病或其他不能配合疼痛评估患者。③ 由肿瘤或感染引起的病理性骨折患者。④ 既往有脊柱手术史的患者。⑤ 体重指数 > 35 kg/m2。⑥ 术后因外伤导致再发骨折。

2.5. 骨水泥剂量分组

将骨水泥的剂量分为五组,见图1 ① 。

I组:2.1~4.0 mL;见图1 ②。

II组:4.1~5.0 mL;见图1 ③。

III组:5.1~6.0 mL;见图1 ④。

IV组:6.1~8.0 mL;见图1 ⑤。

V组:8.1~10.0 mL;见图1 ⑥。

注:① 椎体分割图;② 骨水泥剂量I组;③ 骨水泥剂量II组;④ 骨水泥剂量III组;⑤ 骨水泥剂量IV组;⑥ 骨水泥剂量V组。

Figure 1. group of bone cement dose

1. 骨水泥剂量分组

2.6. 一般资料

收集2019年01月至2022年12月在新疆医科大学第六临床医学院进行单侧入路PVP手术患者的病历资料,共收集122例,进行回顾性研究。根据随访期间是否观察到再次发生压缩性骨折,将患者分为两组,分别为骨折组(n = 15)和未骨折组(n = 107)。骨折组包括15例患者,平均年龄72.72 ± 9.93岁。未骨折组包括107例患者,平均年龄72.14 ± 8.13岁。患者的既往疾病包括:心脑血管疾病、呼吸系统疾病、内分泌系统疾病和其他系统疾病。

2.7. 方法

2.7.1. 术前准备

椎体成形术治疗前均行肝肾功、血常规、骨密度及血清骨代谢指标、MRI、CT、X射线等检查。

2.7.2. PVP手术方法

患者手术体位为俯卧位,术前在透视下进行定位,确定手术椎体后消毒铺巾,用2%盐酸利多卡因注射液麻醉,接着行单侧穿刺定位,在透视下可调整穿刺位置,然后将穿刺针推入椎弓根,大约进针至椎体中线前1/3,接着开始制配聚甲基丙烯酸甲酯骨水泥,调制完成后拔出穿刺针的针芯后开始缓慢注射骨水泥。将2.1~10.0 mL的骨水泥用推进器缓慢注入椎体的同时观察骨水泥的分布和弥散方向,可做适当的调整。注射完毕后等待骨水泥凝固,拔出穿刺针,无菌敷料覆盖伤口,手术结束。

2.7.3. 术后处理

术后患者卧床4~8小时,可在宽腰带或支具保护下下地活动,术后给予正规骨质疏松药物治疗,治疗后1年内均给予碳酸钙D 600 mg/d~1200 mg/d (根据骨质疏松程度调整)及活性维生素D口服。椎体成形术后第二天给予患者唑来膦酸静脉滴注治疗。给药前1~2天开始口服非甾体类抗炎药物和0.9%氯化钠注射液500 mL~1000 mL静点来减轻药物不良反应。观察患者有无不良反应,记录不良反应具体表现及开始,持续时间。术后给予CT复查评估手术疗效。

2.8. 再骨折评估

患者PVP术后,再次出现腰背部疼痛不适,体格检查提示脊柱或棘突叩击痛阳性。通过病史、临床表现和腰椎X线片检查提示叩痛平面椎体发生压缩性骨折,CT或磁共振检查明确再发骨折。

2.9. 评价指标

患者年龄、性别、体重指数(BMI)、手术时间、骨密度T值、PVP节段、既往史、术前腰痛评分、骨水泥剂量及椎间盘骨水泥渗漏等。

2.10. 统计学方法

将患者年龄、性别、体重指数(BMI)、骨密度T值、手术时间、既往史、PVP节段、术前腰痛评分、骨水泥剂量及椎间盘骨水泥渗漏等数据用SPSS 26.0统计软件进行分析。首先进行单因素分析,然后选取有显著差异的因素进行多因素Logistic回归分析(以P < 0.05表示差异有显著性意义)。

