S100A8/A9在脓毒症和脓毒症相关器官损伤中的研究进展
Research Progress of S100A8/A9 in Sepsis and Sepsis Related Organ Damage
DOI: 10.12677/jcpm.2024.34248, PDF, HTML, XML,   
作者: 毛玉梅:济宁医学院临床医学院,山东 济宁;刘环芹, 石继魁*:济宁市第一人民医院重症医学科,山东 济宁
关键词: S100A8/A9生物标志物脓毒症治疗靶点S100A8/A9 Biomarkers Sepsis Therapeutic Targets
摘要: 脓毒症是重症监护病房患者死亡的首要原因,它是由入侵感染引起的不受控制的全身反应引起的,导致多个器官和系统的广泛损害。最近,S100A8/A9已成为脓毒症和脓毒症诱导的器官损伤的一种有前景的生物标志物,靶向S100A8/A9似乎可以改善炎症诱导的组织损伤并改善不良结局。S100A8/A9是一种钙结合异二聚体,主要存在于中性粒细胞和单核细胞中,是一种具有促炎和免疫抑制特性的致病分子,在脓毒症的发病机制中至关重要。因此,提高我们对S100A8/A9在脓毒症发展中的病理作用机制的理解,对于推进脓毒症的研究至关重要。本综述讨论了S100A8/A9的生物学特性及其释放机制,总结了S100A8/A9在脓毒症及其相关器官损伤中的重要作用的最新进展,并强调了其作为脓毒症诊断生物标志物和治疗靶点的潜力。
Abstract: Sepsis, the leading cause of death in intensive care unit patients, is caused by an uncontrolled systemic reaction caused by an invasive infection, resulting in widespread damage to multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ damage, and targeting S100A8/A9 appears to ameliorate inflammation-induced tissue damage and improve poor outcomes. S100A8/A9, a calcium-bound heterodimer predominantly found in neutrophils and monocytes, is a pathogenic molecule with pro-inflammatory and immunosuppressive properties that is critical in the pathogenesis of sepsis. Therefore, improving our understanding of the pathological mechanism of S100A8/A9 in the development of sepsis is essential to advance the research of sepsis. This review discusses the biology of S100A8/A9 and its release mechanism, summarizes recent advances in the important role of S100A8/A9 in sepsis and its associated organ damage, and highlights its potential as a diagnostic biomarker and therapeutic target for sepsis.
文章引用:毛玉梅, 刘环芹, 石继魁. S100A8/A9在脓毒症和脓毒症相关器官损伤中的研究进展[J]. 临床个性化医学, 2024, 3(4): 1734-1742. https://doi.org/10.12677/jcpm.2024.34248

1. 引言

脓毒症是一种危及生命的器官功能障碍,其特征是广泛的全身炎症,由宿主对感染的反应失调引起[1]。在过去的几十年里,脓毒症一直是一个主要的公共卫生问题,其发病率和死亡率都很高[2]。2020年Lancet发布的关于脓毒症的研究报告显示,2017年,全球年龄标准化脓毒症发病率为每10万人677.5例,估计有1100万人死于脓毒症[3],这两个数字在重症监护病房(ICU)中都更高[4] [5]。不幸的是,对脓毒症病理生理变化的全面了解仍难以捉摸,由于脓毒症期间宿主免疫反应的复杂性,没有一种特异性治疗方法能像预期的那样有效[6]。目前,炎症反应失调的部分原因是先天免疫细胞的异常激活和病理性因子的释放[7]。然而,近几十年来,涉及阻断众所周知的炎症介质(如肿瘤坏死因子α (TNF-α))的策略在脓毒症的临床试验中被证明是不成功的。因此,解决这一问题需要确定新的方向和机制,以制定更有效的管理战略。

钙结合蛋白S100A8/A9主要存在于骨髓细胞中,在炎症刺激下可作为损伤相关分子模式(DAMPs)释放到细胞外空间[8]。非共价聚合物S100A8/A9的独特结构赋予它们具有多样生物学特性的能力,这些特性被认为与多种疾病的发生和进展有关,包括脓毒症和脓毒症相关器官损伤。最近,S100A8/A9被认为是决定临床和实验性脓毒症炎症损伤程度和介导内毒素致死的内源性致病驱动因子[9]。综上所述,S100A8/A9作为脓毒症和脓毒症诱导的器官损伤的临床生物标志物和治疗靶点有待进一步开发,并且S100A8/A9在脓毒症进展中的作用需要相当大的重视。因此,本文旨在对S100A8/A9的释放机制和生物学功能作一综述,重点阐述其在脓毒症中的重要作用及其致病机制,总结S100A8/A9在脓毒症及其相关器官损伤中的研究进展,为进一步研究和开发更可行的S100A8/A9靶向策略以优化脓毒症的治疗提供了基础。

