[1]
|
Alsoof, D., Anderson, G., McDonald, C.L., Basques, B., Kuris, E. and Daniels, A.H. (2022) Diagnosis and Management of Vertebral Compression Fracture. The American Journal of Medicine, 135, 815-821. https://doi.org/10.1016/j.amjmed.2022.02.035
|
[2]
|
Szkoda-Poliszuk, K. and Załuski, R. (2022) A Comparative Biomechanical Analysis of the Impact of Different Configurations of Pedicle-Screw-Based Fixation in Thoracolumbar Compression Fracture. Applied Bionics and Biomechanics, 2022, Article ID: 3817097. https://doi.org/10.1155/2022/3817097
|
[3]
|
Luo, Y., Jiang, T., Guo, H., Lv, F., Hu, Y. and Zhang, L. (2022) Osteoporotic Vertebral Compression Fracture Accompanied with Thoracolumbar Fascial Injury: Risk Factors and the Association with Residual Pain after Percutaneous Vertebroplasty. BMC Musculoskeletal Disorders, 23, Article No. 343. https://doi.org/10.1186/s12891-022-05308-7
|
[4]
|
Zhang, W., Liu, S., Liu, X., Li, X., Wang, L. and Wan, Y. (2021) Unilateral Percutaneous Vertebroplasty for Osteoporotic Lumbar Compression Fractures: A Comparative Study between Transverse Process Root-Pedicle Approach and Conventional Transpedicular Approach. Journal of Orthopaedic Surgery and Research, 16, Article No. 73. https://doi.org/10.1186/s13018-021-02219-6
|
[5]
|
Bao, L.S., Wu, W., Zhong, X.H., et al. (2022) [Effect of Bone Cement Distribution on the Clinical Outcome of Unilateral Transpedicular Puncture for Spinal Osteoporotic Fractures]. China Journal of Orthopaedics and Traumatology, 35, 423-429.
|
[6]
|
Wei, Y., Baskaran, N., Wang, H., Su, Y., Nabilla, S.C. and Chung, R. (2023) Study of Polymethylmethacrylate/Tricalcium Silicate Composite Cement for Orthopedic Application. Biomedical Journal, 46, Article ID: 100540. https://doi.org/10.1016/j.bj.2022.05.005
|
[7]
|
Miao, F., Zeng, X., Wang, W. and Zhao, Z. (2020) Percutaneous Vertebroplasty with High-versus Low-Viscosity Bone Cement for Osteoporotic Vertebral Compression Fractures. Journal of Orthopaedic Surgery and Research, 15, Article No. 302. https://doi.org/10.1186/s13018-020-01835-y
|
[8]
|
Lai, P., Chu, I., Chen, L. and Chen, W. (2013) Chemical and Physical Properties of Bone Cement for Vertebroplasty. Biomedical Journal, 36, 162-167. https://doi.org/10.4103/2319-4170.112750
|
[9]
|
Molloy, S., Riley, L.H. and Belkoff, S.M. (2005) Effect of Cement Volume and Placement on Mechanical-Property Restoration Resulting from Vertebroplasty. American Journal of Neuroradiology, 26, 401-404.
|
[10]
|
Wang, M., Li, B., Wang, Y., Jiang, S., Wen, G., Jiang, L., et al. (2022) The Effects of Bone Cement Volume in Percutaneous Vertebroplasty for Thoracolumbar Junction Vertebral Compression Fractures: A Clinical Comparative Study. Mediators of Inflammation, 2022, Article ID: 4230065. https://doi.org/10.1155/2022/4230065
|
[11]
|
Hou, Y., Yao, Q., Zhang, G., Ding, L. and Huang, H. (2018) Polymethylmethacrylate Distribution Is Associated with Recompression after Vertebroplasty or Kyphoplasty for Osteoporotic Vertebral Compression Fractures: A Retrospective Study. PLOS ONE, 13, e0198407. https://doi.org/10.1371/journal.pone.0198407
|
[12]
|
Liebschner, M.A.K., Rosenberg, W.S. and Keaveny, T.M. (2001) Effects of Bone Cement Volume and Distribution on Vertebral Stiffness after Vertebroplasty. Spine, 26, 1547-1554. https://doi.org/10.1097/00007632-200107150-00009
|
[13]
|
Wang, M., Zhang, L., Fu, Z., Wang, H. and Wu, Y. (2021) Selections of Bone Cement Viscosity and Volume in Percutaneous Vertebroplasty: A Retrospective Cohort Study. World Neurosurgery, 150, e218-e227. https://doi.org/10.1016/j.wneu.2021.02.133
|
[14]
|
Kim, W.J., Ma, S.B., Shin, H.M., Song, D.G., Lee, J.W., Chang, S.H., et al. (2022) Correlation of Sagittal Imbalance and Recollapse after Percutaneous Vertebroplasty for Thoracolumbar Osteoporotic Vertebral Compression Fracture: A Multivariate Study of Risk Factors. Asian Spine Journal, 16, 231-240. https://doi.org/10.31616/asj.2021.0062
|
[15]
|
Jacobs, E., Senden, R., McCrum, C., van Rhijn, L.W., Meijer, K. and Willems, P.C. (2019) Effect of a Semirigid Thoracolumbar Orthosis on Gait and Sagittal Alignment in Patients with an Osteoporotic Vertebral Compression Fracture. Clinical Interventions in Aging, 14, 671-680. https://doi.org/10.2147/cia.s199853