3. 结果

3.1. 参与者数量分析

纳入单侧入路PVP手术患者122例,根据随访期间是否观察到手术椎体及邻近椎体再次发生压缩性骨折将其分成2组,骨折组15例,未骨折组107例,全部进入结果分析,无脱落数据。

3.2. 试验流程图

两组分组流程图见图2

Figure 2. Flow chart of patient assignment

2. 试验流程图

3.3. 基线资料比较

骨折组与未骨折组右侧股骨骨密度T值和骨水泥剂量差异均有统计学意义(P < 0.05),患者年龄、性别、体重指数(BMI)、手术时间、L2~L4骨密度T值、左侧股骨骨密度T值,PVP节段、既往史、术前腰痛评分等比较差异无显著性意义(P > 0.05),见表1

Table 1. Baseline table of general characteristics

1. 一般特征基线表

因素

骨折组(n = 15)

非骨折组(n = 107)

X2/t值

P值

年龄( x ¯ ±s ,岁)

72.72 ± 9.93

72.14 ± 8.13

3.658

0.764

性别(男/女,n)

6/9

27/80

1.454

0.228

BMI ( x ¯ ±s , kg/m2)

25.67 ± 5.46

24.70 ± 5.02

0.870

0.492

手术时间( x ¯ ±s , min)

36.20 ± 6.96

36.85 ± 7.54

0.271

0.695

骨密度T值( x ¯ ±s , g/cm2)

L2~L4

−2.58 ± 0.77

−2.90 ± 1.00

0.381

0.236

左侧股骨

−2.24 ± 1.00

−2.30 ± 0.81

0.305

0.806

右侧股骨

−1.34 ± 3.43

−2.37 ± 0.93

13.811

0.012

PVP节段(n/%)

0.553

0.758

T5~T10

1/6.7

14/93.3

T11~L2

10/12.7

69/87.3

L3~L5

4/14.3

24/85.7

心脑血管疾病(n/%)

6/8.6

64/91.4

2.112

0.146

呼吸系统疾病(n/%)

4/16.0

21/84.0

0.400

0.527

内分泌系统疾病(n/%)

8/16.3

41/83.7

1.234

0.267

代谢性系统疾病(n/%)

8/12.3

57/87.7

0.000

0.996

吸烟史(n/%)

3/15.8

16/84.2

0.255

0.614

饮酒史(n/%)

3/16.7

15/83.3

0.374

0.541

术前腰痛VAS评分

7.26 ± 0.96

7.01 ± 1.47

2.854

0.530

术前腰痛ODI评分

71.60 ± 6.46

68.68 ± 8.23

0.647

0.191

术前腰痛RDQ评分

18.46 ± 2.41

18.10 ± 3.24

1.383

0.677

骨水泥量(mL)

5.67 ± 1.65

5.61 ± 1.28

1.738

0.874

骨水泥量(N)

12.385

0.015

2.1~4.0 mL (n/%)

1/6.7

17/15.9

4.1~5.0 mL (n/%)

1/6.7

29/27.1

5.1~6.0 mL (n/%)

4/26.7

40/37.4

6.1~8.0 mL (n/%)

7/46.7

15/14.0

8.1~10.0 mL (n/%)

2/13.3

6/5.6

3.4. 两组术后骨水泥渗漏比较

骨折组与未骨折组骨水泥渗漏差异无显著性意义(P > 0.05),见表2

Table 2. Comparison of postoperative bone cement leakage between the two groups

2. 两组术后骨水泥渗漏比较

因素

骨折组(n = 15)

非骨折组(n = 107)

X2/t值

P值

骨水泥渗漏(n/%)

1.269

0.205

12/80.0

70/65.4

3/20.0

37/34.6

3.5. 单因素分析

根据纳入和排除标准,本研究共纳入122例患者,比较骨折组和未骨折组之间的参数。骨折组15例(年龄72.72 ± 9.93),未骨折组107例(年龄72.14 ± 8.13)。PVP治疗时将骨水泥注入椎体,骨水泥剂量分为I组、II组、III组、IV组和V组等5组。单因素分析显示,在患者年龄、性别、体重指数(BMI)、手术时间、L2~L4骨密度T值、左侧股骨骨密度T值、PVP节段、既往史、术前腰痛评分等方面均无显著差异(P > 0.05),骨折组与未骨折组之间的右侧股骨骨密度T值(P = 0.012)和骨水泥剂量(P = 0.015)差异有显著性意义,见表1。具体骨折节段详见表3