2. S100A8/A9的结构特征及表达

S100蛋白家族包含20多种以保守结构基序为特征的钙结合蛋白,即EFhand钙结合基序,通过柔性可变铰链区相互连接,在正常的生物过程和病理条件下起着关键作用[10]。S100A8和S100A9是S100家族的两个关键成员,主要在高钙环境下能够形成同源二聚体、异源二聚体等形式,其中异源二聚体是最稳定、最常见的结构,主要发挥其生物学功能。由于其分子量小,S100A8/A9异源二聚体很容易在组织和血液之间扩散[11]。S100A8/A9是一种丰富的胞质蛋白复合物,在特定细胞群中具有组成性表达,主要表达于髓系细胞,包括中性粒细胞、单核细胞、树突状细胞(dc)、髓源性抑制细胞(MDSCs)和活化的巨噬细胞。血小板和巨核细胞也是S100A8/A9的额外来源。此外,值得注意的是,在循环的人类中性粒细胞中,S100A8/A9占细胞质蛋白含量的近40%。非髓样细胞,如血管平滑肌和内皮细胞(ECs),在炎症/感染刺激下表现出S100A8/A9的积累增加[12] [13]。Kido等报道了脂多糖(LPS)、TNF-α和白细胞介素1-β (IL-1β)在人单核细胞中触发S100A8/A9基因诱导。此外,LPS与巨噬细胞表面toll样受体4 (TLR4)的相互作用激活了转录因子(TFs),如核因子(NF)-κB,从而促进II类TFs (C/ebp、AP-1和Stat-3)的激活,触发了S100A8基因的诱导[14]

3. S100A8/A9的生物学特性

异二聚体S100A8/A9是一种表达于细胞质和/或细胞核中的细胞质蛋白,也是一种在炎症应激条件下准备释放的分泌蛋白。因此,S100A8/A9在细胞内外表现出广泛的生物学功能,包括钙稳态、细胞骨架动力学、能量代谢、抗菌特性和炎症反应调节。由于S100A8/A9具有结合金属离子的强大亲和力,因此可以作为钙缓冲剂参与钙浓度的细胞调节[15]。此外,在结合二价离子后,S100A8/A9发生构象改变,并在钙依赖性过程中发挥关键作用,包括细胞骨架功能和能量代谢。在高钙水平的参与下,炎症触发S100A8/A9磷酸化,抑制四聚体诱导的微管聚合,导致细胞骨架重组。先前的研究已经证明S100A8/A9与多不饱和脂肪酸,特别是花生四烯酸的代谢有关[16]。S100A8/A9以钙依赖性方式结合花生四烯酸并将其转移至膜上,促进烟酰胺腺嘌呤二核苷酸磷酸氧化酶的活化,导致能量代谢产物活性氧(ROS)的产生和下游呼吸爆发,从而放大炎症。大量研究表明,S100A8/A9可通过产生ROS破坏线粒体能量代谢,随后导致多种细胞类型的细胞自噬和凋亡[17],如心肌细胞和肺上皮细胞。

此外,S100A8/A9对调节炎症反应至关重要。该复合物在氧化状态下具有抗炎作用。氧化后的S100A8/A9已被证明通过清除ROS抑制肥大细胞脱颗粒和减少促炎细胞因子的产生,从而减轻过敏性炎症[18]。细胞外S100A8/A9作为促炎介质最近获得了越来越多的认可。在炎症相关疾病,特别是脓毒症中,组织损伤可导致S100A8/A9大量持续释放,阻碍其保护作用[19]。具体而言,过度释放的S100A8/A9募集并激活免疫细胞,进一步诱导促炎介质的显著上调和释放,导致不受控制和有害的炎症反应。因此,适当的S100A8/A9反应对于维持生理稳态至关重要。

4. S100A8/A9在脓毒症中的致病机制

脓毒症是一种危及生命的器官疾病,是宿主对感染反应失调的结果。脓毒症患者可能会经历不同的病理生理阶段,最初的特征是原发性感染诱导的过度炎症和高炎症细胞因子介导的“细胞因子风暴”[20],随后是免疫效应细胞的衰竭和调节细胞(如MDSCs)的过度产生,并过渡到免疫抑制阶段。值得注意的是,这两个阶段都可能发生多器官损伤和脓毒性死亡[21]。DAMPs是在无菌或感染性损伤的情况下发挥重要细胞内作用的内源性分子。一旦释放到细胞外环境中,DAMP与不同细胞类型上的模式识别受体(PRR)结合,促进免疫系统激活并启动促炎级联反应。S100A8/A9已成为脓毒症中最具特征的DAMP之一,其以旁分泌和自分泌方式发挥促炎作用,导致并加重环境中的不良后果,如感染、炎症和败血症。值得注意的是,脓毒症与病原体和释放的DAMP引起的持续免疫刺激有关,从而引发持续免疫激活和功能障碍的恶性循环[22]。该复合物与各种免疫细胞、血小板和内皮细胞上的细胞表面相关和细胞内PRR结合,在脓毒症的发病机制中发挥有害作用[23]

