|
[1]
|
Tuttle, K.R., Wong, L., St. Peter, W., Roberts, G., Rangaswami, J., Mottl, A., et al. (2022) Moving from Evidence to Implementation of Breakthrough Therapies for Diabetic Kidney Disease. Clinical Journal of the American Society of Nephrology, 17, 1092-1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tuttle, K.R., Agarwal, R., Alpers, C.E., Bakris, G.L., Brosius, F.C., Kolkhof, P., et al. (2022) Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney International, 102, 248-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Johansen, K.L., Chertow, G.M., Foley, R.N., et al. (2021) US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. American Journal of Kidney Diseases, 77, A7-A8.
|
|
[4]
|
Jin, Q., Luk, A.O., Lau, E.S.H., et al. (2022) Nonalbuminuric Diabetic Kidney Disease and Risk of All-Cause Mortality and Cardiovascular and Kidney Outcomes in Type 2 Diabetes: Findings from the Hong Kong Diabetes Biobank. American Journal of Kidney Diseases, 80, 196-206.e1.
|
|
[5]
|
Zhang, J. (2023) What Has Genomics Taught an Evolutionary Biologist? Genomics, Proteomics & Bioinformatics, 21, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Stephan, T., Burgess, S.M., Cheng, H., Danko, C.G., Gill, C.A., Jarvis, E.D., et al. (2022) Darwinian Genomics and Diversity in the Tree of Life. Proceedings of the National Academy of Sciences of the United States of America, 119, e2115644119. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rhee, E.P. (2018) How Omics Data Can Be Used in Nephrology. American Journal of Kidney Diseases, 72, 129-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, S., Ma, D., Zhang, G., Cao, S., Li, B., et al. (2024) Nanopore-Based Full-Length Transcriptome Sequencing for Understanding the Underlying Molecular Mechanisms of Rapid and Slow Progression of Diabetes Nephropathy. BMC Medical Genomics, 17, Article No. 246. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gholaminejad, A., Fathalipour, M. and Roointan, A. (2021) Comprehensive Analysis of Diabetic Nephropathy Expression Profile Based on Weighted Gene Co-Expression Network Analysis Algorithm. BMC Nephrology, 22, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fatumo, S., Chikowore, T., Choudhury, A., Ayub, M., Martin, A.R. and Kuchenbaecker, K. (2022) A Roadmap to Increase Diversity in Genomic Studies. Nature Medicine, 28, 243-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lin, B., Hui, J. and Mao, H. (2021) Nanopore Technology and Its Applications in Gene Sequencing. Biosensors, 11, Article 214. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kumar, K.R., Cowley, M.J. and Davis, R.L. (2019) Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis, 45, 661-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ozercan, H.I., Ileri, A.M., Ayday, E. and Alkan, C. (2018) Realizing the Potential of Blockchain Technologies in Genomics. Genome Research, 28, 1255-1263. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Straiton, J., Free, T., Sawyer, A. and Martin, J. (2019) From Sanger Sequencing to Genome Databases and Beyond. BioTechniques, 66, 60-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhu, C., Yang, G., Ghulam, M., Li, L. and Qu, F. (2019) Evolution of Multi-Functional Capillary Electrophoresis for High-Efficiency Selection of Aptamers. Biotechnology Advances, 37, Article ID: 107432. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K.F. (2021) Nanopore Sequencing Technology, Bioinformatics and Applications. Nature Biotechnology, 39, 1348-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fralick, M., Jenkins, A.J., Khunti, K., Mbanya, J.C., Mohan, V. and Schmidt, M.I. (2022) Global Accessibility of Therapeutics for Diabetes Mellitus. Nature Reviews Endocrinology, 18, 199-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Al-Dabet, M.M., Shahzad, K., Elwakiel, A., Sulaj, A., Kopf, S., Bock, F., et al. (2022) Reversal of the Renal Hyperglycemic Memory in Diabetic Kidney Disease by Targeting Sustained Tubular P21 Expression. Nature Communications, 13, Article No. 5062. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sandholm, N., Cole, J.B., Nair, V., Sheng, X., Liu, H., Ahlqvist, E., et al. (2022) Genome-Wide Meta-Analysis and Omics Integration Identifies Novel Genes Associated with Diabetic Kidney Disease. Diabetologia, 65, 1495-1509. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hu, S., Han, R., Chen, L., Qin, W., Xu, X., Shi, J., et al. (2020) Upregulated LRRC55 Promotes BK Channel Activation and Aggravates Cell Injury in Podocytes. Journal of Experimental Medicine, 218, e20192373. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lay, A.C., Barrington, A.F., Hurcombe, J.A., Ramnath, R.D., Graham, M., Lewis, P.A., et al. (2020) A Role for NPY-NPY2R Signaling in Albuminuric Kidney Disease. Proceedings of the National Academy of Sciences, 117, 15862-15873. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Liu, J., Duan, G., Yang, W., Zhang, S., Liu, F., Peng, Y., et al. (2023) Identification of Transcription Factors Related to Diabetic Tubulointerstitial Injury. Journal of Translational Medicine, 21, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wei, L., Gao, J., Wang, L., Tao, Q. and Tu, C. (2023) Multi-omics Analysis Reveals the Potential Pathogenesis and Therapeutic Targets of Diabetic Kidney Disease. Human Molecular Genetics, 33, 122-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shen, Y., Chen, W., Han, L., Bian, Q., Fan, J., Cao, Z., et al. (2021) VEGF-B Antibody and Interleukin-22 Fusion Protein Ameliorates Diabetic Nephropathy through Inhibiting Lipid Accumulation and Inflammatory Responses. Acta Pharmaceutica Sinica B, 11, 127-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
张志蓉, 韩伟霞, 王晨. 糖尿病肾病分子机制的研究新进展[J]. 中华肾病研究电子杂志, 2021, 10(2): 90-95.
|
|
[26]
|
Tziastoudi, M., Cholevas, C., Theoharides, T.C. and Stefanidis, I. (2021) Meta-Analysis and Bioinformatics Detection of Susceptibility Genes in Diabetic Nephropathy. International Journal of Molecular Sciences, 23, Article 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Du, L., Chen, Y., Shi, J., Yu, X., Zhou, J., Wang, X., et al. (2023) Inhibition of S100A8/A9 Ameliorates Renal Interstitial Fibrosis in Diabetic Nephropathy. Metabolism, 144, Article ID: 155376. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, Y., Uruno, A., Saito, R., Matsukawa, N., Hishinuma, E., Saigusa, D., et al. (2022) Nrf2 Deficiency Deteriorates Diabetic Kidney Disease in Akita Model Mice. Redox Biology, 58, Article ID: 102525. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yan, M., Li, W., Wei, R., Li, S., Liu, Y., Huang, Y., et al. (2023) Identification of Pyroptosis-Related Genes and Potential Drugs in Diabetic Nephropathy. Journal of Translational Medicine, 21, Article No. 490. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, S., Gui, Y., Wang, M.S., Zhang, L., Xu, T., Pan, Y., et al. (2021) Serum Integrative Omics Reveals the Landscape of Human Diabetic Kidney Disease. Molecular Metabolism, 54, Article ID: 101367. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yang, J., Liu, D. and Liu, Z. (2022) Integration of Metabolomics and Proteomics in Exploring the Endothelial Dysfunction Mechanism Induced by Serum Exosomes from Diabetic Retinopathy and Diabetic Nephropathy Patients. Frontiers in Endocrinology, 13, Article 830466. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhao, T., Cheng, F., Zhan, D., Li, J., Zheng, C., Lu, Y., et al. (2023) The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy. Journal of Proteome Research, 22, 1779-1789. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, C., Hansen, M.E.B. and Tishkoff, S.A. (2022) Advances in Integrative African Genomics. Trends in Genetics, 38, 152-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hindorff, L.A., Bonham, V.L., Brody, L.C., Ginoza, M.E.C., Hutter, C.M., Manolio, T.A., et al. (2017) Prioritizing Diversity in Human Genomics Research. Nature Reviews Genetics, 19, 175-185. [Google Scholar] [CrossRef] [PubMed]
|