Table 3. Specific segments of recurrent fractures in the fracture group

3. 骨折组再发骨折的具体节段

骨水泥剂量

n

骨折组(n = 15)

原椎体骨折组

邻近椎体骨折组

>T10

T11~L2

L3~L5

>T10

T11~L2

L3~L5

2.1~4.0 mL

18

0

1

0

0

0

0

4.1~5.0 mL

30

0

2

1

0

1

0

5.1~6.0 mL

44

0

0

0

0

3

0

6.1~8.0 mL

22

0

0

0

0

3

2

8.1~10.0 mL

8

0

0

0

0

1

1

注:4例患者发生手术椎体再次压缩性骨折,11例患者发生邻近椎体再次压缩性骨折。骨水泥剂量2.1~4.0 mL和4.1~5.0 mL患者再次发生压缩性骨折患者均1例(6.7%),骨水泥剂量5.1~6.0 mL患者再次发生压缩性骨折患者为4例(26.7%)、骨水泥剂量6.1~8.0 mL患者再次发生压缩性骨折患者为7例(46.7%)和骨水泥剂量8.1~10.0 mL患者再次发生压缩性骨折患者为2例(13.3%)。

3.6. 典型病例

A. 男性,60岁,胸11椎体压缩性骨折术后,X线,骨水泥剂量I组,3 mL;B. 男性,70岁,腰1椎体压缩性骨折术后,X线,骨水泥剂量II组,4.5 mL;C. 女性,55岁,腰2椎体压缩性骨折术后,X线,骨水泥剂量III组,5.5 mL;D. 女性,76岁,胸11椎体压缩性骨折术后,X线,骨水泥剂量IV组,6.8 mL;E. 男性,46岁,腰2椎体压缩性骨折术后,X线,骨水泥剂量V组,9 mL。见图3

注:图A、图B、图C、图D、图E均为X线。

Figure 3. Postoperative X-ray films of the thoracic and lumbar spines

3. 术后胸腰椎X射线片

3.7. 二元Logistic回归分析

将右侧股骨骨密度T值和骨水泥剂量进行二元logistic回归分析(见表4)。我们发现右侧股骨骨密度T值(P = 0.905, >0.05)不是独立危险因素,骨水泥剂量(P = 0.010, <0.05)是手术椎体及邻近椎体再发骨折的危险因素(见图4),与骨水泥剂量I组、II组、III组、V组相比,骨水泥剂量IV组的手术椎体及邻近椎体再发骨折风险最高。

Table 4. Risk of refracture in OVCF patients after PVP (logistic regression analysis)

4. OVCF患者在PVP术后发生再骨折的风险(logistic回归分析)

临床参数

B值

Se值

Wald值

P值

OR值

95%CI (下限~上限)

右侧股骨骨密度T值

−0.019

0.159

0.014

0.905

1

−0.365~0.696

骨水泥剂量(2.1~4.0 mL)

13.257

0.010

1

骨水泥剂量(4.1~5.0 mL)

−2.335

1.267

3.400

0.065

1

−21.861~18.387

骨水泥剂量(5.1~6.0 mL)

−0.680

0.848

0.642

0.423

1

−2.809~19.962

骨水泥剂量(6.1~8.0 mL)

−1.808

0.909

3.953

0.047

1

−4.896~18.846

骨水泥剂量(8.1~10.0 mL)

0.322

0.848

0.144

0.704

1

−1.701~20.911

注:PVP术后骨水泥剂量在手术椎体及邻近椎体再发骨折风险程度最大[B = −1.808,OR = 1.95%Cl (−4.896~18.846),P = 0.047]。