研究表明,S100A8/A9通过引发各种中性粒细胞反应,包括迁移、脱颗粒和NET形成,促进脓毒症进展,支持其作为DAMP的作用。中性粒细胞迁移涉及一系列事件,包括趋化性、滚动和粘附到内皮细胞[24]。在LPS诱导的脓毒症的体外和体内模型中,S100A8/A9作为中性粒细胞的强效趋化因子,诱导骨髓中性粒细胞释放并引导其向炎症部位迁移。此外,Marki等人发现快速滚动的中性粒细胞可以在LPS注射小鼠和脓毒症患者的血液中产生大量中性粒细胞衍生结构(ENDS),并随后释放大量S100A8/A9异源二聚体[25]。此外,在中性粒细胞滚动过程中,ECs上的E-选择素与中性粒细胞上的PSGL-1相互作用刺激S100A8/A9释放。释放的S100A8/A9通过TLR 4介导的途径启动中性粒细胞中Rap1-GTPase的激活和β2整合素的快速激活,导致中性粒细胞与ECs的粘附。总的来说,胞外S100A8/A9可以在中性粒细胞迁移过程中形成正反馈回路,不断放大炎症反应。据报道,S100A8/A9激活丝裂原活化蛋白激酶(MAPK)通路,随后促进中性粒细胞脱粒,从而通过NF-κB信号级联反应加剧促炎细胞因子的产生[26]。NET的形成在脓毒症中可能是一把双刃剑。NET是先天免疫的关键组成部分,可以抵御各种入侵生物。然而,来自NETs的DNA和胞浆蛋白具有细胞毒性,可继续激活免疫应答,导致脓毒症期间的炎症和组织损伤[27]。先前的研究已经阐明,S100A8/A9是主要的NET结合蛋白,NET形成促进S100A8/A9释放,上调中性粒细胞活化剂如CD 11b和TNF-α的产生。此外,一些研究表明,S100A8/A9引发TLR 4和晚期糖基化终产物(AGEs)-ROS信号受体的活化,随后促进NET形成[28]。总之,细胞外S100A8/A9和NET环进一步加剧了中性粒细胞活化和炎症级联反应。

5. S100A8/A9在脓毒症诱导的器官损伤中的作用

脓毒症通常伴有多器官损害或功能衰竭,这与临床预后不良有关。在过去的几年中,S100A8/A9在脓毒症和脓毒症相关器官损害的发病机制中的作用被广泛研究。因此,我们从不同器官系统的角度总结S100A8/A9在脓毒症诱导的器官损伤中的作用。

ALI/急性呼吸窘迫综合征(ARDS)是脓毒症的常见并发症,也是脓毒症恶化的主要原因。根据流行病资料显示,相当比例的脓毒症患者进展为ALI/ARDS,甚至需要机械通气[29],其死亡率高于未发生ALI/ARDS的患者。由于其在脓毒症中的作用,S100A8/A9已经在脓毒症诱导的ALI/ARDS的临床和基础研究中获得了广泛的兴趣。Silvin等[30]发现,S100A8/A9是严重ARDS患者循环中升高最显著的免疫介质。事实上,还发现,S100A8/A9的循环浓度升高与S-ALI/ARDS的进展呈正相关,S100A8/A9水平较高的个体更容易发生脓毒性死亡。

因此,我们进行了大量的基础实验来阐明S100A8/A9对S-ALI/ARDS进展的影响机制。与临床数据一致,S-ALI/ARDS小鼠模型的血浆、支气管肺泡灌洗液和肺样本中S100A8/A9水平显著升高[31]。升高的S100A8/A9主要作为DAMP加重炎症反应和损伤,这可能是S-ALI/ARDS发生和发展的原因。此外,在clp诱导的脓毒症中,肺中S100A9的升高加剧了中性粒细胞的活化,白细胞向肺聚集,以及随后通过激活中性粒细胞中的TLR4/RAGE信号通路发生炎症级联反应,导致间质水肿和毛细血管充血,这与S-ALI/ARDS的加重有关。此外,在ARDS期间,S100A8/A9诱导异常中性粒细胞在肺部聚集,而S100A8/A9拮抗剂帕喹莫德显著减少异常中性粒细胞的积聚,从而减轻肺部炎症损伤。Kuipers等[32]也同样发现,与野生型小鼠相比,吸入LPS后S100A9基因敲除小鼠的肺部炎症反应和病理损伤明显减弱。此外,Zhao等研究发现[33],S100A9抑制剂通过抑制NLRP3通路,明显减少LPS处理的肺上皮细胞炎症因子的产生,从而防止LPS诱导的肺损伤。