|
[16]
|
Cheng, Y. and Liu, Y. (2019) Percutaneous Curved Vertebroplasty in the Treatment of Thoracolumbar Osteoporotic Vertebral Compression Fractures. Journal of International Medical Research, 47, 2424-2433. https://doi.org/10.1177/0300060519836917
|
[17]
|
Belkoff, S.M., Mathis, J.M., Erbe, E.M. and Fenton, D.C. (2000) Biomechanical Evaluation of a New Bone Cement for Use in Vertebroplasty. Spine, 25, 1061-1064. https://doi.org/10.1097/00007632-200005010-00004
|
[18]
|
Polikeit, A., Nolte, L.P. and Ferguson, S.J. (2003) The Effect of Cement Augmentation on the Load Transfer in an Osteoporotic Functional Spinal Unit: Finite-Element Analysis. Spine, 28, 991-996. https://doi.org/10.1097/01.brs.0000061987.71624.17
|
[19]
|
Nieuwenhuijse, M.J., Bollen, L., van Erkel, A.R. and Dijkstra, P.D.S. (2012) Optimal Intravertebral Cement Volume in Percutaneous Vertebroplasty for Painful Osteoporotic Vertebral Compression Fractures. Spine, 37, 1747-1755. https://doi.org/10.1097/brs.0b013e318254871c
|
[20]
|
Guo, H., Zhang, S., Guo, D., Ma, Y., Yuan, K., Li, Y., et al. (2020) Influence of Cement-Augmented Pedicle Screws with Different Volumes of Polymethylmethacrylate in Osteoporotic Lumbar Vertebrae over the Adjacent Segments: A 3D Finite Element Analysis. BMC Musculoskeletal Disorders, 21, Article No. 460. https://doi.org/10.1186/s12891-020-03498-6
|
[21]
|
Luo, J., Daines, L., Charalambous, A., Adams, M.A., Annesley-Williams, D.J. and Dolan, P. (2009) Vertebroplasty: Only Small Cement Volumes Are Required to Normalize Stress Distributions on the Vertebral Bodies. Spine, 34, 2865-2873. https://doi.org/10.1097/brs.0b013e3181b4ea1e
|
[22]
|
Röder, C., Boszczyk, B., Perler, G., Aghayev, E., Külling, F. and Maestretti, G. (2013) Cement Volume Is the Most Important Modifiable Predictor for Pain Relief in BKP: Results from Swissspine, a Nationwide Registry. European Spine Journal, 22, 2241-2248. https://doi.org/10.1007/s00586-013-2869-3
|
[23]
|
Wang, D., Li, Y., Yin, H., Li, J., Qu, J., Jiang, M., et al. (2020) Three-dimensional Finite Element Analysis of Optimal Distribution Model of Vertebroplasty. Annals of Palliative Medicine, 9, 1062-1072. https://doi.org/10.21037/apm-20-955
|
[24]
|
Cui, W., Liu, B., Wang, L., et al. (2015) [The Correlation Analysis of Balloon Volume and Bone Cement Volume in Percutaneous Kyphoplasty]. Chinese Journal of Surgery, 53, 289-293.
|
[25]
|
Yuan, L., Bai, J., Geng, C., Han, G., Xu, W., Zhang, Z., et al. (2020) Comparison of Targeted Percutaneous Vertebroplasty and Traditional Percutaneous Vertebroplasty for the Treatment of Osteoporotic Vertebral Compression Fractures in the Elderly. Journal of Orthopaedic Surgery and Research, 15, Article No. 359. https://doi.org/10.1186/s13018-020-01875-4
|
[26]
|
Liu, D., Zhang, B., Xie, Q., Kang, X., Zhou, J., Wang, C., et al. (2016) Biomechanical Comparison of Pedicle Screw Augmented with Different Volumes of Polymethylmethacrylate in Osteoporotic and Severely Osteoporotic Cadaveric Lumbar Vertebrae: An Experimental Study. The Spine Journal, 16, 1124-1132. https://doi.org/10.1016/j.spinee.2016.04.015
|
[27]
|
阿卜杜吾普尔∙海比尔, 阿里木江∙玉素甫, 麦麦提敏∙阿卜力米提, 等. 经皮椎体成形术后骨水泥量和分布对手术椎体及邻近椎体再发骨折的影响[J]. 中国组织工程研究, 2024, 28(10): 1586-1591.
|
[28]
|
Ryu, K.S., Park, C.K., Kim, M.C. and Kang, J.K. (2002) Dose-Dependent Epidural Leakage of Polymethylmethacrylate after Percutaneous Vertebroplasty in Patients with Osteoporotic Vertebral Compression Fractures. Journal of Neurosurgery: Spine, 96, 56-61. https://doi.org/10.3171/spi.2002.96.1.0056
|
[29]
|
Fu, Z., Hu, X., Wu, Y. and Zhou, Z. (2016) Is There a Dose-Response Relationship of Cement Volume with Cement Leakage and Pain Relief after Vertebroplasty? Dose-Response, 14. https://doi.org/10.1177/1559325816682867
|
[30]
|
Berlemann, U., Ferguson, S.J., Nolte, L.P. and Heini, P.F. (2002) Adjacent vertebral failure after vertebroplasty. A Biomechanical Investigation. The Journal of Bone and Joint Surgery. British volume, 84, 748-752. https://doi.org/10.1302/0301-620x.84b5.0840748
|