注:骨水泥剂量是PVP术后手术椎体及邻近椎体再发骨折的危险因素。

Figure 4. ROC profiles of cement leakage predicting patient refracture after PVP

4. 骨水泥渗漏预测患者PVP术后再次骨折的ROC曲线

4. 讨论

4.1. 证据总结

骨质疏松症对公众健康的影响几乎完全与相关的骨折有关,这些骨折是该问题的临床表现。骨质疏松性椎体压缩性骨折(OVCF)是骨质疏松症最常见的并发症之一[14]。治疗骨质疏松性脊椎压缩性骨折(OVCFs)的一个重要目标是预防新的脊椎骨折[15]。经皮椎体成形术(PVP)是一种具有代表性的外科手术,由于其侵入性极小和临床疗效高的优点,广泛用于OVCF的临床管理。作为一种微创手术技术,PVP通过经皮注射骨水泥到椎体中,可以稳定骨折,恢复骨强度,防止压迫进展,缓解手术疼痛和创伤[16]。因此,骨水泥的剂量多少是经皮椎体成形术术后疗效的关键。

不少研究报道提出,注入少量骨水泥剂量的经皮椎体成形术,其术后再次发生压缩性骨折及并发症皆少于注入大量骨水泥剂量的经皮椎体成形术,术后疗效更优。但是具体最优注入骨水泥剂量的多少,仍是许多学者正在研究的难题。本文章的目的是研究在单侧入路经皮椎体成形术中,不同聚甲基丙烯酸甲酯骨水泥剂量对胸腰椎椎体压缩性骨折疗效的影响,按个体化选择最佳注入骨水泥剂量。

骨水泥剂量是手术椎体能否恢复原先强度的关键。近年来,Belkoff [17]等人研究表明,输注2毫升骨水泥可以恢复椎体的强度,而恢复椎体的刚度至少需要4毫升。Liebschner [12]等人的研究表明,注射约2毫升骨水泥可以将患病椎体的强度恢复到受伤前的水平。骨水泥的量达到椎体体积的30%,椎体的刚度增加到原始水平的1.5倍。Polikeit [18]等人证明,即使注射少量骨水泥,相邻段的应力和应力分布也会显著改变。在Nieuwenhuijse [19]等人的研究中,作者检验了骨水泥椎体分数和疼痛缓解之间的关系,并使用多元logistic回归分析,在考虑了其他预测因素的贡献后,建议通过PVP,在术后VAS评分低于6的情况下,骨水泥填充百分比为24%或更多。Guo [20]等得出结论,在一定范围内,增加PMMA的体积不会显著影响相邻段的稳定性,根据不同程度的骨质疏松症,可以选择性地使用1.0毫升至2.5毫升之间的PMMA体积。Luo [21]等人得出结论,3.5毫升的PMMA在很大程度上恢复了骨折和邻近椎体的正常应力分布。Röder [22]等指出,外科医生需要意识到骨水泥挤压的风险增加,而不是努力实现最大的填充量,骨水泥体积 > 4.5毫升值得推荐,可实现相关的疼痛缓解。Wang D [23]等人在实验中,确定4毫升是PVP的最佳骨水泥量,这可以实现适当的临床疗效,同时降低骨水泥治疗引起的相邻椎体继发性骨折和骨水泥泄漏的风险。在本研究中,骨水泥剂量2.1~4.0 mL和4.1~5.0 mL患者的再发骨折率最低,该结论与本研究相符。

骨水泥渗漏是PVP术中常见的并发症。Cui W [24]等人得出结论,减少注射的骨水泥量可以降低泄漏的风险。Yuan [25]等得出结论,精确穿刺和注射小剂量骨水泥可以减少X射线透视次数、手术时间。Liu [26]等指出1.0至3.0毫升之间的骨水泥体积可显著提高螺钉稳定性,而超过3.0毫升的体积不会线性增加骨折椎体强度,而是增加骨水泥泄漏的概率。Abuduwupuer [27]指出大剂量骨水泥并没有显示出更大的好处,可导致骨水泥分布不对称和椎体过度僵硬。Ryu [28]等人发现,骨水泥体积越大,硬膜外水泥泄漏的发生率就越高。Fu Z [29]等研究表明,骨水泥体积与水泥泄漏发生率和PVP后疼痛缓解程度分别存在正剂量-反应相关关系。Berlemann U [30]等人指出,根据有限元研究,骨水泥的数量越多,相邻的脊椎就越容易骨折。在本研究分析中,骨水泥渗漏不是椎体再发骨折的重要因素。