脓毒性心肌病(sepsis cardiomyopathy, SCM)是指脓毒症引起的心肌抑制,但心肌结构未发生改变,表现为急性可逆性心功能障碍和随后的循环衰竭,死亡率高。越来越多的文献强调了S100A8/A9在SCM发病机制中的重要作用。Lu等[34]通过综合生物信息学分析,发现S100A9是SCM中的枢纽基因之一,并在LPS处理的SCM细胞模型中观察到S100A9的显著上调。同样,S100A8和S100A9蛋白在腹腔注射LPS诱导的脓毒症小鼠分离的原代心肌细胞和左心室心脏组织中表达增加。此外,用小干扰RNA基因抑制S100A9的表达可显著缓解LPS诱导的小鼠心脏疾病,特别是在心脏射血分数方面。最新研究表明,在严重脓毒症患者和脓毒症小鼠模型中,S100A8/A9的升高与左心室功能障碍的发生呈正相关,药理抑制S100A8/A9具有有效的抗炎作用,甚至可以缓解心肌功能障碍[22]。值得注意的是,已有研究表明,S100A8/A9可通过TLR4介导的信号通路引起心肌细胞死亡、心脏病理性炎症和心肌病。Wu等[35]证实S100A8/A9通过激活TLR4/ERK通路诱导线粒体呼吸功能障碍和心肌细胞凋亡,参与clp诱导的心肌病。其他研究报道,由S100A8/A9-TLR4-NLRP3-IL-1β途径介导的过度心肌炎症是心脏损伤和功能障碍的关键[36]。帕喹莫德是一种抑制S100A8/A9与TLR4结合的药物拮抗剂,可以显著改善SCM相关的心脏病理改变。此外,Boyd等发现心肌细胞上的RAGE跨膜受体与S100A8/A9之间存在一种新的机制联系,这种联系可导致心肌细胞钙通量和心脏收缩力降低,最终导致内毒素诱导的心肌细胞功能障碍。这些结果证明,S100A8/A9通过其激活TLR4/RAGE通路的能力,在SCM背景下成为必不可少的致病因子。

脓毒症相关脑病(SAE)是脓毒症的一种严重合并症,表现为广泛的大脑疾病,症状从意识障碍到长期认知障碍,构成了全球公共卫生挑战。最近,Zhang等[37]在一项前瞻性观察性研究中提供了初步证据,证明循环中S100A8浓度升高与SAE的严重程度呈正相关,并证实了S100A8在SAE中极好的诊断和预后价值。因此,人们非常重视S100A8/A9在SAE进展中的重要性,机制研究表明S100A8/A9是弥漫性神经炎症的关键驱动因素。在clp诱导的脓毒性SAE大鼠模型中,S100A8/A9基因在大脑的三个区域(海马、小脑和皮层)中表现出持续的上调,而S100A8在前额叶皮层的蛋白水平上也表现出类似的升高趋势[38]。另有研究发现,S100A8/A9是SAE小鼠模型小胶质细胞中表达上调最严重的基因。最近有新的证据表明,S100A8/A9通过诱导全身和局部炎症,在加重脑损伤中起致病作用。此外,S100A8/A9可通过与TLR4和RAGE联合,直接启动BV-2小胶质细胞促炎因子的释放,导致神经炎症恶化和脑功能障碍。同样,S100A9抑制剂可以诱导促炎(M1)表型的小胶质细胞转化为抗炎(M2)表型,从而减轻脓毒症小鼠的神经炎症并逆转学习和记忆障碍[39]。因此,具有促神经炎症活性的S100A8/A9在SAE中起着重要的病理作用,突出了其作为治疗靶点的潜在价值。

迄今为止,S100A8/A9也被认为在其他脓毒症相关的器官损伤中起关键作用,包括急性肾(AKI)和肝损伤。近期研究报道,脓毒症合并AKI患者血清中S100A8/A9水平明显高于无AKI患者,且S100A8/A9对脓毒症合并AKI的发生具有较高的预测价值,AUROC值高达0.889 [40]。因此,S100A8/A9可能是一个敏感和特异性的生物标志物,用于识别脓毒症患者发展为AKI的风险。通过使用小分子药物抑制S100A8/A9-TLR4信号通路,研究人员观察到显著的肾保护作用,表现为增强肾功能和降低死亡率。此外,近期研究发现,LPS暴露后肾小管细胞中S100A8/A9过表达募集炎性单核细胞,促进其活化为M1型巨噬细胞,导致肾上皮细胞凋亡,这可能与脓毒症相关的AKI有关。与上述研究一致,Guo等[41]证实S100A9是脓毒性AKI的重要蛋白,选择性阻断S100A9可能为脓毒性AKI患者提供一种新的治疗途径。此外,已有证据表明,S100A8/A9可在肝损伤的情况下被诱发,并与肝坏死、炎症和损伤的等级呈显著正相关。在脓毒症大鼠模型中,肝组织中S100A8和S100A9表达显著上调,表明它们可能积极参与脓毒症时肝脏炎症反应。有趣的是,Li等[42]报道,敲除和药理抑制S100A9可通过抑制AMPK依赖性线粒体能量代谢,部分缓解CLP、氧化应激和急性肝损伤引起的肝脏炎症。此外,水飞蓟宾–磷脂复合物能够通过促进M2样巨噬细胞的激活,同时缓解坏死-S100A19-坏死炎症通路,从而改善脓毒症小鼠的急性肝损伤[43]。因此,靶向调节S100A9成为管理败血症相关AKI和肝损伤的前瞻性和新型干预措施。

