|
[1]
|
Duffett, L. (2022) Deep Venous Thrombosis. Annals of Internal Medicine, 175, ITC129-ITC144. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Meizoso, J.P., Karcutskie, C.A., Ray, J.J., Ruiz, X., Ginzburg, E., Namias, N., et al. (2017) A Simplified Stratification System for Venous Thromboembolism Risk in Severely Injured Trauma Patients. Journal of Surgical Research, 207, 138-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Saghazadeh, A. and Rezaei, N. (2016) Inflammation as a Cause of Venous Thromboembolism. Critical Reviews in Oncology/Hematology, 99, 272-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Dou, C., Li, T., Yang, S., Geng, Q., Lu, Q., Zhang, Y., et al. (2022) Epidemiological Status and Risk Factors of Deep Vein Thrombosis in Patients with Femoral Neck Fracture. Journal of Orthopaedic Surgery and Research, 17, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhao, W., Zhao, J., Liu, T., Liu, Z. and Liu, L. (2022) Incidence and Risk Factors of Preoperative Isolated Calf Deep Venous Thrombosis Following Hip Fractures. Medicine, 101, e29140. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Galanello, R. and Origa, R. (2010) Beta-Thalassemia. Orphanet Journal of Rare Diseases, 5, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tennenbaum, J., Volle, G., Pouchot, J., Joseph, L., Khimoud, D., Ranque, B., et al. (2023) Increased Risk of Venous Thromboembolism in Splenectomized Patients with Sickle Cell Disease. British Journal of Haematology, 201, 793-796. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Babakhanlou, R., Verstovsek, S., Pemmaraju, N. and Rojas-Hernandez, C.M. (2023) Secondary Erythrocytosis. Expert Review of Hematology, 16, 245-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Musallam, K.M., Porter, J.B., Sfeir, P.M., Tamim, H.M., Richards, T., Lotta, L.A., et al. (2013) Raised Haematocrit Concentration and the Risk of Death and Vascular Complications after Major Surgery. British Journal of Surgery, 100, 1030-1036. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Braekkan, S.K., Mathiesen, E.B., Njolstad, I., Wilsgaard, T. and Hansen, J.-B. (2009) Hematocrit and Risk of Venous Thromboembolism in a General Population. The Tromsø Study. Haematologica, 95, 270-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Warny, M., Helby, J., Birgens, H.S., Bojesen, S.E. and Nordestgaard, B.G. (2019) Arterial and Venous Thrombosis by High Platelet Count and High Hematocrit: 108521 Individuals from the Copenhagen General Population Study. Journal of Thrombosis and Haemostasis, 17, 1898-1911. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bucciarelli, P., Maino, A., Felicetta, I., Abbattista, M., Passamonti, S.M., Artoni, A., et al. (2015) Association between Red Cell Distribution Width and Risk of Venous Thromboembolism. Thrombosis Research, 136, 590-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xiong, X., Li, T., Yu, S. and Cheng, B. (2022) Association between Red Blood Cell Indices and Preoperative Deep Vein Thrombosis in Patients Undergoing Total Joint Arthroplasty: A Retrospective Study. Clinical and Applied Thrombosis/Hemostasis, 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lippi, G., Targher, G., Montagnana, M., Salvagno, G.L., Zoppini, G. and Guidi, G.C. (2009) Relation between Red Blood Cell Distribution Width and Inflammatory Biomarkers in a Large Cohort of Unselected Outpatients. Archives of Pathology & Laboratory Medicine, 133, 628-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tural, K. and Kara, F. (2020) Can Complete Blood Cell Count Parameters Predict Deep Vein Thrombosis? Acta Clinica Croatica, 59, 661-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rezende, S.M., Lijfering, W.M., Rosendaal, F.R. and Cannegieter, S.C. (2013) Hematologic Variables and Venous Thrombosis: Red Cell Distribution Width and Blood Monocyte Count Are Associated with an Increased Risk. Haematologica, 99, 194-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xu, S., Li, K., Cao, W., Chen, S., Ren, S., Zhang, B., et al. (2024) The Association between Admission Mean Corpuscular Volume and Preoperative Deep Venous Thrombosis in Geriatrics Hip Fracture: A Retrospective Study. BMC Musculoskeletal Disorders, 25, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Farina, A., Rosso, F. and Fasano, A. (2021) A Continuum Mechanics Model for the Fåhræus-Lindqvist Effect. Journal of Biological Physics, 47, 253-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yavorkovsky, L.L. (2021) Mean Corpuscular Volume, Hematocrit and Polycythemia. Hematology, 26, 881-884. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Takeishi, N., Ito, H., Kaneko, M. and Wada, S. (2019) Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. Micromachines, 10, Article 199. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Schmidt-Braekling, T., Sabri, E., Kim, P.R., Gofton, W.T., Beaulé, P.E. and Grammatopoulos, G. (2024) Prevalence of Anemia and Association with Outcome in Joint Arthroplasty—Is There a Difference between Primary and Revision Cases? Archives of Orthopaedic and Trauma Surgery, 144, 2337-2346. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Feng, L., Xu, L., Yuan, W., Xu, Z., Feng, Z. and Zhang, H. (2020) Preoperative Anemia and Total Hospitalization Time Are the Independent Factors of Preoperative Deep Venous Thromboembolism in Chinese Elderly Undergoing Hip Surgery. BMC Anesthesiology, 20, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lizarralde-Iragorri, M.A. and Shet, A.S. (2020) Sickle Cell Disease: A Paradigm for Venous Thrombosis Pathophysiology. International Journal of Molecular Sciences, 21, Article 5279. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cappellini, M.D., Robbiolo, L., Bottasso, B.M., Coppola, R., Fiorelli, G. and Mannucci, A.P.M. (2000) Venous Thromboembolism and Hypercoagulability in Splenectomized Patients with Thalassaemia Intermedia. British Journal of Haematology, 111, 467-473. [Google Scholar] [CrossRef]
|
|
[25]
|
Schilling, R.F., Gangnon, R.E. and Traver, M.I. (2008) Delayed Adverse Vascular Events after Splenectomy in Hereditary Spherocytosis. Journal of Thrombosis and Haemostasis, 6, 1289-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Waheed, A., Shammo, J. and Dingli, D. (2024) Paroxysmal Nocturnal Hemoglobinuria: Review of the Patient Experience and Treatment Landscape. Blood Reviews, 64, Article 101158. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Song, K., Pan, P., Yao, Y., Jiang, T. and Jiang, Q. (2019) The Incidence and Risk Factors for Allogenic Blood Transfusion in Total Knee and Hip Arthroplasty. Journal of Orthopaedic Surgery and Research, 14, Article No. 273. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zallen, G., Moore, E.E., Ciesla, D.J., Brown, M., Biffl, W.L. and Silliman, C.C. (2000) Stored Red Blood Cells Selectively Activate Human Neutrophils to Release IL-8 and Secretory PLA2. Shock, 13, 29-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Silvain, J., Abtan, J., Kerneis, M., Martin, R., Finzi, J., Vignalou, J., et al. (2014) Impact of Red Blood Cell Transfusion on Platelet Aggregation and Inflammatory Response in Anemic Coronary and Noncoronary Patients: The TRANSFUSION-2 Study (Impact of Transfusion of Red Blood Cell on Platelet Activation and Aggregation Studied with Flow Cytometry Use and Light Transmission Aggregometry). Journal of the American College of Cardiology, 63, 1289-1296. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lee, J.S. and Gladwin, M.T. (2010) Bad Blood: The Risks of Red Cell Storage. Nature Medicine, 16, 381-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jiang, T., Song, K., Yao, Y., Pan, P. and Jiang, Q. (2019) Perioperative Allogenic Blood Transfusion Increases the Incidence of Postoperative Deep Vein Thrombosis in Total Knee and Hip Arthroplasty. Journal of Orthopaedic Surgery and Research, 14, Article No. 235. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Frisch, N.B., Wessell, N.M., Charters, M.A., Yu, S., Jeffries, J.J. and Silverton, C.D. (2014) Predictors and Complications of Blood Transfusion in Total Hip and Knee Arthroplasty. The Journal of Arthroplasty, 29, 189-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Spinella, P.C., Carroll, C.L., Staff, I., Gross, R., Mc Quay, J., Keibel, L., et al. (2009) Duration of Red Blood Cell Storage Is Associated with Increased Incidence of Deep Vein Thrombosis and in Hospital Mortality in Patients with Traumatic Injuries. Critical Care, 13, Article No. R151. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Tinmouth, A. and Chin-Yee, I. (2001) The Clinical Consequences of the Red Cell Storage Lesion. Transfusion Medicine Reviews, 15, 91-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Donadee, C., Raat, N.J.H., Kanias, T., Tejero, J., Lee, J.S., Kelley, E.E., et al. (2011) Nitric Oxide Scavenging by Red Blood Cell Microparticles and Cell-Free Hemoglobin as a Mechanism for the Red Cell Storage Lesion. Circulation, 124, 465-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, P., Zheng, L., Yan, S., Xuan, X., Yang, Y., Qi, X., et al. (2024) Understanding the Role of Red Blood Cells in Venous Thromboembolism: A Comprehensive Review. The American Journal of the Medical Sciences, 367, 296-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vayá, A. and Suescun, M. (2013) Hemorheological Parameters as Independent Predictors of Venous Thromboembolism. Clinical Hemorheology and Microcirculation, 53, 131-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bäumler, H., Neu, B., Donath, E. and Kiesewetter, H. (1999) Basic Phenomena of Red Blood Cell Rouleaux Formation. Biorheology: The Official Journal of the International Society of Biorheology, 36, 439-442. [Google Scholar] [CrossRef]
|
|
[39]
|
Huskens, D., Maas, C., Al Dieri, R., de Groot, P., de Laat, B. and Du, V. (2013) New Insights into the Role of Erythrocytes in Thrombus Formation. Seminars in Thrombosis and Hemostasis, 40, 72-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, X., Dao, M., Lykotrafitis, G. and Karniadakis, G.E. (2017) Biomechanics and Biorheology of Red Blood Cells in Sickle Cell Anemia. Journal of Biomechanics, 50, 34-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Leventis, P.A. and Grinstein, S. (2010) The Distribution and Function of Phosphatidylserine in Cellular Membranes. Annual Review of Biophysics, 39, 407-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Buerck, J.P., Burke, D.K., Schmidtke, D.W., Snyder, T.A., Papavassiliou, D.V. and O’Rear, E.A. (2021) Production of Erythrocyte Microparticles in a Sub-Hemolytic Environment. Journal of Artificial Organs, 24, 135-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Whelihan, M.F., Zachary, V., Orfeo, T. and Mann, K.G. (2012) Prothrombin Activation in Blood Coagulation: The Erythrocyte Contribution to Thrombin Generation. Blood, 120, 3837-3845. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Østerud, B., Unruh, D., Olsen, J.O., Kirchhofer, D., Owens, A.P. and Bogdanov, V.Y. (2015) Procoagulant and Proinflammatory Effects of Red Blood Cells on Lipopolysaccharide‐Stimulated Monocytes. Journal of Thrombosis and Haemostasis, 13, 1676-1682. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Guimarães-Nobre, C.C., Mendonça-Reis, E., Teixeira-Alves, L.R., Miranda-Alves, L. and Berto-Junior, C. (2022) ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes. Cell Biochemistry and Biophysics, 80, 711-721. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ibrahim, H.A., Fouda, M.I., Yahya, R.S., Abousamra, N.K. and Abd Elazim, R.A. (2014) Erythrocyte Phosphatidylserine Exposure in β-Thalassemia. Laboratory Hematology, 20, 9-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gao, Y., Lv, L., Liu, S., Ma, G. and Su, Y. (2013) Elevated Levels of Thrombin‐Generating Microparticles in Stored Red Blood Cells. Vox Sanguinis, 105, 11-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Hashemi Tayer, A., Amirizadeh, N., Ahmadinejad, M., Nikougoftar, M., Deyhim, M.R. and Zolfaghari, S. (2018) Procoagulant Activity of Red Blood Cell-Derived Microvesicles during Red Cell Storage. Transfusion Medicine and Hemotherapy, 46, 224-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Noubouossie, D.F., Henderson, M.W., Mooberry, M., Ilich, A., Ellsworth, P., Piegore, M., et al. (2020) Red Blood Cell Microvesicles Activate the Contact System, Leading to Factor IX Activation via 2 Independent Pathways. Blood, 135, 755-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Tutwiler, V., Mukhitov, A.R., Peshkova, A.D., Le Minh, G., Khismatullin, R.R., Vicksman, J., et al. (2018) Shape Changes of Erythrocytes during Blood Clot Contraction and the Structure of Polyhedrocytes. Scientific Reports, 8, Article No. 17907. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Sergueeva, A., Miasnikova, G., Shah, B.N., Song, J., Lisina, E., Okhotin, D.J., et al. (2017) Prospective Study of Thrombosis and Thrombospondin-1 Expression in Chuvash Polycythemia. Haematologica, 102, e166-e169. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Klatt, C., Krüger, I., Zey, S., Krott, K., Spelleken, M., Gowert, N.S., et al. (2018) Platelet-RBC Interaction Mediated by FasL/FasR Induces Procoagulant Activity Important for Thrombosis. Journal of Clinical Investigation, 128, 3906-3925. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Helms, C.C., Marvel, M., Zhao, W., Stahle, M., Vest, R., Kato, G.J., et al. (2013) Mechanisms of Hemolysis‐Associated Platelet Activation. Journal of Thrombosis and Haemostasis, 11, 2148-2154. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
White, J., Lancelot, M., Sarnaik, S. and Hines, P. (2015) Increased Erythrocyte Adhesion to VCAM-1 during Pulsatile Flow: Application of a Microfluidic Flow Adhesion Bioassay. Clinical Hemorheology and Microcirculation, 60, 201-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Goel, M.S. and Diamond, S.L. (2002) Adhesion of Normal Erythrocytes at Depressed Venous Shear Rates to Activated Neutrophils, Activated Platelets, and Fibrin Polymerized from Plasma. Blood, 100, 3797-3803. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Quinton, T.M., Ozdener, F., Dangelmaier, C., Daniel, J.L. and Kunapuli, S.P. (2002) Glycoprotein VI-Mediated Platelet Fibrinogen Receptor Activation Occurs through Calcium-Sensitive and PKC-Sensitive Pathways without a Requirement for Secreted ADP. Blood, 99, 3228-3234. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Tokarev, A.A., Butylin, A.A. and Ataullakhanov, F.I. (2011) Platelet Adhesion from Shear Blood Flow Is Controlled by Near-Wall Rebounding Collisions with Erythrocytes. Biophysical Journal, 100, 799-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Walton, B.L., Byrnes, J.R. and Wolberg, A.S. (2015) Fibrinogen, Red Blood Cells, and Factor XIII in Venous Thrombosis. Journal of Thrombosis and Haemostasis, 13, S208-S215. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Gurkan, U.A. (2021) Biophysical and Rheological Biomarkers of Red Blood Cell Physiology and Pathophysiology. Current Opinion in Hematology, 28, 138-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wolberg, A.S. and Sang, Y. (2022) Fibrinogen and Factor XIII in Venous Thrombosis and Thrombus Stability. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 931-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Litvinov, R.I. and Weisel, J.W. (2016) Role of Red Blood Cells in Haemostasis and Thrombosis. ISBT Science Series, 12, 176-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Middleton, E.A., He, X., Denorme, F., Campbell, R.A., Ng, D., Salvatore, S.P., et al. (2020) Neutrophil Extracellular Traps Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood, 136, 1169-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
McQuinn, E.R., Smith, S.A., Viall, A.K., Wang, C. and LeVine, D.N. (2020) Neutrophil Extracellular Traps in Stored Canine Red Blood Cell Units. Journal of Veterinary Internal Medicine, 34, 1894-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kono, M., Saigo, K., Takagi, Y., Takahashi, T., Kawauchi, S., Wada, A., et al. (2014) Heme‐Related Molecules Induce Rapid Production of Neutrophil Extracellular Traps. Transfusion, 54, 2811-2819. [Google Scholar] [CrossRef] [PubMed]
|