4.2. 文章的局限性

① 没有研究最佳骨水泥体积或百分比填充量及其与骨水泥泄漏和疼痛缓解的关系;② 纳入的样本量相对较小,统计学效能不足,报告偏倚;③ 由于经皮椎体成形术(PVP)后手术椎体及邻近椎体再发骨折危险因素目前仍然有争议,此次研究的结果需要更进一步研究来阐明椎体内骨水泥剂量与PVP临床疗效之间的关系;④ 随访时间不够长;⑤ 本次试验是回顾性研究,可能会出现记录数据不准确的可能性,会对结果产生偏倚。

4.3. 结论

本研究结果显示,骨水泥剂量是椎体再发骨折的独立危险因素。当骨水泥剂量达到6.1~8.0 mL时,最容易发生手术椎体及邻近椎体再发骨折,因此需要根据患者情况制定相关治疗方案。

作者贡献

艾奔·卡依尔汗进行文章的撰写,林航负责构思文章和处理数据;阿卜杜吾普尔·海比尔和吐尔洪江·阿布都热西提负责文章审核。

生物统计学声明

该文统计学方法已经新疆医科大学生物统计学专家审核。

利益冲突

文章的全部作者声明,在课题研究和文章撰写过程中不存在利益冲突。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Alsoof, D., Anderson, G., McDonald, C.L., Basques, B., Kuris, E. and Daniels, A.H. (2022) Diagnosis and Management of Vertebral Compression Fracture. The American Journal of Medicine, 135, 815-821.
https://doi.org/10.1016/j.amjmed.2022.02.035
[2] Szkoda-Poliszuk, K. and Załuski, R. (2022) A Comparative Biomechanical Analysis of the Impact of Different Configurations of Pedicle-Screw-Based Fixation in Thoracolumbar Compression Fracture. Applied Bionics and Biomechanics, 2022, Article ID: 3817097.
https://doi.org/10.1155/2022/3817097
[3] Luo, Y., Jiang, T., Guo, H., Lv, F., Hu, Y. and Zhang, L. (2022) Osteoporotic Vertebral Compression Fracture Accompanied with Thoracolumbar Fascial Injury: Risk Factors and the Association with Residual Pain after Percutaneous Vertebroplasty. BMC Musculoskeletal Disorders, 23, Article No. 343.
https://doi.org/10.1186/s12891-022-05308-7
[4] Zhang, W., Liu, S., Liu, X., Li, X., Wang, L. and Wan, Y. (2021) Unilateral Percutaneous Vertebroplasty for Osteoporotic Lumbar Compression Fractures: A Comparative Study between Transverse Process Root-Pedicle Approach and Conventional Transpedicular Approach. Journal of Orthopaedic Surgery and Research, 16, Article No. 73.
https://doi.org/10.1186/s13018-021-02219-6
[5] Bao, L.S., Wu, W., Zhong, X.H., et al. (2022) [Effect of Bone Cement Distribution on the Clinical Outcome of Unilateral Transpedicular Puncture for Spinal Osteoporotic Fractures]. China Journal of Orthopaedics and Traumatology, 35, 423-429.
[6] Wei, Y., Baskaran, N., Wang, H., Su, Y., Nabilla, S.C. and Chung, R. (2023) Study of Polymethylmethacrylate/Tricalcium Silicate Composite Cement for Orthopedic Application. Biomedical Journal, 46, Article ID: 100540.
https://doi.org/10.1016/j.bj.2022.05.005
[7] Miao, F., Zeng, X., Wang, W. and Zhao, Z. (2020) Percutaneous Vertebroplasty with High-versus Low-Viscosity Bone Cement for Osteoporotic Vertebral Compression Fractures. Journal of Orthopaedic Surgery and Research, 15, Article No. 302.
https://doi.org/10.1186/s13018-020-01835-y
[8] Lai, P., Chu, I., Chen, L. and Chen, W. (2013) Chemical and Physical Properties of Bone Cement for Vertebroplasty. Biomedical Journal, 36, 162-167.
https://doi.org/10.4103/2319-4170.112750
[9] Molloy, S., Riley, L.H. and Belkoff, S.M. (2005) Effect of Cement Volume and Placement on Mechanical-Property Restoration Resulting from Vertebroplasty. American Journal of Neuroradiology, 26, 401-404.