6. S100A8/A9作为脓毒症和脓毒症引起的器官损伤的临床生物标志物和治疗靶点的前景

S100A8/A9是一种稳定性优异的小分子蛋白复合物,在脓毒症和脓毒症相关器官损伤的发生和进展中起着至关重要的作用,这表明S100A8/A9作为生物标志物和治疗靶点在脓毒症和脓毒症诱导的器官损伤的临床管理中具有广阔的应用前景。在最近的几项研究中,S100A8/A9水平在严重脓毒症患者中显著高于健康受试者。此外,循环中S100A8/A9浓度的升高可以早期识别和预测进入ICU的高风险脓毒症患者,优于降钙素原和中性粒细胞淋巴细胞比率等传统生物标志物,其特异性为83% [44]。此外,脓毒症患者血清中S100A8/A9浓度升高与临床预后较差相关。在脓毒症患者中,血浆中S100A8/A9浓度升高与30天死亡率升高之间存在显著的正相关,并且S100A8/A9作为死亡率预测指标的表现优于之前确定的几种生物标志物,包括CRP、PCT。值得注意的是,S100A8/A9可以释放到血液中,反映全身性炎症,也可以作为局部炎症活动指标,因为它可以在各种组织或器官中检测到。如上所述,S100A8/A9也被证明对脓毒症相关的器官功能障碍具有诊断意义,如脓毒症引起的ALI/ARDS、SCM、SAE和AKI。此外,S100A8/A9具有一系列令人满意的属性,包括易于检测、负担得起的检测成本和可重复的结果,这使其比其他临床和实验室指标具有一些明显的优势[45]。综上所述,将S100A8/A9作为脓毒症和脓毒症相关器官损伤的诊断和预后候选物具有巨大的临床应用潜力。

在过去的几十年里,针对S100A8/A9的治疗策略已经成为脓毒症和脓毒症诱导的器官损伤管理的启发和有效方法。在脓毒症和脓毒症相关器官损伤动物模型中,S100A8/A9的药理抑制剂帕喹莫德已被证明可有效阻止细胞外S100A8/A9与其TLR4受体结合,从而减轻过度炎症损伤,改善器官状况和生存率[39]。然而,S100A8/A9相关药物治疗脓毒症和脓毒症相关器官损伤的几个关键问题仍然需要解决。首先,针对S100A8/A9的可获得的脓毒症治疗干预仅处于临床前阶段,需要转化为临床应用。其次,S100A8/A9相关药物在脓毒症治疗中的临床应用可能因其高度异质性而面临挑战。此外,确定可能受益于针对S100A8/A9的干预措施的脓毒症亚型仍需进一步探索。然而,鉴于目前来自CLP或LPS诱导的脓毒症动物模型的证据,这通常代表了脓毒症的典型高炎症模型[46],我们有理由认为,脓毒症的高炎症表型与较差的结局和较高的死亡率有关,更有可能从S100A8/A9靶向药物中获得优势。最后,尽管针对S100A8/A9治疗脓毒症免疫抑制的研究较少,但S100A8/A9在脓毒症免疫耐受期具有治疗潜力。因此,通过靶向S100A8/A9及其相关信号通路进行治疗干预的潜力仍然是有希望的,特别是在脓毒症的高炎症亚表型中,这可以为脓毒症的靶向免疫调节提供新的见解。

7. 总结与展望

脓毒症仍然是世界范围内常见的、致命的炎症综合征。对入侵感染的过度免疫反应会导致多系统损伤和功能障碍,尤其是肺、肾和心脏损伤。越来越多的证据表明S100A8/A9与持续炎症性疾病有关,这是脓毒症进展过程中的主要发病机制。因此,我们讨论了释放的S100A8/A9可以作为一种DAMP影响多种细胞类型,如免疫细胞、血小板、内皮细胞甚至组织细胞,促进促炎介质的产生和各种器官损伤。根据S100A8/A9在脓毒症和脓毒症诱导的器官损伤中的重要作用,抑制S100A8/A9的产生和干扰与S100A8/A9相关的信号通路已显示出显著的治疗益处,突出了针对S100A8/A9的治疗潜力。此外,S100A8/A9具有前瞻性的临床诊断和预后特性,具有良好的临床应用前景。然而,S100A8/A9介导的脓毒症和脓毒症相关器官损伤通路的机制有待进一步探索。此外,应对S100A8/A9相关器官损伤的策略应该优化并提高效率。

NOTES

*通讯作者。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Goodman, C.W. and Brett, A.S. (2017) Gabapentin and Pregabalin for Pain—Is Increased Prescribing a Cause for Concern? New England Journal of Medicine, 377, 411-414.
https://doi.org/10.1056/nejmp1704633
[3] Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211.
https://doi.org/10.1016/s0140-6736(19)32989-7
[4] Markwart, R., Saito, H., Harder, T., Tomczyk, S., Cassini, A., Fleischmann-Struzek, C., et al. (2020) Epidemiology and Burden of Sepsis Acquired in Hospitals and Intensive Care Units: A Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1536-1551.
https://doi.org/10.1007/s00134-020-06106-2
[5] Xie, J., Wang, H., Kang, Y., Zhou, L., Liu, Z., Qin, B., et al. (2020) The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218.
https://doi.org/10.1097/ccm.0000000000004155
[6] Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247.
https://doi.org/10.1007/s00134-021-06506-y
[7] Yao, R., Zhao, P., Li, Z., Liu, Y., Zheng, L., Duan, Y., et al. (2023) Single-Cell Transcriptome Profiling of Sepsis Identifies HLA-DRlowS100Ahigh Monocytes with Immunosuppressive Function. Military Medical Research, 10, Article No. 27.
https://doi.org/10.1186/s40779-023-00462-y
[8] Delano, M.J. and Ward, P.A. (2016) The Immune System’s Role in Sepsis Progression, Resolution, and Long‐Term Outcome. Immunological Reviews, 274, 330-353.
https://doi.org/10.1111/imr.12499
[9] Guo, Q., Zhao, Y., Li, J., Liu, J., Yang, X., Guo, X., et al. (2021) Induction of Alarmin S100A8/A9 Mediates Activation of Aberrant Neutrophils in the Pathogenesis of COVID-19. Cell Host & Microbe, 29, 222-235.e4.
https://doi.org/10.1016/j.chom.2020.12.016
[10] Austermann, J., Spiekermann, C. and Roth, J. (2018) S100 Proteins in Rheumatic Diseases. Nature Reviews Rheumatology, 14, 528-541.
https://doi.org/10.1038/s41584-018-0058-9
[11] Vogl, T., Stratis, A., Wixler, V., Völler, T., Thurainayagam, S., Jorch, S.K., et al. (2018) Autoinhibitory Regulation of S100A8/S100A9 Alarmin Activity Locally Restricts Sterile Inflammation. Journal of Clinical Investigation, 128, 1852-1866.
https://doi.org/10.1172/jci89867
[12] Joshi, A., Schmidt, L.E., Burnap, S.A., Lu, R., Chan, M.V., Armstrong, P.C., et al. (2022) Neutrophil-Derived Protein S100A8/A9 Alters the Platelet Proteome in Acute Myocardial Infarction and Is Associated with Changes in Platelet Reactivity. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 49-62.
https://doi.org/10.1161/atvbaha.121.317113
[13] Rapkiewicz, A.V., Mai, X., Carsons, S.E., Pittaluga, S., Kleiner, D.E., Berger, J.S., et al. (2020) Megakaryocytes and Platelet-Fibrin Thrombi Characterize Multi-Organ Thrombosis at Autopsy in COVID-19: A Case Series. eClinicalMedicine, 24, Article 100434.
https://doi.org/10.1016/j.eclinm.2020.100434
[14] Yesudhas, D., Gosu, V., Anwar, M.A. and Choi, S. (2014) Multiple Roles of Toll-Like Receptor 4 in Colorectal Cancer. Frontiers in Immunology, 5, Article 334.
https://doi.org/10.3389/fimmu.2014.00334
[15] Adhikari, J., Stephan, J.R., Rempel, D.L., Nolan, E.M. and Gross, M.L. (2020) Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry. Journal of the American Chemical Society, 142, 13372-13383.
https://doi.org/10.1021/jacs.9b11950
[16] Wang, X., Xu, G., Liu, X., Liu, Y., Zhang, S. and Zhang, Z. (2021) Multiomics: Unraveling the Panoramic Landscapes of SARS-CoV-2 Infection. Cellular & Molecular Immunology, 18, 2313-2324.
https://doi.org/10.1038/s41423-021-00754-0
[17] Bai, S., Wang, W., Ye, L., Fang, L., Dong, T., Zhang, R., et al. (2021) IL-17 Stimulates Neutrophils to Release S100A8/A9 to Promote Lung Epithelial Cell Apoptosis in Mycoplasma Pneumoniae-Induced Pneumonia in Children. Biomedicine & Pharmacotherapy, 143, Article 112184.