[10] Wang, M., Li, B., Wang, Y., Jiang, S., Wen, G., Jiang, L., et al. (2022) The Effects of Bone Cement Volume in Percutaneous Vertebroplasty for Thoracolumbar Junction Vertebral Compression Fractures: A Clinical Comparative Study. Mediators of Inflammation, 2022, Article ID: 4230065.
https://doi.org/10.1155/2022/4230065
[11] Hou, Y., Yao, Q., Zhang, G., Ding, L. and Huang, H. (2018) Polymethylmethacrylate Distribution Is Associated with Recompression after Vertebroplasty or Kyphoplasty for Osteoporotic Vertebral Compression Fractures: A Retrospective Study. PLOS ONE, 13, e0198407.
https://doi.org/10.1371/journal.pone.0198407
[12] Liebschner, M.A.K., Rosenberg, W.S. and Keaveny, T.M. (2001) Effects of Bone Cement Volume and Distribution on Vertebral Stiffness after Vertebroplasty. Spine, 26, 1547-1554.
https://doi.org/10.1097/00007632-200107150-00009
[13] Wang, M., Zhang, L., Fu, Z., Wang, H. and Wu, Y. (2021) Selections of Bone Cement Viscosity and Volume in Percutaneous Vertebroplasty: A Retrospective Cohort Study. World Neurosurgery, 150, e218-e227.
https://doi.org/10.1016/j.wneu.2021.02.133
[14] Kim, W.J., Ma, S.B., Shin, H.M., Song, D.G., Lee, J.W., Chang, S.H., et al. (2022) Correlation of Sagittal Imbalance and Recollapse after Percutaneous Vertebroplasty for Thoracolumbar Osteoporotic Vertebral Compression Fracture: A Multivariate Study of Risk Factors. Asian Spine Journal, 16, 231-240.
https://doi.org/10.31616/asj.2021.0062
[15] Jacobs, E., Senden, R., McCrum, C., van Rhijn, L.W., Meijer, K. and Willems, P.C. (2019) Effect of a Semirigid Thoracolumbar Orthosis on Gait and Sagittal Alignment in Patients with an Osteoporotic Vertebral Compression Fracture. Clinical Interventions in Aging, 14, 671-680.
https://doi.org/10.2147/cia.s199853
[16] Cheng, Y. and Liu, Y. (2019) Percutaneous Curved Vertebroplasty in the Treatment of Thoracolumbar Osteoporotic Vertebral Compression Fractures. Journal of International Medical Research, 47, 2424-2433.
https://doi.org/10.1177/0300060519836917
[17] Belkoff, S.M., Mathis, J.M., Erbe, E.M. and Fenton, D.C. (2000) Biomechanical Evaluation of a New Bone Cement for Use in Vertebroplasty. Spine, 25, 1061-1064.
https://doi.org/10.1097/00007632-200005010-00004
[18] Polikeit, A., Nolte, L.P. and Ferguson, S.J. (2003) The Effect of Cement Augmentation on the Load Transfer in an Osteoporotic Functional Spinal Unit: Finite-Element Analysis. Spine, 28, 991-996.
https://doi.org/10.1097/01.brs.0000061987.71624.17
[19] Nieuwenhuijse, M.J., Bollen, L., van Erkel, A.R. and Dijkstra, P.D.S. (2012) Optimal Intravertebral Cement Volume in Percutaneous Vertebroplasty for Painful Osteoporotic Vertebral Compression Fractures. Spine, 37, 1747-1755.
https://doi.org/10.1097/brs.0b013e318254871c
[20] Guo, H., Zhang, S., Guo, D., Ma, Y., Yuan, K., Li, Y., et al. (2020) Influence of Cement-Augmented Pedicle Screws with Different Volumes of Polymethylmethacrylate in Osteoporotic Lumbar Vertebrae over the Adjacent Segments: A 3D Finite Element Analysis. BMC Musculoskeletal Disorders, 21, Article No. 460.
https://doi.org/10.1186/s12891-020-03498-6
[21] Luo, J., Daines, L., Charalambous, A., Adams, M.A., Annesley-Williams, D.J. and Dolan, P. (2009) Vertebroplasty: Only Small Cement Volumes Are Required to Normalize Stress Distributions on the Vertebral Bodies. Spine, 34, 2865-2873.
https://doi.org/10.1097/brs.0b013e3181b4ea1e
[22] Röder, C., Boszczyk, B., Perler, G., Aghayev, E., Külling, F. and Maestretti, G. (2013) Cement Volume Is the Most Important Modifiable Predictor for Pain Relief in BKP: Results from Swissspine, a Nationwide Registry. European Spine Journal, 22, 2241-2248.
https://doi.org/10.1007/s00586-013-2869-3
[23] Wang, D., Li, Y., Yin, H., Li, J., Qu, J., Jiang, M., et al. (2020) Three-dimensional Finite Element Analysis of Optimal Distribution Model of Vertebroplasty. Annals of Palliative Medicine, 9, 1062-1072.
https://doi.org/10.21037/apm-20-955
[24] Cui, W., Liu, B., Wang, L., et al. (2015) [The Correlation Analysis of Balloon Volume and Bone Cement Volume in Percutaneous Kyphoplasty]. Chinese Journal of Surgery, 53, 289-293.
[25] Yuan, L., Bai, J., Geng, C., Han, G., Xu, W., Zhang, Z., et al. (2020) Comparison of Targeted Percutaneous Vertebroplasty and Traditional Percutaneous Vertebroplasty for the Treatment of Osteoporotic Vertebral Compression Fractures in the Elderly. Journal of Orthopaedic Surgery and Research, 15, Article No. 359.
https://doi.org/10.1186/s13018-020-01875-4
[26] Liu, D., Zhang, B., Xie, Q., Kang, X., Zhou, J., Wang, C., et al. (2016) Biomechanical Comparison of Pedicle Screw Augmented with Different Volumes of Polymethylmethacrylate in Osteoporotic and Severely Osteoporotic Cadaveric Lumbar Vertebrae: An Experimental Study. The Spine Journal, 16, 1124-1132.
https://doi.org/10.1016/j.spinee.2016.04.015
[27] 阿卜杜吾普尔∙海比尔, 阿里木江∙玉素甫, 麦麦提敏∙阿卜力米提, 等. 经皮椎体成形术后骨水泥量和分布对手术椎体及邻近椎体再发骨折的影响[J]. 中国组织工程研究, 2024, 28(10): 1586-1591.
[28] Ryu, K.S., Park, C.K., Kim, M.C. and Kang, J.K. (2002) Dose-Dependent Epidural Leakage of Polymethylmethacrylate after Percutaneous Vertebroplasty in Patients with Osteoporotic Vertebral Compression Fractures. Journal of Neurosurgery: Spine, 96, 56-61.
https://doi.org/10.3171/spi.2002.96.1.0056
[29] Fu, Z., Hu, X., Wu, Y. and Zhou, Z. (2016) Is There a Dose-Response Relationship of Cement Volume with Cement Leakage and Pain Relief after Vertebroplasty? Dose-Response, 14.
https://doi.org/10.1177/1559325816682867
[30] Berlemann, U., Ferguson, S.J., Nolte, L.P. and Heini, P.F. (2002) Adjacent vertebral failure after vertebroplasty. A Biomechanical Investigation. The Journal of Bone and Joint Surgery. British volume, 84, 748-752.
https://doi.org/10.1302/0301-620x.84b5.0840748