https://doi.org/10.1016/j.biopha.2021.112184
[18] Hiroshima, Y., Hsu, K., Tedla, N., Wong, S.W., Chow, S., Kawaguchi, N., et al. (2017) S100A8/A9 and S100A9 Reduce Acute Lung Injury. Immunology & Cell Biology, 95, 461-472.
https://doi.org/10.1038/icb.2017.2
[19] Freise, N., Burghard, A., Ortkras, T., Daber, N., Imam Chasan, A., Jauch, S., et al. (2019) Signaling Mechanisms Inducing Hyporesponsiveness of Phagocytes during Systemic Inflammation. Blood, 134, 134-146.
https://doi.org/10.1182/blood.2019000320
[20] van der Poll, T., Shankar-Hari, M. and Wiersinga, W.J. (2021) The Immunology of Sepsis. Immunity, 54, 2450-2464.
https://doi.org/10.1016/j.immuni.2021.10.012
[21] Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56.
https://doi.org/10.1186/s40779-022-00422-y
[22] Jakobsson, G., Papareddy, P., Andersson, H., Mulholland, M., Bhongir, R., Ljungcrantz, I., et al. (2023) Therapeutic S100A8/A9 Blockade Inhibits Myocardial and Systemic Inflammation and Mitigates Sepsis-Induced Myocardial Dysfunction. Critical Care, 27, Article No. 374.
https://doi.org/10.1186/s13054-023-04652-x
[23] Wang, Q., Long, G., Luo, H., Zhu, X., Han, Y., Shang, Y., et al. (2023) S100A8/A9: An Emerging Player in Sepsis and Sepsis-Induced Organ Injury. Biomedicine & Pharmacotherapy, 168, Article 115674.
https://doi.org/10.1016/j.biopha.2023.115674
[24] Ding, Z., Du, F., Averitt V, R.G., Jakobsson, G., Rönnow, C., Rahman, M., et al. (2021) Targeting S100A9 Reduces Neutrophil Recruitment, Inflammation and Lung Damage in Abdominal Sepsis. International Journal of Molecular Sciences, 22, Article 12923.
https://doi.org/10.3390/ijms222312923
[25] Marki, A., Buscher, K., Lorenzini, C., Meyer, M., Saigusa, R., Fan, Z., et al. (2020) Elongated Neutrophil-Derived Structures Are Blood-Borne Microparticles Formed by Rolling Neutrophils during Sepsis. Journal of Experimental Medicine, 218, e20200551.
https://doi.org/10.1084/jem.20200551
[26] Zhou, Y., Hann, J., Schenten, V., Plançon, S., Bueb, J., Tolle, F., et al. (2021) Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors. International Journal of Molecular Sciences, 22, Article 8845.
https://doi.org/10.3390/ijms22168845
[27] Denning, N., Aziz, M., Gurien, S.D. and Wang, P. (2019) Damps and Nets in Sepsis. Frontiers in Immunology, 10, Article 2536.
https://doi.org/10.3389/fimmu.2019.02536
[28] Zhan, X., Wu, R., Kong, X., You, Y., He, K., Sun, X., et al. (2022) Elevated Neutrophil Extracellular Traps by HBV‐Mediated S100A9‐TLR4/RAGE‐ROS Cascade Facilitate the Growth and Metastasis of Hepatocellular Carcinoma. Cancer Communications, 43, 225-245.
https://doi.org/10.1002/cac2.12388
[29] Park, I., Kim, M., Choe, K., Song, E., Seo, H., Hwang, Y., et al. (2019) Neutrophils Disturb Pulmonary Microcirculation in Sepsis-Induced Acute Lung Injury. European Respiratory Journal, 53, Article 1800786.
https://doi.org/10.1183/13993003.00786-2018
[30] van der Poll, T., van de Veerdonk, F.L., Scicluna, B.P. and Netea, M.G. (2017) The Immunopathology of Sepsis and Potential Therapeutic Targets. Nature Reviews Immunology, 17, 407-420.
https://doi.org/10.1038/nri.2017.36
[31] Gong, R., Luo, H., Long, G., Xu, J., Huang, C., Zhou, X., et al. (2023) Integrative Proteomic Profiling of Lung Tissues and Blood in Acute Respiratory Distress Syndrome. Frontiers in Immunology, 14, Article 1158951.
https://doi.org/10.3389/fimmu.2023.1158951
[32] Kuipers, M.T., Vogl, T., Aslami, H., Jongsma, G., van den Berg, E., Vlaar, A.P.J., et al. (2013) High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling. PLOS ONE, 8, e68694.
https://doi.org/10.1371/journal.pone.0068694
[33] Zhao, B., Lu, R., Chen, J., Xie, M., Zhao, X. and Kong, L. (2021) S100A9 Blockade Prevents Lipopolysaccharide-Induced Lung Injury via Suppressing the NLRP3 Pathway. Respiratory Research, 22, Article No. 45.
https://doi.org/10.1186/s12931-021-01641-y
[34] Lu, F., Hu, F., Qiu, B., Zou, H. and Xu, J. (2022) Identification of Novel Biomarkers in Septic Cardiomyopathy via Integrated Bioinformatics Analysis and Experimental Validation. Frontiers in Genetics, 13, Article 929293.
https://doi.org/10.3389/fgene.2022.929293
[35] Wu, F., Zhang, Y., Teng, F., Li, H. and Guo, S. (2023) S100A8/A9 Contributes to Sepsis-Induced Cardiomyopathy by Activating ERK1/2-Drp1-Mediated Mitochondrial Fission and Respiratory Dysfunction. International Immunopharmacology, 115, Article 109716.
https://doi.org/10.1016/j.intimp.2023.109716
[36] Tousif, S., Singh, A.P., Umbarkar, P., Galindo, C., Wheeler, N., Toro Cora, A., et al. (2023) Ponatinib Drives Cardiotoxicity by S100A8/A9-NLRP3-IL-1β Mediated Inflammation. Circulation Research, 132, 267-289.
https://doi.org/10.1161/circresaha.122.321504
[37] Zhang, L., Wang, X., Wu, L., Huang, L., Zhao, C., Peng, Q., et al. (2016) Diagnostic and Predictive Levels of Calcium-Binding Protein A8 and Tumor Necrosis Factor Receptor-Associated Factor 6 in Sepsis-Associated Encephalopathy: A Prospective Observational Study. Chinese Medical Journal, 129, 1674-1681.
https://doi.org/10.4103/0366-6999.185860
[38] Hamasaki, M.Y., Severino, P., Puga, R.D., Koike, M.K., Hernandes, C., Barbeiro, H.V., et al. (2019) Short-Term Effects of Sepsis and the Impact of Aging on the Transcriptional Profile of Different Brain Regions. Inflammation, 42, 1023-1031.
https://doi.org/10.1007/s10753-019-00964-9
[39] Liao, Y., Zhou, X., Ji, M., Qiu, L., Chen, X., Gong, C., et al. (2020) S100A9 Upregulation Contributes to Learning and Memory Impairments by Promoting Microglia M1 Polarization in Sepsis Survivor Mice. Inflammation, 44, 307-320.
https://doi.org/10.1007/s10753-020-01334-6
[40] Lee, C., Kou, H., Chou, H., Chou, H., Huang, S., Chang, C., et al. (2018) A Combination of SOFA Score and Biomarkers Gives a Better Prediction of Septic AKI and in-Hospital Mortality in Critically Ill Surgical Patients: A Pilot Study. World Journal of Emergency Surgery, 13, Article No. 41.
https://doi.org/10.1186/s13017-018-0202-5
[41] Shi, W., Wan, T., Li, H. and Guo, S. (2023) Blockage of S100A8/A9 Ameliorates Septic Nephropathy in Mice. Frontiers in Pharmacology, 14, Article 1172356.
https://doi.org/10.3389/fphar.2023.1172356
[42] Zhang, Y., Wu, F., Teng, F., Guo, S. and Li, H. (2023) Deficiency of S100A9 Alleviates Sepsis-Induced Acute Liver Injury through Regulating AKT-AMPK-Dependent Mitochondrial Energy Metabolism. International Journal of Molecular Sciences, 24, Article 2112.
https://doi.org/10.3390/ijms24032112
[43] Tang, S., Zhang, X., Duan, Z., Xu, M., Kong, M., Zheng, S., et al. (2023) The Novel Hepatoprotective Mechanisms of Silibinin-Phospholipid Complex against D-GalN/LPS-Induced Acute Liver Injury. International Immunopharmacology, 116, Article 109808.
https://doi.org/10.1016/j.intimp.2023.109808
[44] Gao, R., Jia, H., Han, Y., Qian, B., You, P., Zhang, X., et al. (2022) Calprotectin as a Diagnostic Marker for Sepsis: A Meta-Analysis. Frontiers in Cellular and Infection Microbiology, 12, Article 1045636.
https://doi.org/10.3389/fcimb.2022.1045636
[45] Chen, L., Long, X., Xu, Q., Tan, J., Wang, G., Cao, Y., et al. (2020) Elevated Serum Levels of S100A8/A9 and HMGB1 at Hospital Admission Are Correlated with Inferior Clinical Outcomes in COVID-19 Patients. Cellular & Molecular Immunology, 17, 992-994.
https://doi.org/10.1038/s41423-020-0492-x
[46] Chen, J., Tang, S., Ke, S., Cai, J.J., Osorio, D., Golovko, A., et al. (2022) Ablation of Long Noncoding RNA MALAT1 Activates Antioxidant Pathway and Alleviates Sepsis in Mice. Redox Biology, 54, Article 102377.
https://doi.org/10.1016/j.redox.2022.102377